Lecture 22 Laplace Transform

10/31/2011

One word about checking regular singular points.

- We should check analyticity of $\left(x-x_{0}\right) p$ and $\left(x-x_{0}\right)^{2} q$. For example,

$$
\begin{equation*}
y^{\prime \prime}+\frac{1}{x(x-1)^{2}} y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Here $p=\frac{1}{x(x-1)^{2}}, q=1$. Singular points are $x=0$ and $x=1$.

- Check whether $x=0$ is regular singular:

$$
\begin{equation*}
(x-0) p=\frac{1}{(x-1)^{2}} ; \quad(x-0)^{2} q=x^{2} \tag{2}
\end{equation*}
$$

Both analytic at 0 . So 0 is a regular singular point.

- Check whether $x=1$ is regular singular:

$$
\begin{equation*}
(x-1) p=\frac{1}{x(x-1)}, \quad(x-1)^{2} q=(x-1)^{2} \tag{3}
\end{equation*}
$$

We see that $(x-1) p$ is not analytic at $x=1$. So 1 is an irregular singular point.

Definition of Laplace transform.

Definition 1. Let $f(t)$ be a function on $[0, \infty)$. The Laplace transform of f is the function F defined by the integral

$$
\begin{equation*}
\mathcal{L}\{f\}(s):=F(s):=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t \tag{4}
\end{equation*}
$$

Remark 2. Here $\mathcal{L}\{f\}(s)$ and $F(s)$ are two different notations of the same thing. The former is usually used when dealing with specific functions, while the latter is advantageous in a more abstract setting, in particular when unknown functions are involved. For example, if we take Laplace transform of $y^{\prime \prime}+3 y^{\prime}+4 y=f(t)$ where f denotes a generic function, writing the result as

$$
\begin{equation*}
\left(s^{2}+3 s+4\right) Y=F+s y(0)+y^{\prime}(0)+3 y(0) \tag{5}
\end{equation*}
$$

is much more convenient than using $\mathcal{L}\{y\}(s)$ instead of $Y(s)$.
On the other hand, the latter notation cannot deal with denoting the transform of a specific function, such as $\sin 3 t$. While the first has no difficulty here.

Example 3. Compute the Laplace transform of the following functions.

$$
\begin{equation*}
f(t)=1, e^{a t}, t^{n}, \sin b t, \cos b t, e^{a t} t^{n}, e^{a t} \sin b t, e^{a t} \cos b t \tag{6}
\end{equation*}
$$

Solution.

1. $f(t)=1$. We compute

$$
\begin{equation*}
\mathcal{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} \mathrm{~d} t \tag{7}
\end{equation*}
$$

Clearly the integral is not finite for $s \leqslant 0$. For $s>0$, We have

$$
\begin{equation*}
\mathcal{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} \mathrm{~d} t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}=\frac{1}{s} . \tag{8}
\end{equation*}
$$

2. $f(t)=e^{a t}$. We compute

$$
\begin{equation*}
\mathcal{L}\{f\}(s)=\int_{0}^{\infty} e^{a t} e^{-s t} \mathrm{~d} t=\int_{0}^{\infty} e^{(a-s) t} \mathrm{~d} t=\frac{1}{s-a} \tag{9}
\end{equation*}
$$

The domain is $s>a$.
3. $f(t)=t^{n}, n=1,2, \ldots$. Clearly we need to require $s>0$, otherwise the integral is not finite. Compute

$$
\begin{align*}
\mathcal{L}\left\{t^{n}\right\}(s) & =\int_{0}^{\infty} t^{n} e^{-s t} \mathrm{~d} t \\
& =-\frac{1}{s} \int_{0}^{\infty} t^{n} \mathrm{~d} e^{-s t} \\
& =-\left.\frac{1}{s} t^{n} e^{-s t}\right|_{0} ^{\infty}+\frac{1}{s} \int e^{-s t} \mathrm{~d} t^{n} \\
& =\frac{n}{s} \int t^{n-1} e^{-s t} \mathrm{~d} t \\
& =\frac{n}{s} \mathcal{L}\left\{t^{n-1}\right\}(s) \tag{10}
\end{align*}
$$

