Lecture 30 System of Ordinary Differential Equations

$11 / 23 / 2011$

Mathematical Modeling.

- A single differential equation models the time evolution of one quantity of interest.
- When there are two or more quantities of interest, we need two or more equations to model them.
- In general, these quantities will interact with one another, so the equations will be "coupled" - we cannot get information of any one quantity by looking at its equation alone, and have to treat the several equations as a whole, in other words, a system.
- For example of modeling, see the textbook, or my notes for last year's 334 .

Theoretical Issues.

- Reduction to First Order
- Any system of ordinary differential equations can be written as a bigger, but first order, system.
- Example:

$$
\begin{align*}
\ddot{x} & =y^{2}+(\dot{x})^{3}+x \tag{1}\\
\dot{y} & =x^{3} \tag{2}
\end{align*}
$$

becomes, after introducing $z=\dot{x}$,

$$
\begin{align*}
\dot{z} & =y^{2}+z^{3}+x \tag{3}\\
\dot{x} & =z \tag{4}\\
\dot{y} & =x^{3} \tag{5}
\end{align*}
$$

- Existence and Uniqueness

- Only need to consider the first order system:

$$
\begin{align*}
\dot{x_{1}} & =F_{1}\left(t, x_{1}, \ldots, x_{n}\right) \tag{6}\\
\dot{x_{2}} & =F_{2}\left(t, x_{1}, \ldots, x_{n}\right) \tag{7}\\
\vdots & \vdots \\
\dot{x}_{n} & =F_{n}\left(t, x_{1}, \ldots, x_{n}\right) \tag{8}
\end{align*}
$$

with initial conditions:

$$
\begin{equation*}
x_{1}\left(t_{0}\right)=x_{1}^{0}, \ldots, x_{n}\left(t_{0}\right)=x_{n}^{0} . \tag{9}
\end{equation*}
$$

- Let R be a region in the $t-x_{1}-x_{2} \cdots-x_{n}$ space (which is $n+1$ dimensional) containing the point $\left(t_{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right)$. If all the partial derivatives $\frac{\partial F_{i}}{\partial x_{j}} i=1,2, \ldots, n ; j=1,2, \ldots, n$ remain bounded in R, then there is a unique solution $\left(x_{1}(t), \ldots, x_{n}(t)\right)$ satisfying both the equations and the initial condition.
- For example, for the system

$$
\begin{align*}
\dot{z} & =y^{2}+z^{3}+x \tag{10}\\
\dot{x} & =z \tag{11}\\
\dot{y} & =x^{3} \tag{12}
\end{align*}
$$

Take R to be any bounded domain in the four-dimensional space $\mathbb{R}^{4}(t, x, y, z)$, we compute all 9 partial derivatives

$$
\begin{align*}
& \frac{\partial\left(y^{2}+z^{3}+x\right)}{\partial z}=3 z^{2}, \quad \frac{\partial\left(y^{2}+z^{3}+x\right)}{\partial y}=2 y, \quad \frac{\partial\left(y^{2}+z^{3}+x\right)}{\partial x}=1 \tag{13}\\
& \frac{\partial z}{\partial z}=1, \quad \frac{\partial z}{\partial x}=0, \quad \frac{\partial z}{\partial y}=0, \quad \frac{\partial\left(x^{3}\right)}{\partial z}=0, \quad \frac{\partial\left(x^{3}\right)}{\partial x}=3 x^{2}, \quad \frac{\partial\left(x^{3}\right)}{\partial y}=0 \tag{14}
\end{align*}
$$

and see that all of them are bounded on R. Therefore this system has a unique solution given any initial point inside R.

First Order Linear Constant-coefficient System.

- Such system looks like

$$
\begin{align*}
\dot{x}_{1} & =a_{11} x_{1}+\cdots+a_{1 n} x_{n}+g_{1}(t) \tag{15}\\
\vdots & \vdots \\
\dot{x}_{n} & =a_{n 1} x_{1}+\cdots+a_{n n} x_{n}+g_{n}(t) . \tag{16}
\end{align*}
$$

For example

$$
\begin{align*}
\dot{x} & =3 x+2 y+5 z+t^{2} \tag{17}\\
\dot{y} & =2 x+y+e^{t} \tag{18}\\
\dot{z} & =5 x+2 y+3 z+t . \tag{19}
\end{align*}
$$

