MATH 334 2010 MIDTERM 1 SOLUTIONS

NAME	
$\mathrm{ID}\#$	
SIGNATURE	

- Only pen/pencil/eraser are allowed. Scratch papers will be provided.
- Please write clearly, with intermediate steps to show sufficient work even if you can solve the problem in "one go". Otherwise you may not receive full credit.
- Please box, underline, or highlight the most important parts of your answers.

Problem	Points	Score
1	25	
2	25	
3	15	
4	15	
5	15	
6	5	
Total	100	

Problem 1. (25 pts) Solve the initial value problem

$$y'' + 4y = 0, \qquad y(0) = 0, \ y'(0) = 1.$$
 (1)

Solution. This is 3.3 17.

• Characteristic equation:

$$r^2 + 4 = 0 \Longrightarrow r_1 = 2i, r_2 = -2i.$$

$$\tag{2}$$

• General solution

$$y = C_1 \cos 2t + C_2 \sin 2t. \tag{3}$$

• Fix C_1, C_2 :

$$y' = -2C_1 \sin 2t + 2C_2 \cos 2t. \tag{4}$$

Thus

$$y(0) = 0 \Longrightarrow C_1 = 0; \tag{5}$$

$$y'(0) = 1 \Longrightarrow 2C_2 = 1 \Longrightarrow C_2 = 1/2. \tag{6}$$

• Final answer:

$$y = \frac{\sin 2t}{2}.\tag{7}$$

Grading scheme etc:

- Know the procedure (9 pts)
 - Characteristic equation (3 pts) -> General solution (3 pts) -> Use IV (3 pts)
- Detailed solution (16 pts)
 - Correct characteristic equation (3 pts)
 - Correct roots (2 pts)
 - Correct general solution (2 pts)
 - \circ Correct y' (2 pts)
 - \circ Correct C_1, C_2 (2+2 pts)
 - Correct final answer (3 pts).
- Remarks:
 - If characteristic equation is conceptually wrong, 9/25.
 - \circ Common mistake:
 - $-r^2 + 4r = 0$. The power of r corresponds to the number of derivatives. So y'' (two derivatives) gives r^2 while 4y (zero derivatives) should give 4 instead of 4r.
 - $-\cos 0 = 0.$
 - $-C_2 = \frac{1}{2}, so \frac{1}{2} \cos 2t.$

Problem 2 (25 pts) Find the general solution

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\,x^3 + 1}{y\,(2+3\,y)}.\tag{8}$$

Solution. This is Chapter 2 Problem 7.

- First spot that it is separable.
- Move terms:

$$y(2+3y) dy = (4x^3+1) dx.$$
(9)

• Integrate:

$$y^2 + y^3 = x^4 + x + C. (10)$$

• Solution is given by

$$y^2 + y^3 - x^4 - x = C. (11)$$

• It's also OK to work along the "exact equations" procedure.

Grading scheme etc:

- Know the procedure (9 pts): Separable (3 pts) -> Move x terms to one side and y terms to the other (3 pts) -> Integrate (3 pts).
- Details (16 pts)
 - Correct equation $y(2+3y) dy = (4x^3+1) dx$ (4 pts)
 - Integrations: Correct y term integration (3 pts), correct x term integration (3 pts), remember to add C (3 pts).
 - Correct answer (3 pts).
- Remarks
 - If wrongly add y = 0, ..., -1. Note that here we are multiplying, not dividing, both sides by y(2+3y) so there is no need to check the zeroes of this function.
 - If working along "exact equation" line, then: Correct $M, N(2+2), u = \int \dots + g(y)(3)$, evaluation of the integral (3), get g(y)(3), final answer (3).

Problem 3. (15 pts) Solve

$$y'' + 9 y = \sin 3 t, \qquad y(0) = 2; \ y'(0) = -1.$$
 (12)

Solution.

- We should use undetermined coefficients.
- First solve the homogeneous equation

$$y'' + 9 \ y = 0 \tag{13}$$

whose characteristic equation is $r^2 + 9 = 0 \Longrightarrow r_{1,2} = \pm 3 i$. So

$$y_1 = \cos 3t; \qquad y_2 = \sin 3t.$$
 (14)

• The right hand side is of the form $e^{\alpha t} \sin \beta t (A_0 + \dots + A_n t^n)$ with $\alpha = 0, \beta = 3, n = 0$. So guess

$$y_p = t^s [A\cos 3t + B\sin 3t].$$
(15)

