Lecture 26 Step Functions

$11 / 14 / 2011$

Last time we mentioned the necessity of considering functions with jumps, such as:

$$
g(t)= \begin{cases}1 & 0<t<3 \tag{1}\\ t & t>3\end{cases}
$$

Now if we only want to do the Laplace transform of this function, then definition is enough:

$$
\begin{equation*}
\mathcal{L}\{g\}(s)=\int_{0}^{\infty} e^{-s t} g(t) \mathrm{d} t=\int_{0}^{3} e^{-s t} \mathrm{~d} t+\int_{3}^{\infty} t e^{-s t} \mathrm{~d} t=\frac{1}{s}+\left(\frac{2}{s}-\frac{1}{s^{2}}\right) e^{-3 s} . \tag{2}
\end{equation*}
$$

However, imagine the following situation. After transforming an equation, we get

$$
\begin{equation*}
Y=\frac{1}{s}+\left(\frac{2}{s}-\frac{1}{s^{2}}\right) e^{-3 s} \tag{3}
\end{equation*}
$$

How can we possibly figure out

$$
y(t)=\left\{\begin{array}{ll}
1 & 0<t<3 \tag{4}\\
t & t>3
\end{array} ?\right.
$$

Therefore we need a more systematic way of dealing with Laplace and inverse Laplace transforms involving step functions.

Fortunately such a way exists. The key is the "unit step function"

$$
u(t):=\left\{\begin{array}{ll}
0 & t<0 \tag{5}\\
1 & t>0
\end{array} .\right.
$$

Unit step function and representation of functions with jumps.

- The unit step function

$$
u(t):= \begin{cases}0 & t<0 \tag{6}\\ 1 & t>0\end{cases}
$$

represents a jump of unit size at $t=0$.

- Notice the following: If we translate $u(t)$ by a, that is replace t by $t-a$, where a is any number, then the function

$$
u(t-a)= \begin{cases}0 & t<a \tag{7}\\ 1 & t>a\end{cases}
$$

represents a jump of unit size at $t=a$. Note that $u(t-a)$ is sometimes denoted by $u_{a}(t)$.

- One step further, we realize that

$$
M u(t-a)= \begin{cases}0 & t<a \tag{8}\\ M & t>a\end{cases}
$$

represents a jump of size M at $t=a$. Therefore a "jump" of any size at anywhere can be thus represented.

- With the help of $u(t)$ and its translations, we are able to "decompose" any functions with jumps into a sum of terms like

$$
\begin{equation*}
u(t-a) g(t) \tag{9}
\end{equation*}
$$

where $g(t)$ is a nice function.

- More specifically, the representation of a function

$$
g(t)=\left\{\begin{array}{cl}
g_{1}(t) & 0<t<t_{1} \tag{10}\\
\vdots & \\
g_{k}(t) & t_{k-1}<t<t_{k}
\end{array}\right.
$$

is
$g(t)=g_{1}(t)+\left[g_{2}(t)-g_{1}(t)\right] u\left(t-t_{1}\right)+\left[g_{3}(t)-g_{2}(t)\right] u\left(t-t_{2}\right)+\cdots+\left[g_{k}(t)-g_{k-1}(t)\right] u\left(t-t_{k-1}\right)$.
Example 1. Express the given function using unit step functions.

$$
g(t)= \begin{cases}0 & 0<t<1 \tag{12}\\ 2 & 1<t<2 \\ 1 & 2<t<3 \\ 3 & 3<t\end{cases}
$$

Solution. We have $g_{1}(t)=0, g_{2}(t)=2, g_{3}(t)=1, g_{4}(t)=3$. Thus

$$
g(t)=2 u(t-1)-u(t-2)+2 u(t-3)
$$

Example 2. Express
using unit jump function.

$$
g(t)= \begin{cases}0 & 0<t<2 \tag{13}\\ t+1 & 2<t\end{cases}
$$

Solution. We have

$$
\begin{equation*}
g(t)=(t+1) u(t-2) \tag{14}
\end{equation*}
$$

- Of course we can also recover g. For example, if we are given

$$
\begin{equation*}
g(t)=2 u(t-1)-u(t-2)+2 u(t-3) \tag{15}
\end{equation*}
$$

and would like to get a "piecewise" formula, we do the following.

1. Identify the "jump" points: $1,2,3$. This means the formula for g would look like

$$
g(t)= \begin{cases}g_{1}(t) & 0<t<1 \tag{16}\\ g_{2}(t) & 1<t<2 \\ g_{3}(t) & 2<t<3 \\ g_{4}(t) & 3<t\end{cases}
$$

2. Now recall the formula
$g(t)=g_{1}(t)+\left[g_{2}(t)-g_{1}(t)\right] u\left(t-t_{1}\right)+\left[g_{3}(t)-g_{2}(t)\right] u\left(t-t_{2}\right)+\cdots+\left[g_{k}(t)-g_{k-1}(t)\right] u(t-$ $\left.t_{k-1}\right)$.

Comparing with

$$
\begin{equation*}
g(t)=2 u(t-1)-u(t-2)+2 u(t-3)=0+2 u(t-1)-u(t-2)+2 u(t-3) \tag{18}
\end{equation*}
$$

we have

$$
\begin{align*}
g_{1}(t) & =0 \tag{19}\\
g_{2}(t)-g_{1}(t) & =2 \Longrightarrow g_{2}(t)=2 \tag{20}\\
g_{3}(t)-g_{2}(t) & =-1 \Longrightarrow g_{3}(t)=1 \tag{21}\\
g_{4}(t)-g_{3}(t) & =2 \Longrightarrow g_{4}(t)=3 \tag{22}
\end{align*}
$$

Thus we recover

$$
g(t)= \begin{cases}0 & 0<t<1 \tag{23}\\ 2 & 1<t<2 \\ 1 & 2<t<3 \\ 3 & 3<t\end{cases}
$$

- If we are asked to a function with formula involving u :

1. Obtain the piecewise formula using the above procedure;
2. Draw the plot.

Laplace Transform of functions with Jumps.

