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What really happens when we have n linearly independent eigenvectors.

• Recall that when we have n linearly independent eigenvectors x1,	 , xn, then the general solution is
given by

C1 eλ1t
x1 +
 + Cn eλnt

xn. (1)

• Now consider the initial value problem: What are C1,	 , Cn after all? Setting t = 0 we obtain

x(0)= C1 x1 +
 + Cn xn. (2)

We can put x1,	 , xn together to form a matrix:

X 6 ( x1 
 xn ). (3)

Now we reach

x(0)= ( x1 
 xn )





C1�
Cn



= X c (4)

where the vector c =





C1�
Cn



.

• Next we try to write the general solution into matrix form.

C1 eλ1t
x1 +
 + Cn eλnt

xn =
(

eλ1t
x1 
 eλnt

xn

)

c= X







eλ1t 
eλnt





c. (5)

Now as the matrix X is nonsingular (because the xi’s are linearly independent), we have

x(0) =X c� c= X−1
x(0). (6)

Putting the above together, we reach

x(t)= X







eλ1t 
eλnt





X−1
x(0). (7)

• Now we see that the matrix

Φ(t)6 X







eλ1t 0
0 eλnt





X−1 (8)

is a significant object: It gives a universal formula for all solutions:

x(t)= Φ(t) x(0). (9)

• We now try to find the relation between Φ(t) and A. Since Φ(t) is of the form X · something·X−1, we
explore what happens if we try to write A in a similar way.

Recall that each xi is an eigenvector corresponding to eigenvalue λi. That is

Axi =λi xi. (10)

Putting all xi’s in a row to form the matrix X, we get

A X = A ( x1 
 xn )= ( λ1 x1 
 λn xn )= X





λ1 0
0 λn



. (11)
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Multiply both sides by X−1 from the right – recall that matrix multiplication is not commutative
– we reach

A= X





λ1 0
0 λn



X−1. (12)

• Comparing

A= X





λ1 0
0 λn



X−1 (13)

with

Φ(t)6 X







eλ1t 0
0 eλnt





X−1 (14)

we want to say

Φ(t) = eAt. (15)

Then the solution to

ẋ = Ax (16)

is simply

x(t)= eAt
x(0), (17)

a perfect generalization of the single linear equation:1

ẋ = a x� x(t)= eat x(0). (18)

Definition of matrix exponentials.

• However how to define eA for a general matrix A?

• Matrix functions: Given a square matrix A, what kind of functions can be readily generalized to take
A as its variable? Polynomials – as matrix products are already well-defined. For example

f(x)= x3 + 3x− 1� f(A)= A3 +3 A− I. (19)

• Now how to define eA? Taylor expansion!

ex = 1+ x+
x2

2
+
� eA6 I + A+

A2

2
+
 =

∑

k=0

∞

Ak

k!
. (20)

• Is this what we want?

◦ Check the special case:

A= X





λ1 0
0 λn



X−1 �
(At)k =



X





λ1 t 0
0 λn t



X−1




X





λ1 t 0
0 λn t



X−1





= X





λ1 t 0
0 λn t



X−1 X





λ1 t 0
0 λn t



X−1
X−1. (21)

1. However see homework: Such generalizations are actually subtle.
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Recall that matrix multiplication is associative, which means we can freely “pair up” adjacent
matrices:

(At)k = X





λ1 t 0
0 λn t



(X−1 X)





λ1 t 0
0 λn t



(X−1 X)
X−1

= X





λ1 t 0
0 λn t




 λ1 t 0
0 λn t



X−1

= X







λ1
k tk 0
0 λn

k tk





X−1.

Now it’s easy to see

eAt =X









∑ λ1
k tk

k! 
∑ λn

ktk

k!









X−1 = X







eλ1t 0
0 eλnt





X−1 = Φ(t). (22)

Matrix exponentials and first order systems.

Theorem 1. Consider the first order system ẋ = Ax. Then Φ(t) = eAt as defined above satisfies

Φ̇(t)= AΦ(t), Φ(0) = I. (23)

and consequently the solution of

ẋ = Ax, x =x(0) at t =0. (24)

is given by

x(t)= Φ(t)x(0). (25)

Proof. Φ(0)= X−1 IX = I. Compute

Φ̇(t)=
∑

k=0

∞

d

dt

(

Ak tk

k!

)

=
∑

k=1

∞

Ak tk−1

(k − 1)!
=
∑

k=0

∞

Ak+1 tk

k!
=
∑

k=0

∞

A
Ak tk

k!
= A

∑

k=0

∞

Ak tk

k!
= AΦ(t). (26)

The last few stpes may seem too obvious to worth writing down, but in fact it’s important to clearly write
down every “obvious” step. See homework.

Now we have

ẋ(t)=
d

dt
(Φ(t)x(0))= Φ̇(t) x(0)= AΦ(t)x(0)= Ax(t). (27)

Finally (x at t = 0)= Φ(0)x(0) = I x(0)= x(0). �

Remark 2. Note that in the above proof what we actually show is that Φ(t) x(0) is a solution of the system.
That this suffices is due to the fact that the solution is unique – so “a solution” gets a “free upgrade” to “the
solution”.

Calculation of matrix exponentials – Simple case.

