Math 3342010 Midterm 1 Solutions

NAME

ID \#

Signature \qquad

- Only pen/pencil/eraser are allowed. Scratch papers will be provided.
- Please write clearly, with intermediate steps to show sufficient work even if you can solve the problem in "one go". Otherwise you may not receive full credit.
- Please box, underline, or highlight the most important parts of your answers.

Problem	Points	Score
1	25	
2	25	
3	15	
4	15	
5	15	
6	100	

Problem 1. (25 pts) Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+4 y=0, \quad y(0)=0, y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

Solution. This is 3.317 .

- Characteristic equation:

$$
\begin{equation*}
r^{2}+4=0 \Longrightarrow r_{1}=2 i, r_{2}=-2 i \tag{2}
\end{equation*}
$$

- General solution

$$
\begin{equation*}
y=C_{1} \cos 2 t+C_{2} \sin 2 t \tag{3}
\end{equation*}
$$

- Fix C_{1}, C_{2} :

$$
\begin{equation*}
y^{\prime}=-2 C_{1} \sin 2 t+2 C_{2} \cos 2 t \tag{4}
\end{equation*}
$$

Thus

$$
\begin{gather*}
y(0)=0 \Longrightarrow C_{1}=0 \tag{5}\\
y^{\prime}(0)=1 \Longrightarrow 2 C_{2}=1 \Longrightarrow C_{2}=1 / 2 \tag{6}
\end{gather*}
$$

- Final answer:

$$
\begin{equation*}
y=\frac{\sin 2 t}{2} \tag{7}
\end{equation*}
$$

Grading scheme etc:

- Know the procedure (9 pts)
- Characteristic equation (3 pts) -> General solution (3 pts) -> Use IV (3 pts)
- Detailed solution (16 pts)
- Correct characteristic equation (3 pts)
- Correct roots (2 pts)
- Correct general solution (2 pts)
- Correct y^{\prime} (2 pts)
- $\operatorname{Correct} C_{1}, C_{2}(2+2 \mathrm{pts})$
- Correct final answer (3 pts).
- Remarks:
- If characteristic equation is conceptually wrong, 9/25.
- Common mistake:
$-r^{2}+4 r=0$. The power of r corresponds to the number of derivatives. So $y^{\prime \prime}$ (two derivatives) gives r^{2} while $4 y$ (zero derivatives) should give 4 instead of $4 r$.
$-\quad \cos 0=0$.
$-\quad C_{2}=\frac{1}{2}$, so $\frac{1}{2} \cos 2 t$.

Problem 2 (25 pts) Find the general solution

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x^{3}+1}{y(2+3 y)} \tag{8}
\end{equation*}
$$

Solution. This is Chapter 2 Problem 7.

- First spot that it is separable.
- Move terms:

$$
\begin{equation*}
y(2+3 y) \mathrm{d} y=\left(4 x^{3}+1\right) \mathrm{d} x . \tag{9}
\end{equation*}
$$

- Integrate:

$$
\begin{equation*}
y^{2}+y^{3}=x^{4}+x+C \tag{10}
\end{equation*}
$$

- Solution is given by

$$
\begin{equation*}
y^{2}+y^{3}-x^{4}-x=C \tag{11}
\end{equation*}
$$

- It's also OK to work along the "exact equations" procedure.

Grading scheme etc:

- Know the procedure (9 pts): Separable (3 pts) -> Move x terms to one side and y terms to the other (3 pts) -> Integrate (3 pts).
- Details (16 pts)
- Correct equation $y(2+3 y) \mathrm{d} y=\left(4 x^{3}+1\right) \mathrm{d} x$ (4 pts)
- Integrations: Correct y term integration (3 pts), correct x term integration (3 pts), remember to add C (3 pts).
- Correct answer (3 pts).
- Remarks
- If wrongly add $y=0, \ldots,-1$. Note that here we are multiplying, not dividing, both sides by $y(2+3 y)$ so there is no need to check the zeroes of this function.
- If working along "exact equation" line, then: Correct M, N (2+2), $u=\int \ldots+g(y)$ (3), evaluation of the integral (3), get $g(y)$ (3), final answer (3).

Problem 3. (15 pts) Solve

$$
\begin{equation*}
y^{\prime \prime}+9 y=\sin 3 t, \quad y(0)=2 ; \quad y^{\prime}(0)=-1 \tag{12}
\end{equation*}
$$

Solution.