Replacing n by $n-1$ we have

$$
\begin{equation*}
\mathcal{L}\left\{t^{n-1}\right\}(s)=\frac{n-1}{s} \mathcal{L}\left\{t^{n-2}\right\}(s) \tag{11}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\mathcal{L}\left\{t^{n}\right\}(s)=\frac{n}{s} \mathcal{L}\left\{t^{n-1}\right\}(s)=\frac{n(n-1)}{s^{2}} \mathcal{L}\left\{t^{n-2}\right\}(s)=\cdots=\frac{n!}{s^{n}} \mathcal{L}\left\{t^{0}\right\}(s)=\frac{n!}{s^{n+1}} . \tag{12}
\end{equation*}
$$

The domain is $s>0$.
4. $f(t)=\sin b t$. Again we need to require $s>0$ as otherwise the integral does not exist. We compute

$$
\begin{align*}
\mathcal{L}\{\sin b t\}(s) & =\int_{0}^{\infty} \sin b t e^{-s t} \mathrm{~d} t \\
& =-\frac{1}{s} \int_{0}^{\infty} \sin b t \mathrm{~d} e^{-s t} \\
& =-\left.\frac{1}{s} \sin b t e^{-s t}\right|_{0} ^{\infty}+\frac{1}{s} \int e^{-s t} \mathrm{~d} \sin b t \\
& =0+\frac{b}{s} \int e^{-s t} \cos b t \mathrm{~d} t \\
& =-\frac{b}{s^{2}} \int \cos b t \mathrm{~d} e^{-s t} \\
& =-\frac{b}{s^{2}}\left[\left.\cos b t e^{-s t}\right|_{0} ^{\infty}-\int e^{-s t} \mathrm{~d} \cos b t\right] \\
& =-\frac{b}{s^{2}}\left[-1+b \int e^{-s t} \sin b t\right] \\
& =\frac{b}{s^{2}}-\frac{b^{2}}{s^{2}} \mathcal{L}\{\sin b t\}(s) \tag{13}
\end{align*}
$$

This gives

$$
\begin{equation*}
\mathcal{L}\{\sin b t\}(s)=\frac{b}{s^{2}+b^{2}}, \quad s>0 \tag{14}
\end{equation*}
$$

5. $f(t)=\cos b t$. We can proceed similarly. But a quicker way is to notice that in the calculation of $\mathcal{L}\{\sin b t\}(s)$ we already obtain

$$
\begin{equation*}
\mathcal{L}\{\sin b t\}(s)=\frac{b}{s} \int e^{-s t} \cos b t \mathrm{~d} t=\frac{b}{s} \mathcal{L}\{\cos b t\}(s) \tag{15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathcal{L}\{\cos b t\}(s)=\frac{s}{s^{2}+b^{2}}, \quad s>0 \tag{16}
\end{equation*}
$$

6. $f(t)=e^{a t} t^{n}, n=1,2, \ldots$ We can compute using definition, but a quicker way is to notice that

$$
\begin{equation*}
\mathcal{L}\left\{e^{a t} t^{n}\right\}(s)=\int_{0}^{\infty} e^{-(s-a) t} t^{n} \mathrm{~d} t \tag{17}
\end{equation*}
$$

This is exactly the formula for $\mathcal{L}\left\{t^{n}\right\}$ with s replaced by $s-a$. Replacing every s by $s-a$ in the t^{n} case, we have

$$
\begin{equation*}
\mathcal{L}\left\{e^{a t} t^{n}\right\}(s)=\mathcal{L}\left\{t^{n}\right\}(s-a)=\frac{n!}{(s-a)^{n+1}} \tag{18}
\end{equation*}
$$

Naturally, the domain changes from $s>0$ to $s-a>0$, or $s>a$.
7. $f(t)=e^{a t} \sin b t$. Similarly, we conclude
with domain $s>a$.

