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Review.

Power series method for solving

y ′′+ p(x) y ′+ q(x) y =0 (1)

Write

y =
∑

n=0

∞

an (x−x0)
n (2)

and substitute into the equation.
The method works (meaning: finds the general solution) if all solutions to the equation are analytic at

x0. This is guaranteed by p, q being analytic at x0. Therefore the definition:

• x0 is said to be an ordinary point for the equation y ′′ + p(x) y ′ + q(x) y = 0 if both p, q are analytic
at x0. Otherwise x0 is said to be singular.

So the methods we used so far works at ordinary points. Furthermore we can determine the following lower
bound for the power series solution before actually finding out an’s:

The radius of convergence is at least the distance from x0 to the nearest singular point in C.

Rules for checking analyticity:

1. ex, sinx, cosx and polynomials are analytic for all x;
ln (x) is not analytic at 0.

2. If f(x) is analytic at x0 and g(x) is analytic at f(x0), then the composite function g(f(x)) is analytic

at x0. For example, ex2

is analytic everywhere.

3. If f(x) and g(x) are both analytic at x0, then f ± g and f g are analytic at x0;

4. If f(x) and g(x) are analytic at x0 and g(x0)� 0, then
f

g
is analytic at x0.

Remark 1. Even if g(x0)= 0, f/g may still be analytic. See example below.

Remark 2. It’s quite hard to prove a function f(x) is not analytic at a certain point. However in most
situations the following rule is enough:

f(x) is not analytic at x0 if f (n)(x0) is infinity for some n.

Example 3. ex3

is analytic everywhere because it’s a composite function g(f(x)) with g = ex, f = x3, both
g, f are analytic everywhere.

Example 4.
1

1+ x2
is of the form f/g with f = 1, g =1 +x2. Both are polynomials so analytic everywhere.

As 1+ x2 =0 only at ±i, we know that
1

1+ x2
is analytic at all x� ±i.

At ±i we notice that
1

1+ x2
becomes infinity and therefore is not analytic there.

Example 5.
x3

sin x −x
is analytic at x=0 despite sinx−x=0 there. To see why, expand sinx=x−

x3

6
+
 thus

x3

sinx−x
=

x3

−
x3

6
+
 =

1

−
1

6
+

x2

5!
−
 . (3)

Now the new ratio, after cancelling the common factor x3, is still of the form f/g with f =1, g=−
1

6
+

x2

5!
−
 .

It can be shown that both f , g are analytic everywhere. As g � 0 at 0, the ratio is analytic at 0.

Remark 6. Remembering Taylor expansions.

• ex: No other way but just remember it.
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• cos x, sinx: use the fact
∑

n=0

∞

(i x)n

n!
= eix = cos x+ i sin x (4)

• ln (1±x): Use the fact

ln (1− x) =

∫

1

1− x
=

∫

∑

n=0

∞

xn. (5)

ln (1 +x)= ln (1− (−x)).

Power series method at singular points.

Consider solving

x2 y ′′+x y ′+ y = 0 (6)

by writing

y =
∑

n=0

∞

an xn. (7)

Substitute into the equation we get

x2

(

∑

n=2

∞

an n (n− 1) xn−2

)

+x

(

∑

n=1

∞

an n xn−1

)

+
∑

n=0

∞

an xn = 0� ∑

n=2

∞

an n (n− 1)xn +
∑

n=1

∞

an nxn +
∑

n=0

∞

an xn =0� a0 +2 a1 x +
∑

n=2

∞

(n2 +1) an xn = 0� a0 = a1 =
 = an =
 = 0. (8)

The reason is that, at a singular point, not all solutions are analytic. So the ansatz y =
∑

n=0
∞

an xn

cannot “catch” those solutions.
Fortunately this equation is a special case of the so-called “Euler equations” which can be solved.

Euler equations.

a, b, c constants,

a x2 y ′′+ b x y ′+ c y =0. (9)

To solve it, guess y = xr. Substitute into the equation we get the characteristic (indicial) equation

a r (r − 1)+ b r + c = 0. (10)

This equation has two roots:

• r1� r2, both real. Then

y =C1 xr1 +C2 xr2; (11)

• r1 = r2 = r. Then

y =C1 xr + C2 xr lnx. (12)

• r1,2 = α± i β, then

y =C1 xα cos (β lnx)+ C2 xα sin (β lnx). (13)

Thus for our equation

x2 y ′′+ x y ′+ y =0 (14)

we get r1,2 =±i so α = 0, β = 1 which gives

y = C1 cos (lnx)+ C2 sin (lnx). (15)

Such solutions are not analytic at 0 unless C1 = C2 =0.

Regular singular points.
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It turns out that, if the equation y ′′+ p(x) y ′+ q(x) y =0 are no more singular than the Euler equation,
then the solutions are not analytic only by a factor xr (with possible ln x).1 This leads to the following
definition:

• x0 is “regular singular” point if

◦ x0 is singular;

◦ (x− x0) p(x) and (x−x0)
2 q(x) are analytic at x0.

Warning. In p.274 of the textbook, there are two formulas (29), (30) which claim that x0 is regular singular
if

lim
x→x0

(x−x0) p(x), lim
x→x0

(x− x0)2 q(x) (16)

are finite. This is only true when p, q are ratios of polynomials. This restriction is only implicitly
mentioned in the textbook. So don’t take (29),(30) out of context and use them to justify your claims.

1. cos (β lnx)+ i sin (β lnx) = eiβ ln x = xiβ.
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