Lecture 35 Matrix Exponentials

$12 / 05 / 2011$

What really happens when we have n linearly independent eigenvectors.

- Recall that when we have n linearly independent eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$, then the general solution is given by

$$
\begin{equation*}
C_{1} e^{\lambda_{1} t} \boldsymbol{x}_{1}+\cdots+C_{n} e^{\lambda_{n} t} \boldsymbol{x}_{n} \tag{1}
\end{equation*}
$$

- Now consider the initial value problem: What are C_{1}, \ldots, C_{n} after all? Setting $t=0$ we obtain

$$
\begin{equation*}
\boldsymbol{x}(0)=C_{1} \boldsymbol{x}_{1}+\cdots+C_{n} \boldsymbol{x}_{n} . \tag{2}
\end{equation*}
$$

We can put $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ together to form a matrix:

$$
X:=\left(\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n} \tag{3}
\end{array}\right) .
$$

Now we reach

$$
\boldsymbol{x}(0)=\left(\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n}
\end{array}\right)\left(\begin{array}{c}
C_{1} \tag{4}\\
\vdots \\
C_{n}
\end{array}\right)=X \boldsymbol{c}
$$

where the vector $\boldsymbol{c}=\left(\begin{array}{c}C_{1} \\ \vdots \\ C_{n}\end{array}\right)$.

- Next we try to write the general solution into matrix form.

$$
C_{1} e^{\lambda_{1} t} \boldsymbol{x}_{1}+\cdots+C_{n} e^{\lambda_{n} t} \boldsymbol{x}_{n}=\left(\begin{array}{llll}
e^{\lambda_{1} t} \boldsymbol{x}_{1} & \cdots & e^{\lambda_{n} t} \boldsymbol{x}_{n}
\end{array}\right) \boldsymbol{c}=X\left(\begin{array}{ccc}
e^{\lambda_{1} t} & & \tag{5}\\
& \ddots & \\
& & e^{\lambda_{n} t}
\end{array}\right) \boldsymbol{c} .
$$

Now as the matrix X is nonsingular (because the \boldsymbol{x}_{i} 's are linearly independent), we have

$$
\begin{equation*}
\boldsymbol{x}(0)=X \boldsymbol{c} \Longleftrightarrow \boldsymbol{c}=X^{-1} \boldsymbol{x}(0) \tag{6}
\end{equation*}
$$

Putting the above together, we reach

$$
\boldsymbol{x}(t)=X\left(\begin{array}{ccc}
e^{\lambda_{1} t} & & \tag{7}\\
& \ddots & \\
& & e^{\lambda_{n} t}
\end{array}\right) X^{-1} \boldsymbol{x}(0)
$$

- Now we see that the matrix

$$
\Phi(t):=X\left(\begin{array}{ccc}
e^{\lambda_{1} t} & & 0 \tag{8}\\
& \ddots & \\
0 & & e^{\lambda_{n} t}
\end{array}\right) X^{-1}
$$

is a significant object: It gives a universal formula for all solutions:

$$
\begin{equation*}
\boldsymbol{x}(t)=\Phi(t) \boldsymbol{x}(0) \tag{9}
\end{equation*}
$$

- We now try to find the relation between $\Phi(t)$ and A. Since $\Phi(t)$ is of the form X • something $\cdot X^{-1}$, we explore what happens if we try to write A in a similar way.

Recall that each \boldsymbol{x}_{i} is an eigenvector corresponding to eigenvalue λ_{i}. That is

$$
\begin{equation*}
A \boldsymbol{x}_{i}=\lambda_{i} \boldsymbol{x}_{i} \tag{10}
\end{equation*}
$$

Putting all \boldsymbol{x}_{i} 's in a row to form the matrix X, we get

$$
A X=A\left(\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n}
\end{array}\right)=\left(\begin{array}{lll}
\lambda_{1} \boldsymbol{x}_{1} & \cdots & \lambda_{n} \boldsymbol{x}_{n}
\end{array}\right)=X\left(\begin{array}{ccc}
\lambda_{1} & & 0 \tag{11}\\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)
$$

Multiply both sides by X^{-1} from the right - recall that matrix multiplication is not commutative - we reach

$$
A=X\left(\begin{array}{ccc}
\lambda_{1} & & 0 \tag{12}\\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) X^{-1}
$$