$$
\begin{equation*}
\mathcal{L}\left\{e^{a t} \sin b t\right\}(s)=\mathcal{L}\{\sin b t\}(s-a)=\frac{b}{(s-a)^{2}+b^{2}} \tag{19}
\end{equation*}
$$

8. $f(t)=e^{a t} \cos b t$. Similarly we obtain

$$
\begin{equation*}
\mathcal{L}\left\{e^{a t} \cos b t\right\}=\frac{s}{(s-a)^{2}+b^{2}} \tag{20}
\end{equation*}
$$

Remark 4. In the above calculation we have done many integration by parts and have thrown away all the boundary terms are $t=\infty$. Clearly this is not OK for all values of s. The set of s where such operation is OK is called the "domain" of the transformed function. So for example, rigorously speaking, the Laplace transform of the function t is

$$
\begin{equation*}
\frac{1}{s^{2}} \text { in the domain } s>0 \tag{21}
\end{equation*}
$$

The following theorem gives us a way to determine the domain without calculating the integrals.
Theorem 5. If $|f| \leqslant K e^{a t}$ for all t, then $\mathcal{L}\{f\}(s)$ is defined for $s>a$. Or equivalently, the domain of $\mathcal{L}\{f\}$ contains the set $s>a$.

In practice we have to figure out precisely the set of a such that the relation is true.
Example 6. What is the domain for $\mathcal{L}\left\{t^{3} \sin t\right\}$.
The key is to figure out all a 's such that

$$
\begin{equation*}
\left|t^{3} \sin t\right| \leqslant K e^{a t} \tag{22}
\end{equation*}
$$

is true for some constant K. We know that any $a>0$ would do. On the other hand, notice that the left hand side is unbounded as $t \nearrow \infty$, while the right hand side remains bounded if $a \leqslant 0$, we conclude that any $a \leqslant 0$ does not work. Therefore the domain is the union of all $s>a$ for all $a>0$, which is $s>0$.

Properties of Laplace transform.

- Linearity. Let a, b be constants. Then

$$
\begin{equation*}
\mathcal{L}\{a f+b g\}=a \mathcal{L}\{f\}+b \mathcal{L}\{g\} \tag{23}
\end{equation*}
$$

- Transform of derivatives. We have

$$
\begin{equation*}
\mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}(f)(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0) \tag{24}
\end{equation*}
$$

We will see this is the key of the power of Laplace transform method.

- Transform of products. There is a way to obtain $\mathcal{L}\{f g\}$ using $\mathcal{L}\{f\}$ and $\mathcal{L}\{g\}$ but it involves much calculation. However when one of f, g is $e^{a t}$ or t^{n}, we have the following:
- $\mathcal{L}\left\{e^{a t} f\right\}=F(s-a)$. Here $F(s)=\mathcal{L}\{f\}(s)$.

For example, to compute $\mathcal{L}\left\{e^{a t} t^{n}\right\}$, we identify

$$
\begin{equation*}
f(t)=t^{n} \Longrightarrow F(s)=\frac{n!}{s^{n+1}} \tag{25}
\end{equation*}
$$

So

$$
\begin{equation*}
\mathcal{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} \tag{26}
\end{equation*}
$$

- $\mathcal{L}\left\{t^{n} f\right\}=(-1)^{n} \frac{\mathrm{~d}^{n}}{\mathrm{~d} s^{n}} F(s)$. Again $F(s)=\mathcal{L}\{f\}(s)$.

For example, we can compute $\mathcal{L}\left\{t^{n}\right\}$ through identifying $f=1 \Longrightarrow F(s)=\frac{1}{s}$. So

$$
\begin{equation*}
\mathcal{L}\left\{t^{n}\right\}=(-1)^{n} \frac{\mathrm{~d}^{n}}{\mathrm{~d} s^{n}}\left(\frac{1}{s}\right)=(-1)^{n}(-1)^{n} n!s^{-(n+1)}=\frac{n!}{s^{n+1}} \tag{27}
\end{equation*}
$$