Since $\alpha + i\beta = 3i$ is indeed a solution to the characteristic equation, we take s = 1. So

$$y_p = t \left[A \cos 3t + B \sin 3t \right]. \tag{16}$$

• Substitute into the equation:

$$t \left[-9 A \cos 3 t - 9 B \sin 3 t\right] + 2 \left[-3 A \sin 3 t + 3 B \cos 3 t\right] + 9 t \left[A \cos 3 t + B \sin 3 t\right] = \sin 3 t \tag{17}$$

which simplifies to

$$6B\cos 3t - 6A\sin 3t = \sin 3t \tag{18}$$

 \mathbf{so}

$$B = 0, A = -\frac{1}{6}.$$
 (19)

Thus we have

$$y_p = -\frac{t\cos 3t}{6}.\tag{20}$$

• General solution:

$$y = C_1 \cos 3t + C_2 \sin 3t - \frac{t \cos 3t}{6}.$$
(21)

• Use initial values to get C_1, C_2 : Preparation: $y' = -3 C_1 \sin 3t + 3 C_2 \cos 3t + \frac{t \sin 3t}{2} - \frac{\cos 3t}{6}$. Now

$$y(0) = 2 \Longrightarrow C_1 = 2; \tag{22}$$

$$y'(0) = -1 \Longrightarrow 3C_2 - \frac{1}{6} = -1 \Longrightarrow C_2 = -\frac{5}{18}.$$
 (23)

• Final answer:

$$y = 2\cos 3t - \frac{5}{18}\sin 3t - \frac{t\cos 3t}{6}.$$
(24)

• It's OK if you use variation of parameters to get the general solution.

Grading Scheme etc:

- Know the procedure (5 pts): Solve homogeneous equation (2); Undetermined coefficients (2); Use IV (1).
- Details (10 pts):
 - Solution of homogeneous equation: 2 pts;
 - Correct form of y_p : 3 pts: t^s (1); s = 1 (1); Both sin and cos (1);
 - \circ Correct A, B: 2 pts;
 - \circ Determine C_1, C_2 : 2 pts;
 - Answer 1 pt.
- Mistakes:
 - \circ Try to determine C_1, C_2 before y_p is obtained.
 - Characteristic equation: $r^2 + 9r = 0$.
 - $\circ \quad A = -1/6 \ so \ y_p = -\frac{1}{6} t \sin 3 t.$

Problem 4 (15 pts) Find an integrating factor for and solve

$$(3x4 + y) dx + (2x2y - x) dy = 0.$$
(25)

Solution.

• Getting the μ equation:

$$M = 3x^4 + y \Longrightarrow \frac{\partial M}{\partial y} = 1; \qquad N = 2x^2y - x \Longrightarrow \frac{\partial N}{\partial x} = 4xy - 1.$$
(26)

 So

$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 4 x y - 2 = 2 (2 x y - 1).$$
(27)

The μ equation is

$$(3x^4+y)\frac{\partial\mu}{\partial y} - (2x^2y-x)\frac{\partial\mu}{\partial x} = 2(2xy-1)\mu.$$
⁽²⁸⁾

- Guess μ .
 - Guess $\mu = \mu(x)$:

$$-(2x^{2}y - x)\mu' = 2(2xy - 1)\mu \Longrightarrow -x\mu' = 2\mu.$$
(29)

 So

$$\frac{\mu'}{\mu} = -\frac{2}{x} \Longrightarrow \mu = x^{-2}.$$
(30)

• Multiply the equation by μ . We get

$$\left(3x^2 + \frac{y}{x^2}\right)\mathrm{d}x + \left(2y - \frac{1}{x}\right)\mathrm{d}y = 0.$$
(31)

• Check exactness:

$$\frac{\partial(3x^2 + y/x^2)}{\partial y} = \frac{1}{x^2}; \qquad \frac{\partial(2y - \frac{1}{x})}{\partial x} = -\left(-\frac{1}{x^2}\right) = \frac{1}{x^2}.$$
(32)

• Solve the transformed equation:

$$\left(3x^2 + \frac{y}{x^2}\right)\mathrm{d}x + \left(2y - \frac{1}{x}\right)\mathrm{d}y = 0.$$
(33)

Compute

$$u(x,y) = \int \left(3x^2 + \frac{y}{x^2}\right) dx + g(y) = x^3 - \frac{y}{x} + g(y).$$
(34)

Take $\frac{\partial}{\partial y}$:

$$\frac{\partial u}{\partial y} = -\frac{1}{x} + g'(y). \tag{35}$$

Compare with $\left(2 y - \frac{1}{x}\right)$ we have

$$g'(y) = 2 \ y \Longrightarrow g(y) = y^2. \tag{36}$$

• So the solution is

$$x^3 - \frac{y}{x} + y^2 = C. ag{37}$$

Grading Scheme etc:

- Procedure (5 pts): Find μ (2); Multiply the equation by μ (1); Integrate the resulting exact equation (2).
- Details (10 pts):
 - Correct equation for μ : 2 pts;
 - Correct equation for $\mu = \mu(x)$: 1 pt;
 - Correct simplification: 1 pt;
 - $\circ \quad \mu = 1/x^2: 1 \ pt.$
 - Correct transformed equation. 1 pt;
 - $\circ \quad u = \int \cdots + g(x) \colon 1 \ pt.$
 - Evaluation of $\int \cdots 1 pt$.
 - \circ Obtain g(x): 1 pt.
 - \circ Final answer: 1 pt.
- Common mistakes:
 - Unable to simplify $-(2x^2y x)\mu' = (4xy 2)\mu$.
 - Sloppy writing: For example $-(2x^2y x)$ becomes $-2x^2y x$ in the very next line, which then naturally ruins everything.
- Remarks
 - Ability to carry out all the calculation efficiently is crucial to the solution of such problems.

Problem 5 (15 pts)

a) (7 pts) Show that if the equation M(x, y) dx + N(x, y) dy = 0 is such that

$$\frac{x^2}{x\,M+y\,N}\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) = F\left(\frac{y}{x}\right) \tag{38}$$

then an integrating factor is given by

$$\mu(x, y) = \exp\left\{\int F(u) \,\mathrm{d}u\right\}, \qquad u = \frac{y}{x}.$$
(39)

b) (8 pts) Use the result in a) to solve

$$(2x - y + 2xy - y^2) dx + (x + x^2 + xy) dy = 0.$$
(40)

Note that you can work on b) even if you cannot do a).

Solution.

a) If $\mu(x, y) = \mu(\frac{y}{x})$, then (letting u = y/x)

$$\frac{\partial \mu}{\partial y} = \frac{1}{x} \,\mu'(u), \qquad \frac{\partial \mu}{\partial x} = -\frac{y}{x^2} \,\mu'(u). \tag{41}$$

Now the equation for μ :

$$M\frac{\partial\mu}{\partial y} - N\frac{\partial\mu}{\partial x} = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)\mu\tag{42}$$

becomes

$$M\left[\frac{1}{x}\mu'(u)\right] - N\left[-\frac{y}{x^2}\mu'(u)\right] = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)\mu(u)$$
(43)

which simplifies to

$$\left[\frac{M}{x} + \frac{Ny}{x^2}\right]\mu'(u) = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)\mu(u)$$
(44)

which is just

$$\frac{x M + y N}{x^2} \mu'(u) = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \mu(u) \Longleftrightarrow \frac{\mu'(u)}{\mu(u)} = \frac{x^2}{x M + y N} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right). \tag{45}$$

Now if

$$\frac{x^2}{xM+yN}\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) = F\left(\frac{y}{x}\right) \tag{46}$$

the μ equation becomes

$$\frac{\mu'(u)}{\mu(u)} = F(u) \tag{47}$$

whose solution is

$$\mu(u) = \exp\left\{\int F(u) \,\mathrm{d}u\right\}.\tag{48}$$

- Note: It's also OK to substitute $\mu(u) = \exp \{\int F(u) du\}$ into the equation for μ and show that it is indeed a solution.
- b) Since we are told to use a), just compute

$$\frac{\partial N}{\partial x} = \frac{\partial (x + x^2 + xy)}{\partial x} = 1 + 2x + y; \qquad \frac{\partial M}{\partial y} = (-1 + 2x - 2y) \tag{49}$$

 \mathbf{SO}

$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 3 y + 2. \tag{50}$$

and

$$\frac{x^2}{x\,M+y\,N}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) = 1.$$
(51)

 So

$$\mu(u) = e^{\int 1} = e^u \tag{52}$$

and consequently

$$\mu(x,y) = e^{y/x}.\tag{53}$$

Now multiply the equation by the integrating factor we obtained:

$$\left[e^{y/x}\left(2\,x-y+2\,x\,y-y^2\right)\right]\mathrm{d}x + \left[e^{y/x}\left(x+x^2+x\,y\right)\right]\mathrm{d}y = 0.$$
(54)

