## Lecture 25 Review for Midterm 2

$11 / 07 / 2011$

Main Topics. (Easy - Hard)

- Euler Equations: (Lecture 20)
- $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0$
- Indicial/Characteristic equation:

$$
\begin{equation*}
a r(r-1)+b r+c=0 \tag{1}
\end{equation*}
$$

Can be obtained by setting $y=x^{r}$.

- General solution: 3 Cases.

$$
\begin{aligned}
& -\quad C_{1} x^{r_{1}}+C_{2} x^{r_{2}} \\
& -\quad C_{1} x^{r}+C_{2} x^{r} \ln x \\
& -\quad C_{1} x^{\alpha} \cos (\beta \ln x)+C_{2} x^{\alpha} \sin (\beta \ln x)
\end{aligned}
$$

- Higher order constant coefficient linear homogeneous equations
- Equation.

$$
\begin{equation*}
a_{0} y^{(n)}+\cdots+a_{n} y=0 \tag{2}
\end{equation*}
$$

- Find general solution. (Lectures 13, 14)

1. Solve the characteristic equation

$$
\begin{equation*}
a_{0} r^{n}+\cdots+a_{n}=0 \tag{3}
\end{equation*}
$$

and get a list of roots.
2. Order the roots: real roots first, then complex conjugate pairs. Write down the fundamental set $y_{1}, \ldots, y_{n}$ according to the following rules:

- A real root $r$, repeated $k$ times, yields $k$ solutions in the fundamental set: $e^{r t}$, $t e^{r t}, \ldots, t^{k-1} e^{r t}$ (Note that when $r$ is a single root, this automatically give only $e^{r t}$.
- A pair of complex roots $\alpha \pm i \beta$, repeated $k$ times, yields $2 k$ solutions in the fundamental set: $e^{\alpha t} \cos \beta t, e^{\alpha t} \sin \beta t, \ldots, t^{k-1} e^{\alpha t} \cos \beta t, t^{k-1} e^{\alpha t} \sin \beta t$.

3. $y=C_{1} y_{1}+\cdots+C_{n} y_{n}$. Solve the characteristic equation

$$
\begin{equation*}
a_{0} r^{n}+\cdots+a_{n}=0 \tag{4}
\end{equation*}
$$

and get $r_{1}, r_{2}, \ldots, r_{n}$.

- Technical issues:

1. Factorization of polynomials;
2. Solving $r^{n}=a$. (Lecture 14)
a. Write $a+b i=R e^{i\left(\theta_{0}+2 k \pi\right)}$;
b. Write

$$
\begin{equation*}
(a+b i)^{1 / n}=R^{1 / n} \exp \left[i \frac{\theta_{0}+2 k \pi}{n}\right] \tag{5}
\end{equation*}
$$

c. Set $k=n$ consecutive numbers (for example $0,1, \ldots, n-1$, or $-\frac{n}{2}+1, \ldots, 0, \ldots, \frac{n}{2}$ when $n$ is even and similarly when $n$ is odd. Each value of $k$ gives one root.
d. Simplify if possible.

Remark 1. Idea: From $\left(r e^{i \phi}\right)^{n}=r^{n} e^{i n \phi}$, we see that to find the $n$ roots of $a$, all we need are $n$ pairs $(r, \phi)$ such that $r^{n} e^{i n \phi}=a$ or equivalently

$$
\begin{equation*}
r^{n} e^{i n \phi}=R e^{i\left(\theta_{0}+2 k \pi\right)} . \tag{6}
\end{equation*}
$$

- Undetermined coefficient for higher order equations (Lecture 15)

1. Solve the homogeneous equation. Get the list of roots $r_{1}, \ldots, r_{n}$ for the characteristic equation.
2. Check $g(t)$ :

- If $g(t)=e^{r t}\left(a_{0}+\cdots+a_{n} t^{n}\right)$, then

$$
\begin{equation*}
y_{p}=t^{s} e^{r t}\left(A_{0}+\cdots+A_{n} t^{n}\right) ; \tag{7}
\end{equation*}
$$

$s=\#$ of times $r$ appears in the list $r_{1}, \ldots, r_{n}$.

- If $g(t)=e^{\alpha t} \cos \beta t\left(a_{0}+\cdots+a_{n} t^{n}\right)+e^{\alpha t} \sin \beta t\left(b_{0}+\cdots+b_{m} t^{m}\right)$, then

$$
\begin{equation*}
y_{p}=t^{s} e^{\alpha t} \cos \beta t\left(A_{0}+\cdots+A_{k} t^{k}\right)+t^{s} e^{\alpha t} \sin \beta t\left(B_{0}+\cdots+B_{k} t^{k}\right) \tag{8}
\end{equation*}
$$

$s=\#$ of times $\alpha+\beta i$ appears in the list $r_{1}, \ldots, r_{n}$. Here $k$ equals the larger of $n, m$.

- If $g(t)$ is not of either type but can be written as $g_{1}+\cdots+g_{l}$ with each $g_{i}$ falling in one of the above two types, then obtain $y_{p_{i}}$ for each $g_{i}$ and write

$$
\begin{equation*}
y_{p}=y_{p 1}+\cdots+y_{p l} . \tag{9}
\end{equation*}
$$

3. Substitute $y_{p}$ obtained above into the equation to fix all the coefficients.
4. Write down the general solution. $y=C_{1} y_{1}+\cdots+C_{n} y_{n}+y_{p}$.
5. If initial value problem, use initial conditions to get $C_{1}, \ldots, C_{n}$.

