Lecture 31 Vectors, Matrices, Determinants, Eigenvalues/EigenvecTORS

$11 / 25 / 2011$

Review.

- General first order system:

$$
\begin{align*}
\dot{x_{1}} & =F_{1}\left(t, x_{1}, \ldots, x_{n}\right) \tag{1}\\
\dot{x_{2}} & =F_{2}\left(t, x_{1}, \ldots, x_{n}\right) \tag{2}\\
\vdots & \vdots \\
\dot{x_{n}} & =F_{n}\left(t, x_{1}, \ldots, x_{n}\right) \tag{3}
\end{align*}
$$

- Existence and uniqueness:

Let R be a region in the $t-x_{1}-x_{2} \cdots-x_{n}$ space (which is $n+1$ dimensional) containing the point $\left(t_{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right)$. If all the partial derivatives $\frac{\partial F_{i}}{\partial x_{j}} i=1,2, \ldots, n ; j=1,2, \ldots, n$ remain bounded in R, then there is a unique solution $\left(x_{1}(t), \ldots, x_{n}(t)\right)$ satisfying both the equations and the initial condition.

- General linear first order system:

$$
\begin{align*}
\dot{x}_{1} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n}+g_{1}(t) \tag{4}\\
\vdots & \vdots \\
\dot{x}_{n} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n}+g_{n}(t) . \tag{5}
\end{align*}
$$

- General solution:

$$
\begin{equation*}
c_{1} \boldsymbol{x}^{(1)}(t)+\cdots+c_{n} \boldsymbol{x}^{(n)}(t)+\boldsymbol{x}_{p}(t) \tag{6}
\end{equation*}
$$

with $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ a fundamental set for the homogeneous system, and \boldsymbol{x}_{p} a "particular solution", that is a solution to the non-homogeneous system.

- General linear homogeneous first order system:

$$
\begin{align*}
\dot{x}_{1} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n} \tag{7}\\
\vdots & \vdots \\
\dot{x}_{n} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n} \tag{8}
\end{align*}
$$

- General solution:

$$
\begin{equation*}
c_{1} \boldsymbol{x}^{(1)}(t)+\cdots+c_{n} \boldsymbol{x}^{(n)}(t) \tag{9}
\end{equation*}
$$

with $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ a fundamental set for the homogeneous system.

- Wronskian:

$$
W\left[\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}\right]=\operatorname{det}\left(\begin{array}{lll}
\boldsymbol{x}^{(1)} & \cdots & \boldsymbol{x}^{(n)}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
x_{1}^{(1)}(t) & \cdots & x_{1}^{(n)}(t) \tag{10}\\
\vdots & \ddots & \vdots \\
x_{n}^{(1)}(t) & \cdots & x_{n}^{(n)}(t)
\end{array}\right)
$$

- $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ linearly independent $\Longleftrightarrow W \neq 0$ at t_{0} (or any other time).
- First order linear homogeneous constant-coefficient system:

$$
\begin{align*}
\dot{x}_{1} & =a_{11} x_{1}+\cdots+a_{1 n} x_{n} \tag{11}\\
\vdots & \vdots \\
\dot{x}_{n} & =a_{n 1} x_{1}+\cdots+a_{n n} x_{n} \tag{12}
\end{align*}
$$

- We can solve them completely.
- Preparation: Vectors, matrices, determinants, eigenvalues/eigenvectors.

Vectors and Matrices.

- Vectors
- Several numbers in a row (or column), treat as a unit, subject to natural rules of operation.
- Notation:

$$
\left(x_{1}, \ldots, x_{n}\right) \text { or }\left(\begin{array}{c}
x_{1} \tag{13}\\
\vdots \\
x_{n}
\end{array}\right)
$$

Shorthand: \boldsymbol{x}, \vec{x}, or simply $x .{ }^{1}$

- Operations on vectors:
- Addition and subtraction between vectors;
- Multiplication with scalars;
- Multiplication between a row and a column vector of the same size:

$$
\left(x_{1}, \ldots, x_{n}\right)\left(\begin{array}{c}
y_{1} \tag{14}\\
\vdots \\
y_{n}
\end{array}\right)=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

- Transpose:

$$
\left(x_{1}, \ldots, x_{n}\right)^{T}=\left(\begin{array}{c}
x_{1} \tag{15}\\
\vdots \\
x_{n}
\end{array}\right) ; \quad\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)^{T}=\left(x_{1}, \ldots, x_{n}\right)
$$

So the row-column product can be written as

$$
\boldsymbol{x}^{T} \boldsymbol{y}=\left(\begin{array}{c}
x_{1} \tag{16}\\
\vdots \\
x_{n}
\end{array}\right)^{T}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

- Conjugate:

$$
\overline{\left(\begin{array}{c}
x_{1} \tag{17}\\
\vdots \\
x_{n}
\end{array}\right)}=\left(\begin{array}{c}
\overline{x_{1}} \\
\vdots \\
\overline{x_{n}}
\end{array}\right)
$$

where ${ }^{-}$is the complex conjugate.

