Lecture 29 Convolution

$11 / 21 / 2011$

Review.

- Solution procedure of Laplace transform method:

1. Transform the equation: left hand side and the right hand side;
2. Obtain $Y(s)$;
3. Take inverse transform $y(t)=\mathcal{L}^{-1}\{Y\}$.

- What are involved in transforming the right hand side:

1. Table of Laplace transform of basic functions;
2. $\mathcal{L}\{f(t) u(t-a)\}=e^{-a s} \mathcal{L}\{f(t+a)\}$ when the right hand side is piecewise defined;
3. $\mathcal{L}\{f(t) \delta(t-a)\}=e^{-a s} f(a)$ when the right hand side involves the impulse function.

- What are involved in the inverse transform:

1. Table of Laplace transforms;
2. $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) f(t-a)$.

- A remark about the smoothness of solution:

1. When the right hand side is smooth, the solution is smooth;
2. When the right hand side is piecewise defined, the solution is at least C^{1} (meaning: y and y^{\prime} are continuous functions);
3. When the right hand side involves δ, the solution is continuous $-y^{\prime}$ is not continuous anymore.

Convolution.

- A "binary" operation: Two inputs and one output. Other examples of binary operations include,+- , $\times, /$. Each of them takes two functions as inputs and give out one single function as the output.
- Convolution is much harder to compute than the four basic operations. In particular, don't confuse convolution with multiplication!
- Given two functions $f(t)$ and $g(t)$, their convolution is defined as

$$
\begin{equation*}
h(t):=\{f * g\}(t)=\int_{0}^{t} f(t-\tau) g(\tau) \mathrm{d} \tau \tag{1}
\end{equation*}
$$

- Basic properties of convolution:
- $\quad f * g=g * f$;
- $\quad f *\left(g_{1}+g_{2}\right)=f * g_{1}+f * g_{2}$;
- $(f * g) * h=f *(g * h)$;
- $f * 0=0 * f=0$.

Proofs of the above are left as homework.
Note: Don't confuse convolution with multiplication! In particular, $f * 1 \neq f$!
Example 1. Compute $e^{t} * 1$ and $\cos t * 1$.
Solution. By definition we have

$$
\begin{gather*}
e^{t} * 1=\int_{0}^{t} e^{\tau} 1 \mathrm{~d} \tau=e^{t}-1 \tag{2}\\
(\cos t) * 1=\int_{0}^{t} \cos (\tau) \mathrm{d} \tau=\sin t \tag{3}
\end{gather*}
$$

- Why bother with convolution:

Theorem 2. If $\mathcal{L}\{f\}=F, \mathcal{L}\{g\}=G$, then $\mathcal{L}^{-1}\{F(s) G(s)\}=f * g$.
Proof. All we need to show is

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s t}(f * g)(t) \mathrm{d} t=F(s) G(s) \tag{4}
\end{equation*}
$$

We have

$$
\begin{align*}
\int_{0}^{\infty} e^{-s t}(f * g)(t) \mathrm{d} t & =\int_{0}^{\infty} e^{-s t}\left[\int_{0}^{t} f(t-\tau) g(\tau) \mathrm{d} \tau\right] \mathrm{d} t \\
& =\int_{0}^{\infty} \int_{0}^{t}\left[e^{-s t} f(t-\tau) g(\tau)\right] \mathrm{d} \tau \mathrm{~d} t \tag{5}
\end{align*}
$$

We now switch the order of the integration. To do this we have to first understand what the region of integration look like. We have t running from 0 to ∞, and τ from 0 to t. This is the triangular region $0<\tau<t<\infty$ in the $t-\tau$ plane:

To switch the order of integration, we first check what values can τ take? The answer is any value from 0 to ∞. Once τ is given, t can only run from τ to ∞. So we have

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{t}\left[e^{-s t} f(t-\tau) g(\tau)\right] \mathrm{d} \tau \mathrm{~d} t=\int_{0}^{\infty} \int_{\tau}^{\infty}\left[e^{-s t} f(t-\tau) g(\tau)\right] \mathrm{d} t \mathrm{~d} \tau \tag{6}
\end{equation*}
$$

Remark. Another way of doing this is to first observe: $0<t<\infty$ together with $0<\tau<t$ is the same as $0<\tau<t<\infty$. Now ignore t we have $0<\tau<\infty$, once τ is given, the range for t is $\tau<t<\infty$.

Further calculate:

$$
\begin{align*}
\int_{0}^{\infty} \int_{\tau}^{\infty}\left[e^{-s t} f(t-\tau) g(\tau)\right] \mathrm{d} t \mathrm{~d} \tau & =\int_{0}^{\infty} g(\tau)\left[\int_{\tau}^{\infty} e^{-s t} f(t-\tau) \mathrm{d} t\right] \mathrm{d} \tau \\
& =\int_{0}^{\infty} g(\tau)\left[\int_{\tau}^{\infty} e^{-s \tau} e^{-s(t-\tau)} f(t-\tau) \mathrm{d} t\right] \mathrm{d} \tau \\
& =\int_{0}^{\infty} e^{-s \tau} g(\tau)\left[\int_{\tau}^{\infty} e^{-s(t-\tau)} f(t-\tau) \mathrm{d} t\right] \mathrm{d} \tau \tag{7}
\end{align*}
$$

Setting $t^{\prime}=t-\tau$ in the t-integral, we have

Therefore we reach

$$
\begin{equation*}
\int_{\tau}^{\infty} e^{-s(t-\tau)} f(t-\tau) \mathrm{d} t=\int_{0}^{\infty} e^{-s t^{\prime}} f\left(t^{\prime}\right) \mathrm{d} t^{\prime}=F(s) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s \tau} g(\tau)\left[\int_{\tau}^{\infty} e^{-s(t-\tau)} f(t-\tau) \mathrm{d} t\right] \mathrm{d} \tau=\int_{0}^{\infty} e^{-s \tau} g(\tau) F(s) \mathrm{d} \tau=F(s) G(s) \tag{9}
\end{equation*}
$$

and the proof ends.