Compute

$$\begin{aligned} u(x,y) &= \int \left[e^{y/x} \left(x + x^2 + x \, y \right) \right] \mathrm{d}y + g(x) \\ &= (x + x^2) \int e^{y/x} \mathrm{d}y + x \int y \, e^{y/x} \mathrm{d}y + g(x) \\ &= (x + x^2) \, x \, e^{y/x} + x \left[x \int y \, \mathrm{d}e^{y/x} \right] + g(x) \\ &= (x^2 + x^3) \, e^{y/x} + x^2 \left[y \, e^{y/x} - \int e^{y/x} \mathrm{d}y \right] + g(x) \\ &= (x^2 + x^3) \, e^{y/x} + x^2 \, y \, e^{y/x} - x^3 \, e^{y/x} + g(x) \\ &= (x^2 + x^2 \, y) \, e^{y/x} + g(x). \end{aligned}$$
(55)

Now compute

$$\frac{\partial u}{\partial x} = (2x + 2xy) e^{y/x} + (x^2 + x^2y) \left(-\frac{y}{x^2}\right) e^{y/x} + g'(x) = (2x + 2xy - y - y^2) e^{y/x}$$
(56)

and compare with $e^{y/x} (2x - y + 2xy - y^2)$ we see that g'(x) = 0 so can take g(x) = 0. So the general solution is given by

$$(x^2 + x^2 y) e^{y/x} = C. (57)$$

Grading scheme etc. For "advanced" and "challenge" problems, no "Procedure" points anymore.

- Part(a)
 - $\circ \quad Equation \ for \ \mu: \ 2 \ pts.$
 - Correct calculation of $\frac{\partial \mu}{\partial x}, \frac{\partial \mu}{\partial y}$: 2 pts.
 - Equation for $\mu(u)$: 1 pt
 - \circ Get μ : 2 pts.
- Part(b)
 - $\circ \quad Calculation \ of \ \frac{\partial M}{\partial y}, \frac{\partial N}{\partial x}: \ 2 \ pts;$
 - \circ Check (a): 1 pt
 - \circ Get μ : 1 pt
 - Multiply the equation by μ : 1 pt
 - $\circ \int \cdots and g(x): 2 pts$
 - Answer: 1 pt.
- Common mistakes:
 - Didn't notice "Use the result in a)" and wasted time guess $\mu = \mu(x), \mu = \mu(y), \dots$

Problem 6 (5 pts) If the roots of the characteristic equation are real, show that a solution of ay'' +by' + cy = 0 is either everywhere zero or else can take on the value zero at most once.

Proof. Note that there are two cases: Distinct roots and repeated roots. We discuss them one by one.

- Case 1. Distinct roots. •
 - In this case all we need to show is that if $r_1 \neq r_2$ are real, then

$$C_1 e^{r_1 t} + C_2 e^{r_2 t} = 0 \tag{58}$$

can have at most one zero unless $C_1 = C_2 = 0$.

Assume the contrary. If we have C_1, C_2 not both zero, and $t_1 \neq t_2$ such that

$$C_1 e^{r_1 t_1} + C_2 e^{r_2 t_1} = 0 (59)$$

$$C_1 e^{r_1 t_2} + C_2 e^{r_2 t_2} = 0 ag{60}$$

Multiply the first equation by $-e^{r_1(t_2-t_1)}$ and add to the second equation, we get

$$C_2 \left[e^{r_2 t_2} - e^{r_1 (t_2 - t_1)} e^{r_2 t_1} \right] = 0 \tag{61}$$

which simplifies to

$$C_2 e^{r_2 t_2} \left[1 - e^{r_1 (t_2 - t_1)} e^{r_2 (t_1 - t_2)} \right] = 0$$
(62)

and then

$$C_2 e^{r_2 t_2} \left[1 - e^{(r_1 - r_2)(t_2 - t_1)} \right] = 0.$$
(63)

As $r_1 \neq r_2$, $t_1 \neq t_2$, we have $1 - e^{(r_1 - r_2)(t_2 - t_1)} \neq 0$ and consequently $C_2 = 0$. But the whole argument still works if we replace all 2 by 1 and 1 by 2. So $C_1 = 0$. Contradiction.

Case 2. Repeated roots. Denote the root by r. We need to show that

$$C_1 e^{rt} + C_2 t e^{rt} = 0 (64)$$

can have at most one zero unless $C_1 = C_2 = 0$.

Now that

$$C_1 e^{rt} + C_2 t e^{rt} = 0 \Longrightarrow C_1 + C_2 t = 0.$$
(65)

If there are $t_1 \neq t_2$ such that

$$C_1 + C_2 t_1 = 0, \qquad C_1 + C_2 t_2 = 0 \tag{66}$$

Taking the difference we get $C_2 = 0$. Substitute back into either equation we get $C_1 = 0$. Contradiction.

Grading scheme etc.

- Two cases of general solutions for "both roots real": 2 pts .
- Analyze case 1 (distinct roots): 2 pts
- Analyze case 2 (repeated roots): 1 pt.