• Clearly it’s not a good idea to use the definition:

eA6 I + A+
A2

2
+
 =

∑

k=0

∞

Ak

k!
. (28)
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• When A has n linearly independent eigenvectors, we have shown that

A= X Λ X−1 (29)

where X = ( x1 	 xn ) is the matrix formed by putting these n eigenvectors in a row, and Λ =




λ1 
λn



 is a diagonal matrix with the corresponding eigenvalues as diagonal entries. In this case

we know that

eA = X







eλ1 0
0 eλn





X−1. (30)

Example 3. Compute eA with

A=

(

2 −1
3 −2

)

. (31)

Solution. First obtain the eigenvalues:

det

(

2−λ −1
3 −2−λ

)

= 0� λ1,2 =1,−1. (32)

Next find a set of 2 linearly independent eigenvectors:

◦ For 1, solve
(

1 −1
3 −3

)(

x1

x2

)

=

(

0
0

)�(

x1

x2

)

= x2

(

1
1

)

. (33)

◦ for −1, solve
(

3 −1
3 −1

)(

x1

x2

)

=

(

0
0

)�(

x1

x2

)

= x1

(

1
3

)

. (34)

So

X =

(

1 1
1 3

)

(35)

and

A= X

(

1 0
0 −1

)

X−1� eA = X

(

e1 0

0 e−1

)

X−1. (36)

To get the final answer we need to find X−1, through solving X X−1 = I using Gaussian elimination:
(

1 1 1 0
1 3 0 1

) � (

1 1 1 0
0 2 −1 1

)� (

1 1 1 0

0 1 −
1

2

1

2

)� 



1 0
3

2
−

1

2

0 1 −
1

2

1

2



. (37)

We get

X−1 =





3

2
−

1

2

−
1

2

1

2



. (38)

Now we compute

eA =

(

1 1
1 3

)(

e 0

0 e−1

)





3

2
−

1

2

−
1

2

1

2



=





3

2
e−

1

2
e−1

−
1

2
e +

1

2
e−1

3

2
e−

3

2
e−1

−
1

2
e +

3

2
e−1



. (39)
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Calculation of matrix exponentials – General case.

• What if we do not have n linearly independent eigenvectors? Note:

A= X





λ1 0
0 λn



X−1� Each column of X is an eigenvector (40)

Therefore when we do not have n linearly independent eigenvectors, it’s not possible to reduce A to
a diagonal matrix – that is not possible to “diagonalize” A.

• Key property: If A= X B X−1, then eA =X eB X−1.

• Question: What is the simplest matrix that all n×n matrices A can be reduced to?

• Answer: Jordan canonical form.

J =









J1

J2 
Jk









(41)

where each Jk =













λ 1
λ 1

λ 1
λ













is called a “Jordan block”.

Theorem 4. Any n × n matrix can be written as A = X J X−1 where J is of the above form.
Furthermore, the columns of X (denote by x1,	 , xm) corresponding to one “Jordan block” is related
in the following manner:

(A−λ I) x1 =0; (A−λ I) xi+1 = xi. (42)

It may help to see an example. Suppose we have

A =X





λ 1
λ 1

λ



X−1. (43)

Multiply both sides by X from right, we reach

A ( x1 x2 x3 ) =A X = X





λ 1
λ 1

λ



= ( x1 x2 x3 )





λ 1
λ 1

λ



. (44)

Carry out the multiplication we reach

( A x1 A x2 A x3 )=( λ x1 x1 + λx2 x2 + λx3 ) (45)

which means

(A−λ)x1 = 0 (46)

(A−λ)x2 = x1 (47)

(A−λ)x3 = x2. (48)

• How to compute eJ.

◦ Observation I:

exp









J1

J2 
Jk









=







eJ1 
eJk





. (49)

◦ Observation II:

eλI+A = eλI eA. (50)
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for any matrix A.

◦ Observation III: Let B =













0 1
0 1

0 1
0













be k × k, then

B2 =













0 0 1
0 0 1  

0 0
0













, B3 =













0 0 0 1
0 0 0 

0 0
0













,	 (51)

consequently

Bk =0, (52)

and

eB =

















1 1
1

2

 1

(k − 1)!

1 1 �  1

2

1 1
1

















(53)

and

eBt =

















1 t
t2

2

 tk−1

(k − 1)!

1 t �  t2

2

1 t

1

















. (54)

Example 5. Solve

ẋ =









3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 1









x (55)

using matrix exponentials.
Solution. The matrix is already in Jordan canonical form. We see that there are two Jordan blocks:

A =

(

J1 0
0 J2

)

, J1 =





3 1 0
0 3 1
0 0 3



, J2 =( 1 ). (56)

By Observation I we have

eAt =

(

eJ1t 0

0 eJ2t

)

. (57)

Clearly eJ2t =
(

et
)

. For eJ1t we use the next two observations:

eJ1t = e
3It+





0 1

0 1

0



t

= e3It e





0 1

0 1

0



t

= e3t I







1 t
t2

2

0 1 t

0 0 1







=







e3t t e3t t2 e3t

2

0 e3t t e3t

0 0 e3t





. (58)
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Therefore

eAt =













e3t t e3t t2 e3t

2
0

0 e3t t e3t 0

0 0 e3t 0
0 0 0 et













. (59)

The general solution is now

eAt
c = c1









e3t

0
0
0









+ c2











t e3t

e3t

0
0











+ c3











t2 e3t

2

t e3t

e3t

0











+ c4









0
0
0

et









. (60)

Remark. Now we see where the t, t2, 	 etc. come from! And furthermore we see why how many
powers of t are needed cannot be determined by the algebraic and geometric multiplicities alone:
Compute the following two A’s (in the context of computing eAt):









3 1
3

3 1
3









and









3 1
3 1

3
3









. (61)

In both cases, the eigenvalue 3 has algebraic multiplicity 4 and geometric multiplicity 2. However in
the former case eAt involves only e3t and t e3t, while in the latter case t2 e3t will also appear.
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