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An Example.

Find first four nonzero terms of y1, y2 of

ex y ′′+ x y = 0 (1)

Solution. We write

y =
∑

n=0

∞

an xn (2)

Substitute into equation we get

ex
∑

n=0

∞

an xn +x
∑

n=0

∞

an xn =0. (3)

Now it is clear that we have to expand ex too.

ex =
∑

n=0

∞

xn

n!
. (4)

which makes the equation
(

∑

n=0

∞

xn

n!

)(

∑

n=0

∞

an xn

)

′′

+ x
∑

n=0

∞

an xn = 0. (5)

However, as there is in general no good way of writing simple formulas for coefficients of the result of a
product of power series, we cannot expect to write down a simple recurrence relation. Realizing that all we
need is four nonzero terms, we try to work things out in a more ad hoc way – writing down a few terms for
each power series involved.

• Finding y1. Set a0 =1, a1 =0. To get four nonzero terms, we have to compute at least up to a4. The
lowest order term in which a4 appears is 1 · 12 a4 x2, so we have to balance the equation

(

∑

n=0

∞

xn

n!

)(

∑

n=0

∞

an xn

)

′′

+ x
∑

n=0

∞

an xn = 0. (6)

to at least x2 term. To do this recall: To get correct coefficients of xk in (
∑

n=0

∞

an xn) (
∑

n=0

∞

bn xn),
we have to expand each series up to xk. So we write

(

1+ x+
x2

2
+
 )(2 a2 +6 a3 x + 12 a4 x2 +
 )+ x +
 = 0 (7)

and conclude

2 a2 = 0, (8)

2 a2 + 6 a3 +1 = 0, (9)

a2 + 6 a3 + 12 a4 = 0. (10)

This gives

a2 = 0, a3 =−
1

6
, a4 =

1

12
. (11)

We still need one more nonzero an. We compute a5 by expanding the series one more term:
(

1 +x +
x2

2
+

x3

6
+
 )(2 a2 + 6 a3 x+ 12 a4 x2 + 20 a5 x3 +
 ) +x + a2 x3 +
 = 0. (12)

The x3 balance is (note that the 1, x, x2 balances have already been computed, x3 is the only thing
new):

a2

3
+ 3 a3 + 12 a4 + 20 a5 + a2 =0 (13)

1



which gives a5 =−
1

40
. As a5� 0 we have enough nonzero terms now:

y1(x) =1−
1

6
x3 +

1

12
x4−

1

40
x5 +
 (14)

• Finding y2. Setting a0 = 0, a1 =1 we have
(

1 + x+
x2

2
+

x3

6
+
 )(2 a2 +6 a3 x + 12 a4 x2 + 20 a5 x3 +
 )+ x2 + a2 x3 +
 = 0. (15)

Carrying out the multiplication, we have

2 a2 +(2 a2 +6 a3)x + (a2 + 6 a3 + 12 a4 +1)x2 +
(

a2

3
+ 3 a3 + 12 a4 + 20 a5 + a2

)

x3 +
 = 0. (16)

The recurrence relations are

2 a2 = 0, (17)

2 a2 + 6 a3 = 0, (18)

a2 + 6 a3 + 12 a4 + 1 = 0, (19)
a2

3
+ 3 a3 + 12 a4 + 20 a5 + a2 = 0, (20)

which give

a2 =0; a3 =0; a4 =−
1

12
; a5 =

1

20
. (21)

Thus

y2 = x−
1

12
x4 +

1

20
x5 +
 (22)

We only have 3 nonzero terms!

• Finding the 4th term.
To find the 4th term, we need to expand everything to higher power. Let’s try expanding to x4:

(

1 + x +
x2

2
+

x3

6
+

x4

24

 ) (2 a2 + 6 a3 x + 12 a4 x2 + 20 a5 x3 + 30 a6 x4
 ) + x2 + a2 x3 + a3 x4
 =

0. (23)

This gives a new recurrence relation via setting coefficients of x4 to be 0:

a2

12
+ a3 + 6 a4 + 20 a5 + 30 a6 + a3 = 0. (24)

We obtain

a6 =−
1

60
. (25)

The updated y2 is now

y2(x)= x−
1

12
x4 +

1

20
x5−

1

60
x6 +
 (26)

Now we have 4 nonzero terms.

Remark 1. Note that y1 solves the equation with initial values y(0)=1, y ′(0)=0 and y2 solves the equation
with y(0) =0, y ′(0) =1.

Regular points and singular points.

• Turns out that we can find out a lower bound of the radius of convergence for power series solutions
without actually solving the equation. To do this we have to first write the equation into its standard
form

y ′′+ p(x) y ′+ q(x) y = 0. (27)

Theorem 2. The radius of convergence ρ for the power series solution satisfies

ρ >min (ρ1, ρ2) (28)
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where ρ1, ρ2 is determined through

p(x)=
∑

n=0

∞

pn (x−x0)n for |x− x0|< ρ1; (29)

q(x) =
∑

n=0

∞

qn (x− x0)
n for |x−x0|< ρ2. (30)

Remark 3. Note that ρ1, ρ2 may not be the radii of convergence for the Taylor expansion of p and

q. For example, the Taylor expansion of e
−

1

x
2 at x0=0 has radius of convergence ∞, but the function

equals its Taylor expansion only at x0 and nowhere else.

• Often the following theorem is even easier to use:

Theorem 4. The radius of convergence for the power series solution satisfies

ρ> distance of x0 to the nearest complex singular point of the equation. (31)

To be able to apply this we need the following notions:

◦ A point is singular for the equation (in standard form!)

y ′′+ p(x) y ′+ q(x) y = 0 (32)

if either p or q (or both) is not analytic at at this point; Otherwise it’s called “regular”.

◦ A function f(x) is analytic at a point x0 if there is a sequence an and a number ρ>0 such that

f(x) =
∑

n=0

∞

an (x− x0)
n (33)

holds |x− x0|< ρ.

Remark 5. The function e
−

1

x
2 is a typical example illustrating the following subtle fact: f is analytic

at x0 is not the same as “The Taylor expansion of f at x0 has positive radius of convergence”.

• How to tell?
From the above remark we see that it’s not possible to tell whether f(x) is analytic at a certain

point x0 from looking at its Taylor expansion. Then how to? In theory we have to do the following:

1. Compute its Taylor expansion at x0;

2. Show

f(x) =
∑

n=0

∞

an (x− x0)
n (34)

holds |x− x0|< ρ for some positive ρ.

The second step, of course is totally ad hoc and can be very difficult.
Fortunately that are several “rules of thumb” which are enough for this class.

1. ex, sinx, cosx and polynomials are analytic for all x; ln (1+ x) is analytic for |x|< 1.

2. If f(x) is analytic at x0 and g(x) is analytic at f(x0), then the composite function g(f(x)) is

analytic at x0. For example, ex2

is analytic everywhere.

3. If f(x) and g(x) are both analytic at x0, then f ± g and f g are analytic at x0;

4. If f(x) and g(x) are analytic at x0 and g(x0)� 0, then
f

g
is analytic at x0.
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