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One word about checking regular singular points.

• We should check analyticity of (x− x0) p and (x−x0)2 q. For example,

y ′′+
1

x (x− 1)2
y ′+ y =0. (1)

Here p =
1

x (x − 1)2
, q = 1. Singular points are x = 0 and x= 1.

◦ Check whether x =0 is regular singular:

(x− 0) p =
1

(x− 1)2
; (x− 0)2 q = x2. (2)

Both analytic at 0. So 0 is a regular singular point.

◦ Check whether x =1 is regular singular:

(x− 1) p =
1

x (x− 1)
, (x− 1)2 q = (x− 1)2. (3)

We see that (x− 1) p is not analytic at x= 1. So 1 is an irregular singular point.

Definition of Laplace transform.

Definition 1. Let f(t) be a function on [0, ∞). The Laplace transform of f is the function F defined by

the integral

L{f }(s)6 F (s)6 ∫

0

∞

e−st f(t) dt. (4)

Remark 2. Here L{f }(s) and F (s) are two different notations of the same thing. The former is usually used
when dealing with specific functions, while the latter is advantageous in a more abstract setting, in particular
when unknown functions are involved. For example, if we take Laplace transform of y ′′ + 3 y ′ + 4 y = f(t)
where f denotes a generic function, writing the result as

(s2 + 3 s + 4) Y =F + s y(0)+ y ′(0)+ 3 y(0) (5)

is much more convenient than using L{y}(s) instead of Y (s).
On the other hand, the latter notation cannot deal with denoting the transform of a specific function,

such as sin 3 t. While the first has no difficulty here.

Example 3. Compute the Laplace transform of the following functions.

f(t)= 1, eat, tn, sin b t, cos b t, eat tn, eat sin b t, eat cos b t. (6)

Solution.

1. f(t)= 1. We compute

L{f }(s) =

∫

0

∞

e−st dt. (7)

Clearly the integral is not finite for s 6 0. For s > 0, We have

L{f }(s) =

∫

0

∞

e−st dt =−
1

s
e−stN 0∞=

1

s
. (8)

2. f(t)= eat. We compute

L{f }(s)=

∫

0

∞

eat e−st dt =

∫

0

∞

e(a−s)t dt =
1

s− a
. (9)
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The domain is s > a.

3. f(t)= tn, n = 1, 2,	 . Clearly we need to require s > 0, otherwise the integral is not finite.
Compute

L{tn}(s) =

∫

0

∞

tn e−st dt

= −
1

s

∫

0

∞

tn de−st

= −
1

s
tn e−stN 0∞+

1

s

∫

e−st dtn

=
n

s

∫

tn−1 e−st dt

=
n

s
L{tn−1}(s). (10)

Replacing n by n− 1 we have

L{tn−1}(s)=
n− 1

s
L{tn−2}(s). (11)

Thus we have

L{tn}(s)=
n

s
L{tn−1}(s)=

n (n− 1)

s2
L{tn−2}(s) =
 =

n!

sn
L{t0}(s)=

n!

sn+1 . (12)

The domain is s > 0.

4. f(t)= sin b t. Again we need to require s > 0 as otherwise the integral does not exist. We compute

L{sin b t}(s) =

∫

0

∞

sin b t e−st dt

= −
1

s

∫

0

∞

sin b t de−st

= −
1

s
sin b t e−stN 0∞+

1

s

∫

e−st dsin b t

= 0 +
b

s

∫

e−st cos b t dt

= −
b

s2

∫

cos b t de−st

= −
b

s2

[

cos b t e−stN 0∞−

∫

e−st dcos b t

]

= −
b

s2

[

−1 + b

∫

e−st sin b t

]

=
b

s2
−

b2

s2
L{sin b t}(s). (13)

This gives

L{sin b t}(s) =
b

s2 + b2
, s > 0. (14)

5. f(t) = cos b t. We can proceed similarly. But a quicker way is to notice that in the calculation of
L{sin b t}(s) we already obtain

L{sin b t}(s)=
b

s

∫

e−st cos b t dt =
b

s
L{cos b t}(s). (15)

Thus

L{cos b t}(s)=
s

s2 + b2
, s > 0. (16)

6. f(t)= eat tn, n =1, 2,	 We can compute using definition, but a quicker way is to notice that

L{eat tn}(s) =

∫

0

∞

e−(s−a)t tn dt. (17)
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This is exactly the formula for L{tn} with s replaced by s− a. Replacing every s by s− a in the tn

case, we have

L{eat tn}(s)=L{tn}(s− a) =
n!

(s− a)n+1 . (18)

Naturally, the domain changes from s > 0 to s− a > 0, or s > a.

7. f(t)= eat sin b t. Similarly, we conclude

L{eat sin b t}(s)=L{sin b t}(s− a)=
b

(s− a)2 + b2
(19)

with domain s > a.

8. f(t)= eat cos b t. Similarly we obtain

L{eat cos b t}=
s

(s− a)2 + b2
. (20)

Remark 4. In the above calculation we have done many integration by parts and have thrown away all
the boundary terms are t=∞. Clearly this is not OK for all values of s. The set of s where such operation
is OK is called the “domain” of the transformed function. So for example, rigorously speaking, the Laplace
transform of the function t is

1

s2
in the domain s > 0. (21)

The following theorem gives us a way to determine the domain without calculating the integrals.

Theorem 5. If |f |6K eat for all t, then L{f }(s) is defined for s>a. Or equivalently, the domain of L{f }
contains the set s > a.

In practice we have to figure out precisely the set of a such that the relation is true.

Example 6. What is the domain for L{t3 sin t}.
The key is to figure out all a’s such that

|t3 sin t|6K eat (22)

is true for some constant K. We know that any a>0 would do. On the other hand, notice that the left hand
side is unbounded as tր∞, while the right hand side remains bounded if a6 0, we conclude that any a6 0
does not work. Therefore the domain is the union of all s > a for all a > 0, which is s > 0.

Properties of Laplace transform.

• Linearity. Let a, b be constants. Then

L{a f + b g}= aL{f }+ bL{g}. (23)

• Transform of derivatives. We have

L
{

f (n)
}

(s) = snL(f)(s)− sn−1 f(0)− sn−2 f ′(0)−
 − f (n−1)(0). (24)

We will see this is the key of the power of Laplace transform method.

• Transform of products. There is a way to obtain L{f g} using L{f } and L{g} but it involves much
calculation. However when one of f , g is eat or tn, we have the following:

◦ L{eat f }= F (s− a). Here F (s)=L{f }(s).
For example, to compute L{eat tn}, we identify

f(t)= tn� F (s)=
n!

sn+1 . (25)

So

L{eat tn}=
n!

(s− a)n+1 . (26)

◦ L{tn f }=(−1)n dn

dsn
F (s). Again F (s)=L{f }(s).

For example, we can compute L{tn} through identifying f = 1� F (s) =
1

s
. So

L{tn}= (−1)n
dn

dsn

(

1

s

)

= (−1)n(−1)n n! s−(n+1) =
n!

sn+1
. (27)
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