- Adjoint:

$$
\begin{equation*}
\boldsymbol{x}^{*}=\overline{\left(\boldsymbol{x}^{T}\right)}=(\overline{\boldsymbol{x}})^{T}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \tag{18}
\end{equation*}
$$

- Inner product:

$$
\begin{equation*}
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{*} \boldsymbol{y} \tag{19}
\end{equation*}
$$

Remark. The difference between inner product and row-column product is that the inner product is that $\langle\boldsymbol{x}, \boldsymbol{x}\rangle \geqslant 0$ for all \boldsymbol{x}.

- Length/Norm:

$$
\begin{equation*}
\|\boldsymbol{x}\|=\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\sqrt{\boldsymbol{x}^{*} \boldsymbol{x}} \tag{20}
\end{equation*}
$$

- Matrices
- Several numbers in a rectangular array:

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \tag{21}\\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

[^0]Also denoted: $A=\left(a_{i j}\right)$ with the understanding that $a_{i j}$ is the number at the intersection of the i-th row and the j-th column.

For example the "Hilbert matrix":

$$
\begin{equation*}
A=\left(\frac{1}{i+j}\right) \tag{22}
\end{equation*}
$$

means the matrix reads

$$
\left(\begin{array}{ccc}
\frac{1}{1+1} & \frac{1}{1+2} & \cdots \tag{23}\\
\frac{1}{2+1} & \ddots & \\
\vdots & & \ddots
\end{array}\right)
$$

- A matrix with m rows and n columns is said to be an $m \times n$ (read: m by n) matrix.
- If we denote column vectors:

$$
\boldsymbol{a}_{i}=\left(\begin{array}{c}
a_{1 i} \tag{24}\\
\vdots \\
a_{m i}
\end{array}\right)
$$

then A is a row of such column vectors:

$$
A=\left(\begin{array}{lll}
\boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{n} \tag{25}
\end{array}\right)
$$

We can also denote row vectors

$$
\boldsymbol{b}_{i}^{T}:=\left(\begin{array}{lll}
a_{i 1} & \cdots & a_{i n} \tag{26}
\end{array}\right)
$$

Then A is a column of such row vectors:

$$
A=\left(\begin{array}{c}
\boldsymbol{b}_{1}^{T} \tag{27}\\
\vdots \\
\boldsymbol{b}_{m}^{T}
\end{array}\right)
$$

Note. From this understanding we can treat column vectors as $n \times 1$ matrices, while row vectors as $1 \times n$ matrices. As we will see soon this gives a unified treatment of matrix-matrix and matrix-vector products.

- Matrix operations:
- Addition and subtraction between matrices of the same size.
- Multiplication by scalar;
- Multiplcation between matrices of consistent sizes:
$A B$ requires: number of columns of $A=$ number of rows of B;
If $A=\left(\begin{array}{c}\boldsymbol{a}_{1}^{T} \\ \vdots \\ \boldsymbol{a}_{m}^{T}\end{array}\right), B=\left(\begin{array}{lll}\boldsymbol{b}_{1} & \cdots & \boldsymbol{b}_{n}\end{array}\right)$, then $A B=\left(\begin{array}{lll}\boldsymbol{a}_{i}^{T} & \boldsymbol{b}_{j}\end{array}\right)$ (that is the number at the intersection of the i-th row and the j-th column is the product of the i-th row vector in A with the j-th column vector in B. This is only possible when \boldsymbol{a}_{i} and \boldsymbol{b}_{j} are of the same size, in other words: number of columns of $A=$ number of rows of B.

Remark. Note that this automatically defined multiplication between matrices and vectors.

- Matrix multiplication is associative but in general not commutative.

$$
\begin{equation*}
A(B C)=(A B) C ; \quad A B \neq B A \tag{29}
\end{equation*}
$$

[^0]: 1. The first notation often appear in science literature, the second elementary mathematics, the third higher mathematics (where the readers are required to figure out what every symbol really means...).