- We should use undetermined coefficients.
- First solve the homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+9 y=0 \tag{13}
\end{equation*}
$$

whose characteristic equation is $r^{2}+9=0 \Longrightarrow r_{1,2}= \pm 3 i$. So

$$
\begin{equation*}
y_{1}=\cos 3 t ; \quad y_{2}=\sin 3 t \tag{14}
\end{equation*}
$$

- The right hand side is of the form $e^{\alpha t} \sin \beta t\left(A_{0}+\cdots+A_{n} t^{n}\right)$ with $\alpha=0, \beta=3, n=0$. So guess

$$
\begin{equation*}
y_{p}=t^{s}[A \cos 3 t+B \sin 3 t] \tag{15}
\end{equation*}
$$

Since $\alpha+i \beta=3 i$ is indeed a solution to the characteristic equation, we take $s=1$. So

$$
\begin{equation*}
y_{p}=t[A \cos 3 t+B \sin 3 t] . \tag{16}
\end{equation*}
$$

- Substitute into the equation:

$$
\begin{equation*}
t[-9 A \cos 3 t-9 B \sin 3 t]+2[-3 A \sin 3 t+3 B \cos 3 t]+9 t[A \cos 3 t+B \sin 3 t]=\sin 3 t \tag{17}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
6 B \cos 3 t-6 A \sin 3 t=\sin 3 t \tag{18}
\end{equation*}
$$

so

$$
\begin{equation*}
B=0, A=-\frac{1}{6} \tag{19}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
y_{p}=-\frac{t \cos 3 t}{6} \tag{20}
\end{equation*}
$$

- General solution:

$$
\begin{equation*}
y=C_{1} \cos 3 t+C_{2} \sin 3 t-\frac{t \cos 3 t}{6} \tag{21}
\end{equation*}
$$

- Use initial values to get C_{1}, C_{2} :

Preparation: $y^{\prime}=-3 C_{1} \sin 3 t+3 C_{2} \cos 3 t+\frac{t \sin 3 t}{2}-\frac{\cos 3 t}{6}$.
Now

$$
\begin{gather*}
y(0)=2 \Longrightarrow C_{1}=2 \tag{22}\\
y^{\prime}(0)=-1 \Longrightarrow 3 C_{2}-\frac{1}{6}=-1 \Longrightarrow C_{2}=-\frac{5}{18} \tag{23}
\end{gather*}
$$

- Final answer:

$$
\begin{equation*}
y=2 \cos 3 t-\frac{5}{18} \sin 3 t-\frac{t \cos 3 t}{6} \tag{24}
\end{equation*}
$$

- It's OK if you use variation of parameters to get the general solution.

Grading Scheme etc:

- Know the procedure (5 pts): Solve homogeneous equation (2); Undetermined coefficients (2); Use IV (1).
- Details (10 pts):
- Solution of homogeneous equation: 2 pts;
- Correct form of $y_{p}: 3$ pts: t^{s} (1); $s=1$ (1); Both \sin and \cos (1);
- Correct A, B: 2 pts;
- Determine C_{1}, C_{2} : 2 pts ;
- Answer 1 pt.
- Mistakes:
- Try to determine C_{1}, C_{2} before y_{p} is obtained.
- Characteristic equation: $r^{2}+9 r=0$.
- $A=-1 / 6$ so $y_{p}=-\frac{1}{6} t \sin 3 t$.

Problem 4 (15 pts) Find an integrating factor for and solve

$$
\begin{equation*}
\left(3 x^{4}+y\right) \mathrm{d} x+\left(2 x^{2} y-x\right) \mathrm{d} y=0 . \tag{25}
\end{equation*}
$$

Solution.

