LECTURE 19 POWER SERIES METHOD (CONT.)

10/24/2011

An Example.

Find first four nonzero terms of y_1, y_2 of

$$e^x y'' + x y = 0 \tag{1}$$

Solution. We write

$$y = \sum_{n=0}^{\infty} a_n x^n \tag{2}$$

Substitute into equation we get

$$e^{x} \sum_{n=0}^{\infty} a_{n} x^{n} + x \sum_{n=0}^{\infty} a_{n} x^{n} = 0.$$
 (3)

Now it is clear that we have to expand e^x too.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
 (4)

which makes the equation

$$\left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} a_n x^n\right)'' + x \sum_{n=0}^{\infty} a_n x^n = 0.$$
 (5)

However, as there is in general no good way of writing simple formulas for coefficients of the result of a product of power series, we cannot expect to write down a simple recurrence relation. Realizing that all we need is four nonzero terms, we try to work things out in a more ad hoc way – writing down a few terms for each power series involved.

• Finding y_1 . Set $a_0 = 1$, $a_1 = 0$. To get four nonzero terms, we have to compute at least up to a_4 . The lowest order term in which a_4 appears is $1 \cdot 12 \, a_4 \, x^2$, so we have to balance the equation

$$\left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} a_n x^n\right)^n + x \sum_{n=0}^{\infty} a_n x^n = 0.$$
 (6)

to at least x^2 term. To do this recall: To get correct coefficients of x^k in $(\sum_{n=0}^{\infty} a_n x^n)$ $(\sum_{n=0}^{\infty} b_n x^n)$, we have to expand each series up to x^k . So we write

$$\left(1 + x + \frac{x^2}{2} + \cdots\right) \left(2 a_2 + 6 a_3 x + 12 a_4 x^2 + \cdots\right) + x + \cdots = 0$$
(7)

and conclude

$$2a_2 = 0,$$
 (8)

$$2a_2 + 6a_3 + 1 = 0, (9)$$

$$a_2 + 6 a_3 + 12 a_4 = 0. (10)$$

This gives

$$a_2 = 0, \quad a_3 = -\frac{1}{6}, \quad a_4 = \frac{1}{12}.$$
 (11)

We still need one more nonzero a_n . We compute a_5 by expanding the series one more term:

$$\left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots\right) \left(2 a_2 + 6 a_3 x + 12 a_4 x^2 + 20 a_5 x^3 + \cdots\right) + x + a_2 x^3 + \cdots = 0.$$
(12)

The x^3 balance is (note that the $1, x, x^2$ balances have already been computed, x^3 is the only thing new):

$$\frac{a_2}{3} + 3 a_3 + 12 a_4 + 20 a_5 + a_2 = 0 (13)$$

which gives $a_5 = -\frac{1}{40}$. As $a_5 \neq 0$ we have enough nonzero terms now:

$$y_1(x) = 1 - \frac{1}{6}x^3 + \frac{1}{12}x^4 - \frac{1}{40}x^5 + \cdots$$
 (14)

Finding y_2 . Setting $a_0 = 0$, $a_1 = 1$ we have

$$\left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots\right) \left(2 a_2 + 6 a_3 x + 12 a_4 x^2 + 20 a_5 x^3 + \cdots\right) + x^2 + a_2 x^3 + \cdots = 0.$$
(15)

Carrying out the multiplication, we have

$$2 a_2 + (2 a_2 + 6 a_3) x + (a_2 + 6 a_3 + 12 a_4 + 1) x^2 + \left(\frac{a_2}{3} + 3 a_3 + 12 a_4 + 20 a_5 + a_2\right) x^3 + \dots = 0.$$
 (16)

The recurrence relations are

$$2a_2 = 0,$$
 (17)

$$2a_2 + 6a_3 = 0, (18)$$

$$a_2 + 6 a_3 + 12 a_4 + 1 = 0, (19)$$

$$a_2 + 6 a_3 + 12 a_4 + 1 = 0,$$

$$\frac{a_2}{3} + 3 a_3 + 12 a_4 + 20 a_5 + a_2 = 0,$$
(19)

which give

$$a_2 = 0; \quad a_3 = 0; \quad a_4 = -\frac{1}{12}; \quad a_5 = \frac{1}{20}.$$
 (21)

Thus

$$y_2 = x - \frac{1}{12}x^4 + \frac{1}{20}x^5 + \cdots$$
 (22)

We only have 3 nonzero terms!

