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Review.

• Consider ẋ = Ax.

• If we can find n linearly independent eigenvectors x0
(1)

,	 ,x0
(n)

with corresponding eigenvalues λ1,	 ,

λn (note that some of the λi’s may repeat), then the general solution is given by

C1 eλ1t x0
(1)

+
 + Cn eλnt x0
(n)

. (1)

What if we don’t have enough eigenvectors.

• How many are missing: Algebraic and geometric multiplicities.

◦ Algebraic multiplicity: How many times an eigenvalue is repeated as a root of the polynomial

det (A−λ I)= 0. (2)

For example, let A =









1 2 0 0
0 1 4 0
0 0 1 0
0 0 0 2









. Then det (A−λ I) = (1−λ)3 (2−λ) which means there are

two eigenvalues: 1 and 2. The eigenvalue 1 has algebraic multiplicity 3 while the eigenvalue 2
has algebraic multiplicity 1.

◦ Geometric multiplicity: Given an eigenvalue, how many linearly independent eigenvectors
(corrsponding to that particular eigenvalue) are there.

For the above example, the geometric multiplicity for the eigenvalue 2 is clearly 1, while
the geometric multiplicity for the eigenvalue 1 is only 1, not 3. To see this, note that

(A− 1 · I)x =0�







0 2 0 0
0 0 4 0
0 0 0 0
0 0 0 1

















x1

x2

x3

x4









=









0
0
0
0









(3)

which gives x2 =0, x3 =0, x4 = 0. So all the eigenvectors corresponding to 1 are








x1

x2

x3

x4









= c









1
0
0
0









. (4)

◦ We have the following:

Theorem. Let A be any n×n matrix and λ be one of its eigenvalues. Then

− The geometric multiplicity of λ 6 The algebraic multiplicity of λ;

− The geometric multiplicity of λ is at least 1.

Corollary. Following the theorem, we can conclude

− The sum of geometric multiplicities of all eigenvalues of A is at most n;

− When there are n distinct eigenvalues, the sum of all geometric multiplicities is exactly
n.

◦ What the above mean to us:

− When there are n distinct eigenvalues, we can always find n linearly independent eigen-
vectors x0

(1)
,	 , x0

(n)
, and the general solution is

C1 eλ1t x0
(1)

+
 + Cn eλnt x0
(n)

. (5)
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− When some eigenvalues are repeated, we may or may not be able to find n linearly
independent eigenvectors.

◦ Suppose we only have k < n linearly independent eigenvectors, the general solution becomes

C1 eλ1t x0
(1)

+
 +Ck eλkt x0
(k)

+ Ck+1 x(k+1)(t)+
 + Cn x(n)(t). (6)

◦ Question: How to find x(k+1)(t),	 , x(n)(t)?

• Formulas for the simplest case.

◦ Let λ be an eigenvalue with algebraic multiplicity 2 while geometric multiplicity 1. Let x0 be

one eigenvector. Thus eλt x0 is a solution to the system. Our task is to find a second solution.

◦ Try eλt ξ + t eλt η. Here ξ and η are two vectors that we need to find. Substitute into the
equation we get

λ eλt ξ +eλt η + λ t eλt η = eλt A ξ + t eλt A η. (7)

Collecting similar terms together, and cancel the factor eλt, we reach

[(A−λ I) ξ − η] + t [Aη −λη] = 0. (8)

Thus eλt ξ + t eλt η solves the equation if and only if

(A−λ I) ξ = η (9)

(A−λ I) η = 0. (10)

◦ Thus we see that we can take η = x0 and then solve

(A−λ I)ξ = x0 (11)

to get ξ.

◦ Note that such ξ is clearly not unique, since if ξ is a solution, then the sum ξ + c x0 for any
constant c is also a solution.

◦ We only need one such ξ.

◦ This is guaranteed to work:

Theorem. For λ and x0 as in the above, such ξ always exists, and is unique (upto +c x0)

Proof. Unfortunately I couldn’t figure out a simple proof even for this simplest case. �

◦ Such ξ is called “generalized eigenvectors”.