- Getting the μ equation:

$$
\begin{equation*}
M=3 x^{4}+y \Longrightarrow \frac{\partial M}{\partial y}=1 ; \quad N=2 x^{2} y-x \Longrightarrow \frac{\partial N}{\partial x}=4 x y-1 \tag{26}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=4 x y-2=2(2 x y-1) \tag{27}
\end{equation*}
$$

The μ equation is

$$
\begin{equation*}
\left(3 x^{4}+y\right) \frac{\partial \mu}{\partial y}-\left(2 x^{2} y-x\right) \frac{\partial \mu}{\partial x}=2(2 x y-1) \mu \tag{28}
\end{equation*}
$$

- Guess μ.
- Guess $\mu=\mu(x)$:

$$
\begin{equation*}
-\left(2 x^{2} y-x\right) \mu^{\prime}=2(2 x y-1) \mu \Longrightarrow-x \mu^{\prime}=2 \mu \tag{29}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{\mu^{\prime}}{\mu}=-\frac{2}{x} \Longrightarrow \mu=x^{-2} \tag{30}
\end{equation*}
$$

- Multiply the equation by μ. We get

$$
\begin{equation*}
\left(3 x^{2}+\frac{y}{x^{2}}\right) \mathrm{d} x+\left(2 y-\frac{1}{x}\right) \mathrm{d} y=0 \tag{31}
\end{equation*}
$$

- Check exactness:

$$
\begin{equation*}
\frac{\partial\left(3 x^{2}+y / x^{2}\right)}{\partial y}=\frac{1}{x^{2}} ; \quad \frac{\partial\left(2 y-\frac{1}{x}\right)}{\partial x}=-\left(-\frac{1}{x^{2}}\right)=\frac{1}{x^{2}} \tag{32}
\end{equation*}
$$

- Solve the transformed equation:

$$
\begin{equation*}
\left(3 x^{2}+\frac{y}{x^{2}}\right) \mathrm{d} x+\left(2 y-\frac{1}{x}\right) \mathrm{d} y=0 \tag{33}
\end{equation*}
$$

Compute

$$
\begin{equation*}
u(x, y)=\int\left(3 x^{2}+\frac{y}{x^{2}}\right) \mathrm{d} x+g(y)=x^{3}-\frac{y}{x}+g(y) \tag{34}
\end{equation*}
$$

Take $\frac{\partial}{\partial y}$:

$$
\begin{equation*}
\frac{\partial u}{\partial y}=-\frac{1}{x}+g^{\prime}(y) \tag{35}
\end{equation*}
$$

Compare with $\left(2 y-\frac{1}{x}\right)$ we have

$$
\begin{equation*}
g^{\prime}(y)=2 y \Longrightarrow g(y)=y^{2} \tag{36}
\end{equation*}
$$

- So the solution is

$$
\begin{equation*}
x^{3}-\frac{y}{x}+y^{2}=C \tag{37}
\end{equation*}
$$

Grading Scheme etc:

- Procedure (5 pts): Find μ (2); Multiply the equation by μ (1); Integrate the resulting exact equation (2).
- Details (10 pts):
- Correct equation for μ : 2 pts;
- Correct equation for $\mu=\mu(x): 1$ pt;
- Correct simplification: 1 pt;
- $\mu=1 / x^{2}: 1 p t$.
- Correct transformed equation. 1 pt;
- $u=\int \cdots+g(x): 1 p t$.
- Evaluation of $\int \cdots: 1$ pt.
- Obtain $g(x)$: 1 pt.
- Final answer: 1 pt.
- Common mistakes:
- Unable to simplify $-\left(2 x^{2} y-x\right) \mu^{\prime}=(4 x y-2) \mu$.
- Sloppy writing: For example $-\left(2 x^{2} y-x\right)$ becomes $-2 x^{2} y-x$ in the very next line, which then naturally ruins everything.
- Remarks
- Ability to carry out all the calculation efficiently is crucial to the solution of such problems.

Problem 5 (15 pts)

a) (7 pts) Show that if the equation $M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0$ is such that

$$
\begin{equation*}
\frac{x^{2}}{x M+y N}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=F\left(\frac{y}{x}\right) \tag{38}
\end{equation*}
$$

then an integrating factor is given by

$$
\begin{equation*}
\mu(x, y)=\exp \left\{\int F(u) \mathrm{d} u\right\}, \quad u=\frac{y}{x} \tag{39}
\end{equation*}
$$

b) (8 pts) Use the result in a) to solve

$$
\begin{equation*}
\left(2 x-y+2 x y-y^{2}\right) \mathrm{d} x+\left(x+x^{2}+x y\right) \mathrm{d} y=0 \tag{40}
\end{equation*}
$$

Note that you can work on b) even if you cannot do a).