- Comparing

$$
A=X\left(\begin{array}{ccc}
\lambda_{1} & & 0 \tag{13}\\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) X^{-1}
$$

with

$$
\Phi(t):=X\left(\begin{array}{ccc}
e^{\lambda_{1} t} & & 0 \tag{14}\\
& \ddots & \\
0 & & e^{\lambda_{n} t}
\end{array}\right) X^{-1}
$$

we want to say

$$
\begin{equation*}
\Phi(t)=e^{A t} \tag{15}
\end{equation*}
$$

Then the solution to

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A \boldsymbol{x} \tag{16}
\end{equation*}
$$

is simply

$$
\begin{equation*}
\boldsymbol{x}(t)=e^{A t} \boldsymbol{x}(0) \tag{17}
\end{equation*}
$$

a perfect generalization of the single linear equation: ${ }^{1}$

$$
\begin{equation*}
\dot{x}=a x \Longrightarrow x(t)=e^{a t} x(0) \tag{18}
\end{equation*}
$$

Definition of matrix exponentials.

- However how to define e^{A} for a general matrix A ?
- Matrix functions: Given a square matrix A, what kind of functions can be readily generalized to take A as its variable? Polynomials - as matrix products are already well-defined. For example

$$
\begin{equation*}
f(x)=x^{3}+3 x-1 \Longrightarrow f(A)=A^{3}+3 A-I \tag{19}
\end{equation*}
$$

- Now how to define e^{A} ? Taylor expansion!

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2}+\cdots \Longrightarrow e^{A}:=I+A+\frac{A^{2}}{2}+\cdots=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} \tag{20}
\end{equation*}
$$

- Is this what we want?
- Check the special case:

$$
\begin{align*}
& A=X\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) X^{-1} \Longrightarrow \\
& (A t)^{k}=\left(X\left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \ddots & \\
0 & & \lambda_{n} t
\end{array}\right) X^{-1}\right) \cdots\left(X\left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \ddots & \\
0 & & \lambda_{n} t
\end{array}\right) X^{-1}\right) \\
& =X\left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \ddots & \\
0 & & \lambda_{n} t
\end{array}\right) X^{-1} X\left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \ddots & \\
0 & & \lambda_{n} t
\end{array}\right) X^{-1} \ldots X^{-1} . \tag{21}
\end{align*}
$$

[^0]Recall that matrix multiplication is associative, which means we can freely "pair up" adjacent matrices:

$$
\begin{aligned}
(A t)^{k} & =X\left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \ddots & \\
0 & & \lambda_{n} t
\end{array}\right)\left(X^{-1} X\right)\left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \ddots & \\
0 & & \lambda_{n} t
\end{array}\right)\left(X^{-1} X\right) \cdots X^{-1} \\
& =X\left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \ddots & \\
0 & & \lambda_{n} t
\end{array}\right) \cdots\left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \ddots & \\
0 & & \lambda_{n} t
\end{array}\right) X^{-1} \\
& =X\left(\begin{array}{ccc}
\lambda_{1}^{k} t^{k} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}^{k} t^{k}
\end{array}\right) X^{-1} .
\end{aligned}
$$

Now it's easy to see

$$
e^{A t}=X\left(\begin{array}{ccc}
\sum \frac{\lambda_{1}^{k} t^{k}}{k!} & & \tag{22}\\
& \ddots & \\
& & \sum \frac{\lambda_{n}^{k} t^{k}}{k!}
\end{array}\right) X^{-1}=X\left(\begin{array}{ccc}
e^{\lambda_{1} t} & & 0 \\
& \ddots & \\
0 & & e^{\lambda_{n} t}
\end{array}\right) X^{-1}=\Phi(t)
$$

Matrix exponentials and first order systems.

Theorem 1. Consider the first order system $\dot{\boldsymbol{x}}=A \boldsymbol{x}$. Then $\Phi(t)=e^{A t}$ as defined above satisfies

$$
\begin{equation*}
\dot{\Phi}(t)=A \Phi(t), \quad \Phi(0)=I \tag{23}
\end{equation*}
$$

and consequently the solution of

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A \boldsymbol{x}, \quad \boldsymbol{x}=\boldsymbol{x}(0) \text { at } t=0 . \tag{24}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\boldsymbol{x}(t)=\Phi(t) \boldsymbol{x}(0) \tag{25}
\end{equation*}
$$

