Lecture 32 Vectors, Matrices, Determinants, Eigenvalues/Eigenvectors (CONT.)

$11 / 28 / 2011$

Matrices (cont.).

- Transpose; Conjugate; Adjoint

From A we can form its

- Transpose:

$$
A^{T}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{m 1} \tag{1}\\
\vdots & \ddots & \vdots \\
a_{1 n} & \cdots & a_{m n}
\end{array}\right)=\left(a_{j i}\right)=\left(\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
\vdots \\
\boldsymbol{a}_{n}^{T}
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{b}_{1} & \cdots & \boldsymbol{b}_{m}
\end{array}\right) .
$$

- Conjugate:

$$
\bar{A}=\left(\begin{array}{ccc}
\bar{a}_{11} & \cdots & \bar{a}_{1 n} \tag{2}\\
\vdots & \ddots & \vdots \\
\bar{a}_{m 1} & \cdots & \bar{a}_{m n}
\end{array}\right)=\left(\bar{a}_{i j}\right)=\left(\begin{array}{lll}
\overline{\boldsymbol{a}}_{1} & \cdots & \overline{\boldsymbol{a}}_{n}
\end{array}\right)=\left(\begin{array}{c}
\overline{\boldsymbol{b}}_{1}^{T} \\
\vdots \\
\overline{\boldsymbol{b}}_{m}^{T}
\end{array}\right) .
$$

- Adjoint:

$$
A^{*}=(\bar{A})^{T}=\left(\overline{A^{T}}\right)=\left(\bar{a}_{j i}\right)=\left(\begin{array}{c}
\overline{\boldsymbol{a}}_{1}^{T} \tag{3}\\
\vdots \\
\overline{\boldsymbol{a}}_{n}^{T}
\end{array}\right)=\left(\begin{array}{lll}
\overline{\boldsymbol{b}}_{1} & \cdots & \overline{\boldsymbol{b}}_{m}
\end{array}\right) .
$$

- Identity

The matrix

$$
I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \tag{4}\\
0 & 1 & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)=\left(\delta_{i j}\right)
$$

is called the "identity matrix". Here $\delta_{i j}=1$ when $i=j$ and 0 otherwise. We have ${ }^{11}$

$$
\begin{equation*}
I A=A ; \quad A I=A \tag{5}
\end{equation*}
$$

when the multiplications make sense.

- Inverse

Inverse. For most $n \times n$ (square) matrices there exists a unique matrix such that their product is I.

- This particular matrix is denoted A^{-1}. That is

$$
\begin{equation*}
A^{-1} A=A A^{-1}=I \tag{6}
\end{equation*}
$$

Note that, for both products to make sense, A^{-1} has to be also $n \times n$.

- Those matrices that have inverses are called "invertible" or "non-singular". The rest are called "singular".
- A is singular \Longleftrightarrow there is a column vector \boldsymbol{x} (or a row vector \boldsymbol{y}^{T}) such that

$$
\begin{equation*}
A \boldsymbol{x}=0\left(\text { or } \boldsymbol{y}^{T} A=0\right) \tag{7}
\end{equation*}
$$

\Longleftrightarrow the columns of A are linearly dependent $\Longleftrightarrow \operatorname{det} A=0 \Longleftrightarrow$ the rows of A are linearly dependent.

- Matrix functions
- Matrix functions.
- Once each entry is a function of t, the matrix A becomes a "matrix function", denoted $A(t)$.

[^0]- Differentiation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} A(t)=\dot{A}(t)=A^{\prime}(t)=\left(\dot{a}_{i j}(t)\right) \tag{8}
\end{equation*}
$$

- System of DEs in vector-matrix form:

$$
\begin{equation*}
\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t)+\boldsymbol{g}(t) . \tag{9}
\end{equation*}
$$

Here $\boldsymbol{x}, \boldsymbol{g}$ are n column vector, A is $n \times n$.

- When $\boldsymbol{g}=0$, that is the homogeous case, if we put n solutions $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ into a matrix:

$$
X(t)=\left(\begin{array}{lll}
\boldsymbol{x}_{1}(t) & \cdots & \boldsymbol{x}_{n}(t) \tag{10}
\end{array}\right)
$$

then one can check

$$
\begin{equation*}
\dot{X}(t)=A(t) X(t) \tag{11}
\end{equation*}
$$

Eigenvalues/Eigenvectors.