- Power series method at ordinary points
- The method: (Lectures 16, 18, 19)

1. Identify $x_{0}$;
2. Write $y=$ power series;
3. Substitute into the equation;
4. Simplify; Shift indices where necessary;
5. Get recurrence relation;
6. Depending on the question asked, find a general formula for $a_{n}$, or compute $a_{n}$ one by one until satisfactory.

- Technical issues:
- Radius of convergence of general power series: (Lecture 17)

$$
\begin{equation*}
\rho^{-1}=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \tag{10}
\end{equation*}
$$

## when the limit exists.

- Lower bound of radius of convergence of solution without solving the equation:
$\rho \geqslant$ distance of $x_{0}$ to the nearest complex singular point of the equation.
- Ordinary and singular points: A point is singular for the equation (in standard form!)

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{12}
\end{equation*}
$$

if either $p$ or $q$ (or both) is not analytic at at this point; Otherwise it's called "ordinary".

- Checking analyticity. (Lecture 19)

1. $e^{x}, \sin x, \cos x$ and polynomials are analytic for all $x$; $\ln (x)$ is not analytic at 0.
2. If $f(x)$ is analytic at $x_{0}$ and $g(x)$ is analytic at $f\left(x_{0}\right)$, then the composite function $g(f(x))$ is analytic at $x_{0}$. For example, $e^{x^{2}}$ is analytic everywhere.
3. If $f(x)$ and $g(x)$ are both analytic at $x_{0}$, then $f \pm g$ and $f g$ are analytic at $x_{0}$;
4. If $f(x)$ and $g(x)$ are analytic at $x_{0}$ and $g\left(x_{0}\right) \neq 0$, then $\frac{f}{g}$ is analytic at $x_{0}$.

- Power series method at regular singular points (Frobenius method) (Lecture 21)
- Regular singular point: $x_{0}$ is "regular singular" point if
- $x_{0}$ is singular;
- $\quad\left(x-x_{0}\right) p(x)$ and $\left(x-x_{0}\right)^{2} q(x)$ are analytic at $x_{0}$.
- The method: Consider the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{13}
\end{equation*}
$$

at an regular singular point $x_{0}$. Let $\rho$ be no bigger than the radius of convergence of either $\left(x-x_{0}\right) p$ or $\left(x-x_{0}\right)^{2} q$. Let $r_{1}, r_{2}$ solve the indicial equation

$$
\begin{equation*}
r(r-1)+p_{0} r+q_{0}=0 . \tag{14}
\end{equation*}
$$

Then

1. If $r_{1}-r_{2}$ is not an integer, then the two linearly independent solutions are given by

$$
\begin{equation*}
y_{1}(x)=\left|x-x_{0}\right|^{r_{1}} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, \quad y_{2}(x)=\left|x-x_{0}\right|^{r_{2}} \sum_{n=0}^{\infty} \bar{a}_{n}\left(x-x_{0}\right)^{n} \tag{15}
\end{equation*}
$$

The coefficients $a_{n}$ and $\bar{a}_{n}$ should be determined through the recursive relation

$$
\begin{equation*}
\left[(n+r)(n+r-1)+(n+r) p_{0}+q_{0}\right] a_{n}+\sum_{m=0}^{n-1}\left[(m+r) p_{n-m}+q_{n-m}\right] a_{m}=0 \tag{16}
\end{equation*}
$$

2. If $r_{1}=r_{2}$, then $y_{1}$ is given by the same formula as above, and $y_{2}$ is of the form

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln \left|x-x_{0}\right|+\left|x-x_{0}\right|^{r_{1}} \sum_{n=1}^{\infty} d_{n}\left(x-x_{0}\right)^{n} \tag{17}
\end{equation*}
$$

3. If $r_{1}-r_{2}$ is an integer, then take $r_{1}$ to be the larger root (More precisely, when $r_{1}, r_{2}$ are both complex, take $r_{1}$ to be the one with larger real part, that is $\left.\operatorname{Re}\left(r_{1}\right) \geqslant \operatorname{Re}\left(r_{2}\right)\right)$. Then $y_{1}$ is still the same, while

$$
\begin{equation*}
y_{2}(x)=c y_{1}(x) \ln \left|x-x_{0}\right|+\left|x-x_{0}\right|^{r_{2}} \sum_{n=0}^{\infty} e_{n}\left(x-x_{0}\right)^{n} \tag{18}
\end{equation*}
$$

Note that $c$ may be 0 .

- Solving general 2nd order linear equations (Reduction of order, variation of parameters) (Lecture 12)
- Solve the corresponding homogeneous equation.
- If coefficients are constants, use formulas.
- If it's Euler equation, use formulas.
- Otherwise,

1. Find out one solution by guessing. Denote it as $y_{1}$.
2. Write the equation into standard form:

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{19}
\end{equation*}
$$

3. Obtain $y_{2}$ from the "reduction of order" formula:

$$
\begin{equation*}
y_{2}=y_{1} \int \frac{e^{-\int p}}{y_{1}^{2}} \tag{20}
\end{equation*}
$$

- Obtain the particular solution $y_{p}$ through

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2}, u_{1}=\int \frac{-y_{2} g}{W\left[y_{1}, y_{2}\right]}, u_{2}=\int \frac{y_{1} g}{W\left[y_{1}, y_{2}\right]} \tag{21}
\end{equation*}
$$

$W\left[y_{1}, y_{2}\right]=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is the Wronskian of $y_{1}, y_{2}$.