Finding the 4th term.

To find the 4th term, we need to expand everything to higher power. Let's try expanding to x^4 :

$$\left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} \cdots\right) \left(2 a_2 + 6 a_3 x + 12 a_4 x^2 + 20 a_5 x^3 + 30 a_6 x^4 \cdots\right) + x^2 + a_2 x^3 + a_3 x^4 \cdots = 0.$$
(23)

This gives a new recurrence relation via setting coefficients of x^4 to be 0:

$$\frac{a_2}{12} + a_3 + 6 a_4 + 20 a_5 + 30 a_6 + a_3 = 0. (24)$$

We obtain

$$a_6 = -\frac{1}{60}. (25)$$

The updated y_2 is now

$$y_2(x) = x - \frac{1}{12}x^4 + \frac{1}{20}x^5 - \frac{1}{60}x^6 + \cdots$$
 (26)

Now we have 4 nonzero terms.

Remark 1. Note that y_1 solves the equation with initial values y(0) = 1, y'(0) = 0 and y_2 solves the equation with y(0) = 0, y'(0) = 1.

Regular points and singular points.

Turns out that we can find out a lower bound of the radius of convergence for power series solutions without actually solving the equation. To do this we have to first write the equation into its standard form

$$y'' + p(x) y' + q(x) y = 0. (27)$$

Theorem 2. The radius of convergence ρ for the power series solution satisfies

$$\rho \geqslant \min\left(\rho_1, \rho_2\right) \tag{28}$$

10/24/2011 3

where ρ_1, ρ_2 is determined through

$$p(x) = \sum_{n=0}^{\infty} p_n (x - x_0)^n \quad \text{for } |x - x_0| < \rho_1;$$
 (29)

$$q(x) = \sum_{n=0}^{\infty} q_n (x - x_0)^n \qquad \text{for } |x - x_0| < \rho_2.$$
 (30)

Remark 3. Note that ρ_1, ρ_2 may not be the radii of convergence for the Taylor expansion of p and q. For example, the Taylor expansion of $e^{-\frac{1}{x^2}}$ at $x_0 = 0$ has radius of convergence ∞ , but the function equals its Taylor expansion only at x_0 and nowhere else.

• Often the following theorem is even easier to use:

Theorem 4. The radius of convergence for the power series solution satisfies

$$\rho \geqslant distance \ of \ x_0 \ to \ the \ nearest \ complex \ singular \ point \ of \ the \ equation.$$
 (31)

To be able to apply this we need the following notions:

• A point is singular for the equation (in standard form!)

$$y'' + p(x) y' + q(x) y = 0 (32)$$

if either p or q (or both) is not analytic at at this point; Otherwise it's called "regular".

• A function f(x) is analytic at a point x_0 if there is a sequence a_n and a number $\rho > 0$ such that

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (33)

holds $|x - x_0| < \rho$.

Remark 5. The function $e^{-\frac{1}{x^2}}$ is a typical example illustrating the following subtle fact: f is analytic at x_0 is **not the same** as "The Taylor expansion of f at x_0 has positive radius of convergence".

How to tell?

From the above remark we see that it's not possible to tell whether f(x) is analytic at a certain point x_0 from looking at its Taylor expansion. Then how to? In theory we have to do the following:

- 1. Compute its Taylor expansion at x_0 ;
- 2. Show

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (34)

holds $|x - x_0| < \rho$ for some positive ρ .

The second step, of course is totally ad hoc and can be very difficult.

Fortunately that are several "rules of thumb" which are enough for this class.

- 1. e^x , $\sin x$, $\cos x$ and polynomials are analytic for all x; $\ln(1+x)$ is analytic for |x|<1.
- 2. If f(x) is analytic at x_0 and g(x) is analytic at $f(x_0)$, then the composite function g(f(x)) is analytic at x_0 . For example, e^{x^2} is analytic everywhere.
- 3. If f(x) and g(x) are both analytic at x_0 , then $f \pm g$ and fg are analytic at x_0 ;
- 4. If f(x) and g(x) are analytic at x_0 and $g(x_0) \neq 0$, then $\frac{f}{g}$ is analytic at x_0 .