Example. Solve

x′=





1 1 1
2 1 −1
0 −1 1



x. (12)

Solution. First find eigenvalues:

0= det





1−λ 1 1
2 1−λ −1
0 −1 1−λ



 = (1−λ)3− 2− (1−λ)− 2 (1−λ)

= −λ3 +3 λ2
− 4

= −(λ +1) (λ2
− 4 λ+ 4)

= −(λ +1) (λ− 2)2. (13)

We have two eigenvalues, −1 and 2.
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Now find eigenvectors.

◦ Eigenvectors for −1: Solve




2 1 1
2 2 −1
0 −1 2









x1

x2

x3



=





0
0
0



. (14)

We have




2 1 1 0
2 2 −1 0
0 −1 2 0



 � 



2 1 1 0
0 1 −2 0
0 −1 2 0



� 



2 1 1 0
0 1 −2 0
0 0 0 0



. (15)

So the eigenvectors are characterized by

2 x1 + x2 +x3 = 0
x2− 2 x3 = 0

� x1 = −
3

2
x3

x2 = 2 x3

�



x1

x2

x3



= x3







−
3

2

2
1





. (16)

The first solution in our set of fundamental solutions is thus

e−t







−
3

2

2
1





. (17)

◦ Eigenvectors for 2: Solve




−1 1 1
2 −1 −1
0 −1 −1









x1

x2

x3



=





0
0
0



. (18)

We have




−1 1 1 0
2 −1 −1 0
0 −1 −1 0



 � 



−1 1 1 0
0 1 1 0
0 −1 −1 0



� 



1 −1 −1 0
0 1 1 0
0 0 0 0



. (19)

Thus the eigenvectors are given by

x1− x2− x3 = 0
x2 +x3 = 0

� x1 = 0
x2 = −x3

�



x1

x2

x3



= x3





0
1
−1



. (20)

As 2 has algebraic multiplicity 2, we need to find its generalized eigenvectors. We thus obtained
our second solution in the set of fundamental solutions:

e2t





0
1
−1



. (21)

◦ Generalized eigenvectors for 2: Solve





−1 1 1
2 −1 −1
0 −1 −1









y1

y2

y3



=





0
1
−1



. (22)
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We have




−1 1 1 0
2 −1 −1 1
0 −1 −1 −1



 � 



−1 1 1 0
0 1 1 1
0 −1 −1 −1



� 



1 −1 −1 0
0 1 1 1
0 0 0 0



. (23)

So the generalized eigenvectors are characterized by

y1− y2− y3 = 0 (24)

y2 + y3 = 1. (25)

Keeping in mind that all we need is one such vectors, we take




y1

y2

y3



=





1
0
1



. (26)

The third solution in the set of fundamental solutions is thus

e2t





1
0
1



+ t e2t





0
1
−1



. (27)

The general solution is now given by

C1 e−t







−
3

2

2
1





+ C2 e2t





0
1
−1



+ C3



e2t





1
0
1



+ t e2t





0
1
−1







. (28)

• What happens in the general case

◦ In general, let λ be an eigenvalue with algebraic multiplicity m and geometric multiplicity k.
Then we may1 need to consider solutions of the form

eλt ξ0 + t eλt ξ1 +
 + tm−k eλt ξm−k. (29)

Here ξ0 is an eigenvector, while ξi’s are decided successively through

(A−λ I) ξi+1 = ξi (30)

The tricky issue here is that the eigenvector ξ0 cannot be decided a priori.

◦ Some understanding of the above subtleties as well as true understanding of the whole solution
procedure of 1st order constant coefficient systems can be obtained through the next lecture.

1. Whether we really need to go up to t
m−k cannot be determined by knowledge of only m and k, as it depends on the

detailed structure of the matrix, or more specifically, depends on what the Jordan canonical form of the matrix looks like. See

next lecture for more details.
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