- Applications of convolution (From least to most important):
- Find Laplace transforms for integrals:

Example 3. Find the Laplace transform of $f(t)=\int_{0}^{t}(t-\tau)^{2} \cos 2 \tau \mathrm{~d} \tau$.
Solution. First recognize:

Thus we have

$$
\begin{equation*}
\int_{0}^{t}(t-\tau)^{2} \cos 2 \tau \mathrm{~d} \tau=t^{2} *(\cos 2 t) \tag{10}
\end{equation*}
$$

$$
\begin{align*}
F(s) & =\mathcal{L}\left\{t^{2} *(\cos 2 t)\right\} \\
& =\mathcal{L}\left\{t^{2}\right\} \mathcal{L}\{\cos 2 t\} \\
& =\frac{2}{s^{3}} \frac{s}{s^{2}+4}=\frac{2}{s^{2}\left(s^{2}+4\right)} \tag{11}
\end{align*}
$$

- Alternative way of computing inverse Laplace transform:

Example 4. Find the inverse Laplace transform of $\frac{2}{s^{2}\left(s^{2}+4\right)}$.
Solution. Write

$$
\begin{equation*}
\frac{2}{s^{2}\left(s^{2}+4\right)}=\frac{1}{s^{2}} \frac{2}{s^{2}+4} \tag{12}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{2}{s^{2}\left(s^{2}+4\right)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\} * \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=t *(\sin 2 t) . \tag{13}
\end{equation*}
$$

Note: It's not OK to stop here!
Compute

$$
\begin{align*}
t *(\sin 2 t) & =\int_{0}^{t}(t-\tau) \sin (2 \tau) \mathrm{d} \tau \\
& =-\frac{1}{2} \int_{0}^{t}(t-\tau) \mathrm{d} \cos (2 \tau) \\
& =-\frac{1}{2}\left[\left.(t-\tau) \cos (2 \tau)\right|_{\tau=0} ^{\tau=t}-\int_{0}^{t} \cos (2 \tau) \mathrm{d}(t-\tau)\right] \\
& =-\frac{1}{2}\left[-t+\int_{0}^{t} \cos (2 \tau) \mathrm{d} \tau\right] \\
& =\frac{t}{2}-\frac{1}{4} \sin (2 t) \tag{14}
\end{align*}
$$

Check

$$
\begin{equation*}
\mathcal{L}\left\{\frac{t}{2}-\frac{1}{4} \sin (2 t)\right\}=\frac{1}{2 s^{2}}-\frac{1}{4} \frac{2}{s^{2}+4}=\frac{2}{s^{2}\left(s^{2}+4\right)} \tag{15}
\end{equation*}
$$

- Obtain solution formula for general right hand sides.

Example 5. Express the solution of the following initial value problem in terms of a convolution integral:

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=g(t) ; \quad y(0)=0, y^{\prime}(0)=0 \tag{16}
\end{equation*}
$$

Solution.

First transform the equation:

$$
\begin{align*}
\mathcal{L}\left\{y^{\prime \prime}\right\} & =s^{2} Y-s y(0)-y^{\prime}(0)=s^{2} Y \tag{17}\\
\mathcal{L}\left\{y^{\prime}\right\} & =s Y-y(0)=s Y \tag{18}
\end{align*}
$$

Denoting $\mathcal{L}\{g\}=G(s)$, we have the transformed equation as

$$
\begin{equation*}
\left(s^{2}+4 s+4\right) Y=G(s) \tag{19}
\end{equation*}
$$

So

$$
\begin{equation*}
Y=\frac{G(s)}{s^{2}+4 s+4} . \tag{20}
\end{equation*}
$$

Now take inverse transform:
$y=\mathcal{L}^{-1}\left\{\frac{G(s)}{(s+2)^{2}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}}\right\} * \mathcal{L}^{-1}\{G\}=\binom{e^{-2 t}}{t} * g=\int_{0}^{t} e^{-2(t-\tau)}(t-$
$\tau) g(\tau) \mathrm{d} \tau$.
Remark 6. Once we obtain this formula, we can get some information of the solution without really compute them. For example, if we are further told that g is bounded, that is there is a constant M such that $|g| \leqslant M$, then we can immediately compute

$$
\begin{equation*}
|y| \leqslant M\left|\int_{0}^{t} e^{-2(t-\tau)}(t-\tau) \mathrm{d} \tau\right|=M\left[1-\frac{2 t+1}{4} e^{-2 t}\right] . \tag{22}
\end{equation*}
$$

In particular we can conclude $|y|$ share the same bound M as g without requiring detailed information of g.