Proof. $\Phi(0)=X^{-1} I X=I$. Compute

$$
\begin{equation*}
\dot{\Phi}(t)=\sum_{k=0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{A^{k} t^{k}}{k!}\right)=\sum_{k=1}^{\infty} \frac{A^{k} t^{k-1}}{(k-1)!}=\sum_{k=0}^{\infty} \frac{A^{k+1} t^{k}}{k!}=\sum_{k=0}^{\infty} A \frac{A^{k} t^{k}}{k!}=A \sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}=A \Phi(t) \tag{26}
\end{equation*}
$$

The last few stpes may seem too obvious to worth writing down, but in fact it's important to clearly write down every "obvious" step. See homework.

Now we have

$$
\begin{equation*}
\dot{\boldsymbol{x}}(t)=\frac{\mathrm{d}}{\mathrm{~d} t}(\Phi(t) \boldsymbol{x}(0))=\dot{\Phi}(t) \boldsymbol{x}(0)=A \Phi(t) \boldsymbol{x}(0)=A \boldsymbol{x}(t) . \tag{27}
\end{equation*}
$$

Finally $(\boldsymbol{x}$ at $t=0)=\Phi(0) \boldsymbol{x}(0)=I \boldsymbol{x}(0)=\boldsymbol{x}(0)$.
Remark 2. Note that in the above proof what we actually show is that $\Phi(t) \boldsymbol{x}(0)$ is a solution of the system. That this suffices is due to the fact that the solution is unique - so "a solution" gets a "free upgrade" to "the solution".

Calculation of matrix exponentials - Simple case.

- Clearly it's not a good idea to use the definition:

$$
\begin{equation*}
e^{A}:=I+A+\frac{A^{2}}{2}+\cdots=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} \tag{28}
\end{equation*}
$$

- When A has n linearly independent eigenvectors, we have shown that

$$
\begin{equation*}
A=X \Lambda X^{-1} \tag{29}
\end{equation*}
$$

where $X=\left(\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right)$ is the matrix formed by putting these n eigenvectors in a row, and $\Lambda=$ $\left(\begin{array}{cccc}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right)$ is a diagonal matrix with the corresponding eigenvalues as diagonal entries. In this case we know that

$$
e^{A}=X\left(\begin{array}{ccc}
e^{\lambda_{1}} & & 0 \tag{30}\\
& \ddots & \\
0 & & e^{\lambda_{n}}
\end{array}\right) X^{-1}
$$

Example 3. Compute e^{A} with

$$
A=\left(\begin{array}{ll}
2 & -1 \tag{31}\\
3 & -2
\end{array}\right)
$$

Solution. First obtain the eigenvalues:

$$
\operatorname{det}\left(\begin{array}{cc}
2-\lambda & -1 \tag{32}\\
3 & -2-\lambda
\end{array}\right)=0 \Longrightarrow \lambda_{1,2}=1,-1
$$

Next find a set of 2 linearly independent eigenvectors:

- For 1, solve

$$
\left(\begin{array}{ll}
1 & -1 \tag{33}\\
3 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Longleftrightarrow\binom{x_{1}}{x_{2}}=x_{2}\binom{1}{1} .
$$

- for -1 , solve

$$
\left(\begin{array}{ll}
3 & -1 \tag{34}\\
3 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Longleftrightarrow\binom{x_{1}}{x_{2}}=x_{1}\binom{1}{3} .
$$

So

$$
X=\left(\begin{array}{ll}
1 & 1 \tag{35}\\
1 & 3
\end{array}\right)
$$

and

$$
A=X\left(\begin{array}{cc}
1 & 0 \tag{36}\\
0 & -1
\end{array}\right) X^{-1} \Longrightarrow e^{A}=X\left(\begin{array}{cc}
e^{1} & 0 \\
0 & e^{-1}
\end{array}\right) X^{-1}
$$

To get the final answer we need to find X^{-1}, through solving $X X^{-1}=I$ using Gaussian elimination:

$$
\begin{align*}
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right) & \longrightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 2 & -1 & 1
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccc}
1 & 0 & \frac{3}{2} & -\frac{1}{2} \\
0 & 1 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right) \tag{37}
\end{align*}
$$

We get

$$
X^{-1}=\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \tag{38}\\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Now we compute

$$
e^{A}=\left(\begin{array}{ll}
1 & 1 \tag{39}\\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
e & 0 \\
0 & e^{-1}
\end{array}\right)\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{3}{2} e-\frac{1}{2} e^{-1} & -\frac{1}{2} e+\frac{1}{2} e^{-1} \\
\frac{3}{2} e-\frac{3}{2} e^{-1} & -\frac{1}{2} e+\frac{3}{2} e^{-1}
\end{array}\right) .
$$

Calculation of matrix exponentials - General case.