- Laplace transform of $u(t-a) g(t)$.

$$
\begin{align*}
\mathcal{L}\{g(t) u(t-a)\} & =\int_{0}^{\infty} e^{-s t} g(t) u(t-a) \mathrm{d} t \\
& =\int_{a}^{\infty} e^{-s t} g(t) \mathrm{d} t \\
& =e^{-a s} \int_{a}^{\infty} e^{-s(t-a)} g(t) \mathrm{d} t \\
& =e^{-a s} \int_{a}^{\infty} e^{-s v} g(v+a) \mathrm{d} v \\
& =e^{-a s} \mathcal{L}\{g(t+a)\}(s) \tag{24}
\end{align*}
$$

In particular, we have

$$
\begin{equation*}
\mathcal{L}\{u(t-a)\}=\frac{e^{-a s}}{s} \tag{25}
\end{equation*}
$$

- Therefore to evaluate $\mathcal{L}\{g(t) u(t-a)\}$ we have to do the following:

1. Obtain $f(t)=g(t+a)$;
2. Compute $F(s)=\mathcal{L}\{f\}$.
3. Multiply it by $e^{-a s}$ to get $\mathcal{L}\{g(t) u(t-a)\}=e^{-a s} F(s)$.

Example 3. Compute the Laplace transform of

$$
g(t)= \begin{cases}0 & 0<t<1 \tag{26}\\ 2 & 1<t<2 \\ 1 & 2<t<3 \\ 3 & 3<t\end{cases}
$$

Solution. We have already found out that

$$
\begin{equation*}
g(t)=2 u(t-1)-u(t-2)+2 u(t-3) \tag{27}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathcal{L}\{g\}(s)=2 \mathcal{L}\{u(t-1)\}-\mathcal{L}\{u(t-2)\}+2 \mathcal{L}\{u(t-3)\}=\frac{2 e^{-s}-e^{-2 s}+2 e^{3 s}}{s} \tag{28}
\end{equation*}
$$

Example 4. Compute Laplace transform of

$$
g(t)= \begin{cases}0 & 0<t<2 \tag{29}\\ t+1 & 2<t\end{cases}
$$

Solution. We have already solved

$$
\begin{equation*}
g(t)=(t+1) u(t-2) \tag{30}
\end{equation*}
$$

Let $\tilde{g}(t)=t+1$. We have

$$
\begin{equation*}
\mathcal{L}\{\tilde{g}(t) u(t-2)\}=e^{-2 s} \mathcal{L}\{\tilde{g}(t+2)\}=e^{-2 s} \mathcal{L}\{t+3\}=e^{-2 s}\left[\frac{1}{s^{2}}+\frac{3}{s}\right] \tag{31}
\end{equation*}
$$

Inverse transform.

- Inverse transform. We observe that the universal character of Laplace transforms of functions with jumps is the appearance of $e^{-a s}$. So all we need is a formula for $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}$. Since

$$
\begin{equation*}
f(t-a)=g(t) \tag{32}
\end{equation*}
$$

means

$$
\begin{equation*}
g(t+a)=f(t) \tag{33}
\end{equation*}
$$

the formula

$$
\begin{equation*}
\mathcal{L}\{g(t) u(t-a)\}=e^{-a s} \mathcal{L}\{g(t+a)\}(s) \tag{34}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
\mathcal{L}\{f(t-a) u(t-a)\}=e^{-a s} F(s) \tag{35}
\end{equation*}
$$

So we reach

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a) \tag{36}
\end{equation*}
$$

- Therefore to compute $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}$ we need to do the following:

1. Identify a;
2. Compute $f(t)=\mathcal{L}^{-1}\{F\}$.
3. Replace every t by $t-a$ in $f(t)$ to get $f(t-a)$.
4. Multiply it by $u(t-a)$ to finally obtain

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a) \tag{37}
\end{equation*}
$$

Example 5. Determine the inverse Laplace transform of

$$
\begin{equation*}
\frac{e^{-2 s}}{s-1} \tag{38}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a) \tag{39}
\end{equation*}
$$

Comparing with the problem, we have $a=2$, and $F(s)=\frac{1}{s-1}$. Inverting $F(s)$ we have

$$
\begin{equation*}
f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}=e^{t} \tag{40}
\end{equation*}
$$

Thus

$$
\begin{equation*}
f(t-2)=e^{t-2} \tag{41}
\end{equation*}
$$

So finally

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s-1}\right\}=e^{t-2} u(t-2) \tag{42}
\end{equation*}
$$

Example 6. Compute the inverse Laplace transform of

$$
\begin{equation*}
\frac{s e^{-3 s}}{s^{2}+4 s+5} \tag{43}
\end{equation*}
$$

Solution. Comparing with

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a) \tag{44}
\end{equation*}
$$

we have $a=3, F(s)=\frac{s}{s^{2}+4 s+5}$. We compute

$$
\begin{align*}
f(t) & =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4 s+5}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^{2}+1}-\frac{2}{(s+2)^{2}+1}\right\} \\
& =e^{-2 t}[\cos t-2 \sin t] \tag{45}
\end{align*}
$$

Thus

$$
\begin{align*}
\mathcal{L}^{-1}\left\{\frac{s e^{-3 s}}{s^{2}+4 s+5}\right\} & =f(t-3) u(t-3) \\
& =e^{-2(t-3)}[\cos (t-3)-2 \sin (t-3)] u(t-3) \tag{46}
\end{align*}
$$