- Eigenvalues:

Let A be an $n \times n$ matrix. A number λ is said to be (one of) its eigenvalue if $A-\lambda I$ is singular.

- Eigenvectors: Those \boldsymbol{x} such that

$$
\begin{equation*}
(A-\lambda I) \boldsymbol{x}=0 \tag{12}
\end{equation*}
$$

are called the (corresponding) eigenvectors.
Note that, if \boldsymbol{x} is an eigenvector, so are $a \boldsymbol{x}$ for any number a. More generally, if $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}$ are eigenvectors corresponding to the same eigenvalue λ, so are $a_{1} \boldsymbol{x}_{1}+\cdots+a_{k} \boldsymbol{x}_{k}$ for any numbers a_{1}, \ldots, a_{k}.

- Recall formulas for determinants (for 2×2 and 3×3 matrices)
$\operatorname{det}\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=a_{11} a_{22}-a_{12} a_{21} ;$
$\operatorname{det}\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=a_{11} a_{22} a_{33}+a_{12} \quad a_{23} \quad a_{31}+a_{13} a_{32} a_{21}-a_{13} a_{22} a_{31}-a_{23} a_{32} a_{11}-$
$a_{12} a_{21} a_{33}$.
To remember the 2nd formula, write:

$$
\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \tag{15}\\
a_{31} & a_{32} & a_{33} & a_{31} & a_{32}
\end{array}
$$

put a + sign before all three "upper-left to down-right" products (such as $a_{11} a_{22} a_{33}$) and a - sign before all three "upper-right to down-left" products (such as $a_{11} a_{23} a_{32}$).

- Computation of eigenvalues/eigenvectors:

1. Compute all the roots to $\operatorname{det}(A-\lambda I)=0$. They are the eigenvalues.
2. For each root λ_{i}, solve

$$
\begin{equation*}
(A-\lambda I) \boldsymbol{x}=0 \tag{16}
\end{equation*}
$$

Example. Find all eigenvalues and eigenvectors for $\left(\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right)$.

Solution.

We compute

$$
\operatorname{det}\left[\left(\begin{array}{cc}
5 & -1 \tag{17}\\
3 & 1
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]=\operatorname{det}\left(\begin{array}{cc}
5-\lambda & -1 \\
3 & 1-\lambda
\end{array}\right)=(5-\lambda)(1-\lambda)-(-1) 3=\lambda^{2}-6 \lambda+8
$$

Next solve

$$
\begin{equation*}
\lambda^{2}-6 \lambda+8=0 \Longrightarrow \lambda_{1}=2, \lambda_{2}=4 \tag{18}
\end{equation*}
$$

Now find eigenvectors corresponding to $\lambda_{1}=2$:

$$
A-\lambda_{1} I=\left(\begin{array}{cc}
5 & -1 \tag{19}\\
3 & 1
\end{array}\right)-2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
3 & -1 \\
3 & -1
\end{array}\right)
$$

Now solve

$$
\left(\begin{array}{ll}
3 & -1 \tag{20}\\
3 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \Longrightarrow\binom{x_{1}}{x_{2}}=a\binom{1}{3}
$$

Similarly for $\lambda_{2}=4$, we compute

Solving

$$
A-\lambda_{2} I=\left(\begin{array}{cc}
5 & -1 \tag{21}\\
3 & 1
\end{array}\right)-4\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right) .
$$

$$
\left(\begin{array}{ll}
1 & -1 \tag{22}\\
3 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \Longrightarrow\binom{x_{1}}{x_{2}}=a\binom{1}{1}
$$