- What if we do not have n linearly independent eigenvectors? Note:

$$
A=X\left(\begin{array}{ccc}
\lambda_{1} & & 0 \tag{40}\\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) X^{-1} \Longrightarrow \text { Each column of } X \text { is an eigenvector }
$$

Therefore when we do not have n linearly independent eigenvectors, it's not possible to reduce A to a diagonal matrix - that is not possible to "diagonalize" A.

- Key property: If $A=X B X^{-1}$, then $e^{A}=X e^{B} X^{-1}$.
- Question: What is the simplest matrix that all $n \times n$ matrices A can be reduced to?
- Answer: Jordan canonical form.

$$
J=\left(\begin{array}{llll}
J_{1} & & & \tag{41}\\
& J_{2} & & \\
& & \ddots & \\
& & & J_{k}
\end{array}\right)
$$

where each $J_{k}=\left(\begin{array}{ccccc}\lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \ddots & & \\ & & & \lambda & 1 \\ & & & & \lambda\end{array}\right)$ is called a "Jordan block".
Theorem 4. Any $n \times n$ matrix can be written as $A=X J X^{-1}$ where J is of the above form. Furthermore, the columns of X (denote by $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$) corresponding to one "Jordan block" is related in the following manner:

$$
\begin{equation*}
(A-\lambda I) \boldsymbol{x}_{1}=0 ; \quad(A-\lambda I) \boldsymbol{x}_{i+1}=\boldsymbol{x}_{i} . \tag{42}
\end{equation*}
$$

It may help to see an example. Suppose we have

$$
A=X\left(\begin{array}{ccc}
\lambda & 1 & \tag{43}\\
& \lambda & 1 \\
& & \lambda
\end{array}\right) X^{-1}
$$

Multiply both sides by X from right, we reach

$$
A\left(\begin{array}{lll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3}
\end{array}\right)=A X=X\left(\begin{array}{lll}
\lambda & 1 & \tag{44}\\
& \lambda & 1 \\
& & \lambda
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3}
\end{array}\right)\left(\begin{array}{ccc}
\lambda & 1 & \\
& \lambda & 1 \\
& & \lambda
\end{array}\right) .
$$

Carry out the multiplication we reach

$$
\left(\begin{array}{lll}
A \boldsymbol{x}_{1} & A \boldsymbol{x}_{2} & A \boldsymbol{x}_{3}
\end{array}\right)=\left(\begin{array}{lll}
\lambda \boldsymbol{x}_{1} & \boldsymbol{x}_{1}+\lambda \boldsymbol{x}_{2} & \boldsymbol{x}_{2}+\lambda \boldsymbol{x}_{3} \tag{45}
\end{array}\right)
$$

which means

$$
\begin{align*}
(A-\lambda) \boldsymbol{x}_{1} & =0 \tag{46}\\
(A-\lambda) \boldsymbol{x}_{2} & =\boldsymbol{x}_{1} \tag{47}\\
(A-\lambda) \boldsymbol{x}_{3} & =\boldsymbol{x}_{2} . \tag{48}
\end{align*}
$$

- How to compute e^{J}.
- Observation I:

$$
\exp \left(\begin{array}{cccc}
J_{1} & & & \tag{49}\\
& J_{2} & & \\
& & \ddots & \\
& & & J_{k}
\end{array}\right)=\left(\begin{array}{ccc}
e^{J_{1}} & & \\
& \ddots & \\
& & e^{J_{k}}
\end{array}\right)
$$

- Observation II:

$$
\begin{equation*}
e^{\lambda I+A}=e^{\lambda I} e^{A} \tag{50}
\end{equation*}
$$

for any matrix A.