Solution.

a) If $\mu(x, y)=\mu\left(\frac{y}{x}\right)$, then (letting $\left.u=y / x\right)$

$$
\begin{equation*}
\frac{\partial \mu}{\partial y}=\frac{1}{x} \mu^{\prime}(u), \quad \frac{\partial \mu}{\partial x}=-\frac{y}{x^{2}} \mu^{\prime}(u) \tag{41}
\end{equation*}
$$

Now the equation for μ :

$$
\begin{equation*}
M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu \tag{42}
\end{equation*}
$$

becomes

$$
\begin{equation*}
M\left[\frac{1}{x} \mu^{\prime}(u)\right]-N\left[-\frac{y}{x^{2}} \mu^{\prime}(u)\right]=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu(u) \tag{43}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
\left[\frac{M}{x}+\frac{N y}{x^{2}}\right] \mu^{\prime}(u)=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu(u) \tag{44}
\end{equation*}
$$

which is just

$$
\begin{equation*}
\frac{x M+y N}{x^{2}} \mu^{\prime}(u)=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu(u) \Longleftrightarrow \frac{\mu^{\prime}(u)}{\mu(u)}=\frac{x^{2}}{x M+y N}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \tag{45}
\end{equation*}
$$

Now if

$$
\begin{equation*}
\frac{x^{2}}{x M+y N}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=F\left(\frac{y}{x}\right) \tag{46}
\end{equation*}
$$

the μ equation becomes

$$
\begin{equation*}
\frac{\mu^{\prime}(u)}{\mu(u)}=F(u) \tag{47}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
\mu(u)=\exp \left\{\int F(u) \mathrm{d} u\right\} \tag{48}
\end{equation*}
$$

- Note: It's also OK to substitute $\mu(u)=\exp \left\{\int F(u) \mathrm{d} u\right\}$ into the equation for μ and show that it is indeed a solution.
b) Since we are told to use a), just compute

$$
\begin{equation*}
\frac{\partial N}{\partial x}=\frac{\partial\left(x+x^{2}+x y\right)}{\partial x}=1+2 x+y ; \quad \frac{\partial M}{\partial y}=(-1+2 x-2 y) \tag{49}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=3 y+2 \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x^{2}}{x M+y N}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=1 \tag{51}
\end{equation*}
$$

So

$$
\begin{equation*}
\mu(u)=e^{\int 1}=e^{u} \tag{52}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\mu(x, y)=e^{y / x} \tag{53}
\end{equation*}
$$

Now multiply the equation by the integrating factor we obtained:

$$
\begin{equation*}
\left[e^{y / x}\left(2 x-y+2 x y-y^{2}\right)\right] \mathrm{d} x+\left[e^{y / x}\left(x+x^{2}+x y\right)\right] \mathrm{d} y=0 \tag{54}
\end{equation*}
$$

Compute

$$
\begin{align*}
u(x, y) & =\int\left[e^{y / x}\left(x+x^{2}+x y\right)\right] \mathrm{d} y+g(x) \\
& =\left(x+x^{2}\right) \int e^{y / x} \mathrm{~d} y+x \int y e^{y / x} \mathrm{~d} y+g(x) \\
& =\left(x+x^{2}\right) x e^{y / x}+x\left[x \int y \mathrm{~d} e^{y / x}\right]+g(x) \\
& =\left(x^{2}+x^{3}\right) e^{y / x}+x^{2}\left[y e^{y / x}-\int e^{y / x} \mathrm{~d} y\right]+g(x) \\
& =\left(x^{2}+x^{3}\right) e^{y / x}+x^{2} y e^{y / x}-x^{3} e^{y / x}+g(x) \\
& =\left(x^{2}+x^{2} y\right) e^{y / x}+g(x) \tag{55}
\end{align*}
$$

Now compute

$$
\begin{equation*}
\frac{\partial u}{\partial x}=(2 x+2 x y) e^{y / x}+\left(x^{2}+x^{2} y\right)\left(-\frac{y}{x^{2}}\right) e^{y / x}+g^{\prime}(x)=\left(2 x+2 x y-y-y^{2}\right) e^{y / x} \tag{56}
\end{equation*}
$$

and compare with $e^{y / x}\left(2 x-y+2 x y-y^{2}\right)$ we see that $g^{\prime}(x)=0$ so can take $g(x)=0$.
So the general solution is given by

$$
\begin{equation*}
\left(x^{2}+x^{2} y\right) e^{y / x}=C \tag{57}
\end{equation*}
$$

Grading scheme etc. For "advanced" and "challenge" problems, no "Procedure" points anymore.