- Significance.
- We have seen that any system can be reduced to first order.
- The significance of linear constant-coefficient systems are two-fold:
- For any system there are one or more linear systems which can describe the solution of the original nonlinear system around most important locations - the so-called "equilibrium points".
- We can solve them completely.
- Basic Theory of first order linear system:

$$
\begin{align*}
\dot{x}_{1} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n}+g_{1}(t) \tag{20}\\
\vdots & \vdots \\
\dot{x}_{n} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n}+g_{n}(t) . \tag{21}
\end{align*}
$$

- General solution:

$$
\boldsymbol{x}(t)=\left(\begin{array}{c}
x_{1} \tag{22}\\
\vdots \\
x_{n}
\end{array}\right)=c_{1} \boldsymbol{x}^{(1)}(t)+\cdots+c_{n} \boldsymbol{x}^{(n)}(t)+\boldsymbol{x}_{p}(t)
$$

with

$$
\boldsymbol{x}^{(1)}(t)=\left(\begin{array}{c}
x_{1}^{(1)}(t) \tag{23}\\
\vdots \\
x_{n}^{(1)}(t)
\end{array}\right), \ldots, \boldsymbol{x}^{(n)}(t)=\left(\begin{array}{c}
x_{1}^{(n)}(t) \\
\vdots \\
x_{n}^{(n)}(t)
\end{array}\right), \quad \boldsymbol{x}_{p}(t)=\left(\begin{array}{c}
x_{p 1}(t) \\
\vdots \\
x_{p n}(t)
\end{array}\right)
$$

Or equivalently:

$$
\begin{align*}
x_{1}(t) & =c_{1} x_{1}^{(1)}(t)+\cdots+c_{n} x_{1}^{(n)}(t)+x_{p 1}(t) \tag{24}\\
& \vdots \\
x_{n}(t) & =c_{1} x_{n}^{(1)}(t)+\cdots+c_{n} x_{n}^{(n)}(t)+x_{p n}(t) \tag{25}
\end{align*}
$$

In matrix form:

$$
\begin{equation*}
\boldsymbol{x}(t)=X(t) \boldsymbol{c}+\boldsymbol{x}_{p} \tag{26}
\end{equation*}
$$

where

$$
X(t)=\left(\begin{array}{ccc}
x_{1}^{(1)}(t) & \cdots & x_{1}^{(n)}(t) \tag{27}\\
\vdots & \ddots & \vdots \\
x_{n}^{(1)}(t) & \cdots & x_{n}^{(n)}(t)
\end{array}\right), \quad \boldsymbol{c}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

and $\boldsymbol{x}, \boldsymbol{x}_{p}$ as defined previously.

- \boldsymbol{x}_{p} is a "particular solution", that is, any one solution of the system under consideration.
- $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ form a "fundamental set" for the corresponding homogeneous system:

$$
\begin{align*}
\dot{x}_{1} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n} \tag{28}\\
\vdots & \vdots \\
\dot{x}_{n} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n} \tag{29}
\end{align*}
$$

That is, they are solutions, and they are linearly independent.

- Wronkian. The Wronskian of n solutions to the homogeneous system

$$
\begin{align*}
\dot{x}_{1} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n} \tag{30}\\
\vdots & \vdots \\
\dot{x}_{n} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n} \tag{31}
\end{align*}
$$

is defined as

$$
\begin{equation*}
W\left[\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}\right]=\operatorname{det} X(t) \tag{32}
\end{equation*}
$$

with

$$
\boldsymbol{x}^{(1)}(t)=\left(\begin{array}{c}
x_{1}^{(1)}(t) \tag{33}\\
\vdots \\
x_{n}^{(1)}(t)
\end{array}\right), \ldots, \boldsymbol{x}^{(n)}(t)=\left(\begin{array}{c}
x_{1}^{(n)}(t) \\
\vdots \\
x_{n}^{(n)}(t)
\end{array}\right), \quad X(t)=\left(\begin{array}{ccc}
x_{1}^{(1)}(t) & \cdots & x_{1}^{(n)}(t) \\
\vdots & \ddots & \vdots \\
x_{n}^{(1)}(t) & \cdots & x_{n}^{(n)}(t)
\end{array}\right)
$$

- $\quad W$ satisfies

$$
\begin{equation*}
\frac{\mathrm{d} W}{\mathrm{~d} t}=\left(p_{11}(t)+\cdots+p_{n n}(t)\right) W \tag{34}
\end{equation*}
$$

- As a consequence Wronskian is either never 0 or is 0 for all t (as long as all the coefficients $p_{i j}(t)$ remain bounded)
$-\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ form a fundamental set if and only if their Wronskian is nonzero at the initial time t_{0} (or any other single time).