Example. Find all eigenvalues and eigenvectors for $\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1\end{array}\right)$.
Solution. We compute

$$
\begin{align*}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 0 & 0 \\
2 & 1-\lambda & -2 \\
3 & 2 & 1-\lambda
\end{array}\right) \\
& =(1-\lambda)^{3}+0 \cdot(-2) \cdot 3+2 \cdot 2 \cdot 0-0 \cdot(1-\lambda) \cdot 3-2 \cdot 0 \cdot(1-\lambda)-(-2) \cdot 2 \cdot(1-\lambda) \\
& =(1-\lambda)\left[(1-\lambda)^{2}+4\right] \tag{23}
\end{align*}
$$

Solving

$$
\begin{equation*}
(1-\lambda)\left[(1-\lambda)^{2}+4\right]=0 \tag{24}
\end{equation*}
$$

we get three eigenvalues

$$
\begin{equation*}
\lambda_{1}=1, \lambda_{2}=1+2 i, \lambda_{3}=1-2 i \tag{25}
\end{equation*}
$$

- Eigenvectors corresponding to 1: Solve

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \tag{26}\\
2 & 0 & -2 \\
3 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We use Gaussian elimination.

$$
\begin{array}{rlr}
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
2 & 0 & -2 & 0 \\
3 & 2 & 0 & 0
\end{array}\right) & \Longrightarrow\left(\begin{array}{cccc}
2 & 0 & -2 & 0 \\
3 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
3 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { (Simplify the 1st row) } \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad & \text { (First row } \times(-3) \text { add to } 2 \mathrm{nd}) \tag{27}
\end{array}
$$

Thus we have

$$
\begin{array}{r}
x_{1}-x_{3}=0 \\
2 x_{2}+3 x_{3}=0 \tag{29}
\end{array}
$$

This gives

$$
\begin{equation*}
x_{1}=x_{3}, \quad x_{2}=-\frac{3}{2} x_{3} \tag{30}
\end{equation*}
$$

so any eigenvector can be written as

$$
\left(\begin{array}{c}
x_{1} \tag{31}\\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{3} \\
-\frac{3}{2} x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
1 \\
-\frac{3}{2} \\
1
\end{array}\right) .
$$

Here x_{3} is free. Recalling the structure of the set of eigenvectors, we see that the eigenvectors corresponding to 1 are

$$
a\left(\begin{array}{c}
1 \tag{32}\\
-3 / 2 \\
1
\end{array}\right)
$$

with an arbitrary constant a.

- Eigenvectors corresponding to $1+2 i$: We need to solve

$$
\left(\begin{array}{ccc}
-2 i & 0 & 0 \tag{33}\\
2 & -2 i & -2 \\
3 & 2 & -2 i
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Gaussian elimination:

$$
\begin{align*}
\left(\begin{array}{cccc}
-2 i & 0 & 0 & 0 \\
2 & -2 i & -2 & 0 \\
3 & 2 & -2 i & 0
\end{array}\right) & \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & -2 i & -2 & 0 \\
3 & 2 & -2 i & 0
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -2 i & -2 & 0 \\
0 & 2 & -2 i & 0
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -i & 0 \\
0 & 2 & -2 i & 0
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -i & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \tag{34}
\end{align*}
$$

So x_{1}, x_{2}, x_{3} satisfy

$$
\begin{array}{r}
x_{1}=0 \\
x_{2}-i x_{3}=0 \tag{36}
\end{array}
$$

so

$$
\left(\begin{array}{l}
x_{1} \tag{37}\\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-i x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
0 \\
-i \\
1
\end{array}\right) .
$$

The eigenvectors corresponding to $1+2 i$ are

$$
a\left(\begin{array}{c}
0 \tag{38}\\
-i \\
1
\end{array}\right)
$$

- Eigenvectors corresponding to $1-2 i$. Similar calculation gives ${ }^{2}$

$$
a\left(\begin{array}{c}
0 \tag{39}\\
i \\
1
\end{array}\right)
$$

[^1]
[^0]: 1. When A is an $m \times n$ matrix, the I in the first equality is the $m \times m$ identity matrix, while the I in the second equality is the $n \times n$ matrix.
[^1]: 2. In fact, one can show that if A is a real matrix, λ is an eigenvalue of A with corresponding eigenvector \boldsymbol{x}. Then $\bar{\lambda}$ is also an eigenvalue of A with corresponding eigenvector $\overline{\boldsymbol{x}}$.