- Part (a)
- Equation for μ : 2 pts.
- Correct calculation of $\frac{\partial \mu}{\partial x}, \frac{\partial \mu}{\partial y}$: 2 pts.
- Equation for $\mu(u): 1 p t$
- Get μ : $2 p t s$.
- Part (b)
- Calculation of $\frac{\partial M}{\partial y}, \frac{\partial N}{\partial x}$: $2 ~ p t s$;
- Check (a): 1 pt
- Get $\mu: 1$ pt
- Multiply the equation by $\mu: 1$ pt
- $\int \cdots$ and $g(x)$: 2 pts
- Answer: 1 pt.
- Common mistakes:
- Didn't notice "Use the result in a)" and wasted time guess $\mu=\mu(x), \mu=\mu(y), \ldots$

Problem 6 ($5 \mathbf{p t s}$) If the roots of the characteristic equation are real, show that a solution of $a y^{\prime \prime}+$ $b y^{\prime}+c y=0$ is either everywhere zero or else can take on the value zero at most once.

Proof. Note that there are two cases: Distinct roots and repeated roots. We discuss them one by one.

- Case 1. Distinct roots.

In this case all we need to show is that if $r_{1} \neq r_{2}$ are real, then

$$
\begin{equation*}
C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}=0 \tag{58}
\end{equation*}
$$

can have at most one zero unless $C_{1}=C_{2}=0$.
Assume the contrary. If we have C_{1}, C_{2} not both zero, and $t_{1} \neq t_{2}$ such that

$$
\begin{align*}
& C_{1} e^{r_{1} t_{1}}+C_{2} e^{r_{2} t_{1}}=0 \tag{59}\\
& C_{1} e^{r_{1} t_{2}}+C_{2} e^{r_{2} t_{2}}=0 \tag{60}
\end{align*}
$$

Multiply the first equation by $-e^{r_{1}\left(t_{2}-t_{1}\right)}$ and add to the second equation, we get

$$
\begin{equation*}
C_{2}\left[e^{r_{2} t_{2}}-e^{r_{1}\left(t_{2}-t_{1}\right)} e^{r_{2} t_{1}}\right]=0 \tag{61}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
C_{2} e^{r_{2} t_{2}}\left[1-e^{r_{1}\left(t_{2}-t_{1}\right)} e^{r_{2}\left(t_{1}-t_{2}\right)}\right]=0 \tag{62}
\end{equation*}
$$

and then

$$
\begin{equation*}
C_{2} e^{r_{2} t_{2}}\left[1-e^{\left(r_{1}-r_{2}\right)\left(t_{2}-t_{1}\right)}\right]=0 \tag{63}
\end{equation*}
$$

As $r_{1} \neq r_{2}, t_{1} \neq t_{2}$, we have $1-e^{\left(r_{1}-r_{2}\right)\left(t_{2}-t_{1}\right)} \neq 0$ and consequently $C_{2}=0$.
But the whole argument still works if we replace all 2 by 1 and 1 by 2 . So $C_{1}=0$. Contradiction.

- Case 2. Repeated roots. Denote the root by r. We need to show that

$$
\begin{equation*}
C_{1} e^{r t}+C_{2} t e^{r t}=0 \tag{64}
\end{equation*}
$$

can have at most one zero unless $C_{1}=C_{2}=0$.
Now that

$$
\begin{equation*}
C_{1} e^{r t}+C_{2} t e^{r t}=0 \Longrightarrow C_{1}+C_{2} t=0 \tag{65}
\end{equation*}
$$

If there are $t_{1} \neq t_{2}$ such that

$$
\begin{equation*}
C_{1}+C_{2} t_{1}=0, \quad C_{1}+C_{2} t_{2}=0 \tag{66}
\end{equation*}
$$

Taking the difference we get $C_{2}=0$. Substitute back into either equation we get $C_{1}=0$. Contradiction.

Grading scheme etc.

- Two cases of general solutions for "both roots real": 2 pts
- Analyze case 1 (distinct roots): 2 pts
- Analyze case 2 (repeated roots): 1 pt.