- Observation III: Let $B=\left(\begin{array}{cccccc}0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & & \\ & & & 0 & 1 \\ & & & & 0\end{array}\right)$ be $k \times k$, then

$$
B^{2}=\left(\begin{array}{ccccc}
0 & 0 & 1 & & \tag{51}\\
& 0 & 0 & 1 & \\
& & \ddots & \ddots & \ddots \\
& & & 0 & 0 \\
& & & & 0
\end{array}\right), \quad B^{3}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 1 & \\
& 0 & 0 & 0 & \ddots \\
& & \ddots & & \\
& & & 0 & 0 \\
& & & & 0
\end{array}\right), \ldots
$$

consequently

$$
\begin{equation*}
B^{k}=0 \tag{52}
\end{equation*}
$$

and

$$
e^{B}=\left(\begin{array}{ccccc}
1 & 1 & \frac{1}{2} & \cdots & \frac{1}{(k-1)!} \tag{53}\\
& 1 & 1 & & \vdots \\
& & \ddots & \ddots & \frac{1}{2} \\
& & & 1 & 1 \\
& & & & 1
\end{array}\right)
$$

and

$$
e^{B t}=\left(\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2} & \cdots & \frac{t^{k-1}}{(k-1)!} \tag{54}\\
& 1 & t & & \vdots \\
& & \ddots & \ddots & \frac{t^{2}}{2} \\
& & & 1 & t \\
& & & & 1
\end{array}\right)
$$

Example 5. Solve

$$
\dot{\boldsymbol{x}}=\left(\begin{array}{llll}
3 & 1 & 0 & 0 \tag{55}\\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \boldsymbol{x}
$$

using matrix exponentials.
Solution. The matrix is already in Jordan canonical form. We see that there are two Jordan blocks:

$$
A=\left(\begin{array}{cc}
J_{1} & 0 \tag{56}\\
0 & J_{2}
\end{array}\right), \quad J_{1}=\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right), \quad J_{2}=(1)
$$

By Observation I we have

$$
e^{A t}=\left(\begin{array}{cc}
e^{J_{1} t} & 0 \tag{57}\\
0 & e^{J_{2} t}
\end{array}\right)
$$

Clearly $e^{J_{2} t}=\left(e^{t}\right)$. For $e^{J_{1} t}$ we use the next two observations:

$$
\begin{align*}
e^{J_{1} t} & =e^{3 I t+\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 \\
& 0
\end{array}\right) t} \\
& =e^{3 I t} e^{\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1
\end{array}\right) t} \\
& =e^{3 t} I\left(\begin{array}{lll}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e^{3 t} & t e^{3 t} & \frac{t^{2} e^{3 t}}{2} \\
0 & e^{3 t} & t e^{3 t} \\
0 & 0 & e^{3 t}
\end{array}\right) \tag{58}
\end{align*}
$$

Therefore

$$
e^{A t}=\left(\begin{array}{cccc}
e^{3 t} & t e^{3 t} & \frac{t^{2} e^{3 t}}{2} & 0 \tag{59}\\
0 & e^{3 t} & t e^{3 t} & 0 \\
0 & 0 & e^{3 t} & 0 \\
0 & 0 & 0 & e^{t}
\end{array}\right)
$$

The general solution is now

$$
e^{A t} \boldsymbol{c}=c_{1}\left(\begin{array}{c}
e^{3 t} \tag{60}\\
0 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
t e^{3 t} \\
e^{3 t} \\
0 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
\frac{t^{2} e^{3 t}}{2} \\
t e^{3 t} \\
e^{3 t} \\
0
\end{array}\right)+c_{4}\left(\begin{array}{c}
0 \\
0 \\
0 \\
e^{t}
\end{array}\right)
$$

Remark. Now we see where the t, t^{2}, \ldots etc. come from! And furthermore we see why how many powers of t are needed cannot be determined by the algebraic and geometric multiplicities alone: Compute the following two A 's (in the context of computing $e^{A t}$):

$$
\left(\begin{array}{cccc}
3 & 1 & & \tag{61}\\
& 3 & & \\
& & 3 & 1 \\
& & & 3
\end{array}\right) \text { and }\left(\begin{array}{cccc}
3 & 1 & & \\
& 3 & 1 & \\
& & 3 & \\
& & & 3
\end{array}\right)
$$

In both cases, the eigenvalue 3 has algebraic multiplicity 4 and geometric multiplicity 2 . However in the former case $e^{A t}$ involves only $e^{3 t}$ and $t e^{3 t}$, while in the latter case $t^{2} e^{3 t}$ will also appear.

[^0]: 1. However see homework: Such generalizations are actually subtle.
