Lecture 19 Power Series Method (Cont.)

$10 / 24 / 2011$

An Example.

Find first four nonzero terms of y_{1}, y_{2} of

$$
\begin{equation*}
e^{x} y^{\prime \prime}+x y=0 \tag{1}
\end{equation*}
$$

Solution. We write

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{2}
\end{equation*}
$$

Substitute into equation we get

$$
\begin{equation*}
e^{x} \sum_{n=0}^{\infty} a_{n} x^{n}+x \sum_{n=0}^{\infty} a_{n} x^{n}=0 \tag{3}
\end{equation*}
$$

Now it is clear that we have to expand e^{x} too.
which makes the equation

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}+x \sum_{n=0}^{\infty} a_{n} x^{n}=0 \tag{5}
\end{equation*}
$$

However, as there is in general no good way of writing simple formulas for coefficients of the result of a product of power series, we cannot expect to write down a simple recurrence relation. Realizing that all we need is four nonzero terms, we try to work things out in a more ad hoc way - writing down a few terms for each power series involved.

- Finding y_{1}. Set $a_{0}=1, a_{1}=0$. To get four nonzero terms, we have to compute at least up to a_{4}. The lowest order term in which a_{4} appears is $1 \cdot 12 a_{4} x^{2}$, so we have to balance the equation

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}+x \sum_{n=0}^{\infty} a_{n} x^{n}=0 \tag{6}
\end{equation*}
$$

to at least x^{2} term. To do this recall: To get correct coefficients of x^{k} in $\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)$, we have to expand each series up to x^{k}. So we write

$$
\begin{equation*}
\left(1+x+\frac{x^{2}}{2}+\cdots\right)\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots\right)+x+\cdots=0 \tag{7}
\end{equation*}
$$

and conclude

$$
\begin{array}{r}
2 a_{2}=0, \\
2 a_{2}+6 a_{3}+1=0, \\
a_{2}+6 a_{3}+12 a_{4}=0 . \tag{10}
\end{array}
$$

This gives

$$
\begin{equation*}
a_{2}=0, \quad a_{3}=-\frac{1}{6}, \quad a_{4}=\frac{1}{12} . \tag{11}
\end{equation*}
$$

We still need one more nonzero a_{n}. We compute a_{5} by expanding the series one more term:

$$
\begin{equation*}
\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right)\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\cdots\right)+x+a_{2} x^{3}+\cdots=0 \tag{12}
\end{equation*}
$$

The x^{3} balance is (note that the $1, x, x^{2}$ balances have already been computed, x^{3} is the only thing new):

$$
\begin{equation*}
\frac{a_{2}}{3}+3 a_{3}+12 a_{4}+20 a_{5}+a_{2}=0 \tag{13}
\end{equation*}
$$

which gives $a_{5}=-\frac{1}{40}$. As $a_{5} \neq 0$ we have enough nonzero terms now:

$$
\begin{equation*}
y_{1}(x)=1-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{40} x^{5}+\cdots \tag{14}
\end{equation*}
$$

- Finding y_{2}. Setting $a_{0}=0, a_{1}=1$ we have

$$
\begin{equation*}
\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right)\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\cdots\right)+x^{2}+a_{2} x^{3}+\cdots=0 \tag{15}
\end{equation*}
$$

Carrying out the multiplication, we have

$$
\begin{equation*}
2 a_{2}+\left(2 a_{2}+6 a_{3}\right) x+\left(a_{2}+6 a_{3}+12 a_{4}+1\right) x^{2}+\left(\frac{a_{2}}{3}+3 a_{3}+12 a_{4}+20 a_{5}+a_{2}\right) x^{3}+\cdots=0 \tag{16}
\end{equation*}
$$

The recurrence relations are

$$
\begin{align*}
2 a_{2} & =0 \tag{17}\\
2 a_{2}+6 a_{3} & =0 \tag{18}\\
a_{2}+6 a_{3}+12 a_{4}+1 & =0 \tag{19}\\
\frac{a_{2}}{3}+3 a_{3}+12 a_{4}+20 a_{5}+a_{2} & =0 \tag{20}
\end{align*}
$$

which give

$$
\begin{equation*}
a_{2}=0 ; \quad a_{3}=0 ; \quad a_{4}=-\frac{1}{12} ; \quad a_{5}=\frac{1}{20} . \tag{21}
\end{equation*}
$$

Thus

$$
\begin{equation*}
y_{2}=x-\frac{1}{12} x^{4}+\frac{1}{20} x^{5}+\cdots \tag{22}
\end{equation*}
$$

We only have 3 nonzero terms!

- Finding the 4 th term.

To find the 4th term, we need to expand everything to higher power. Let's try expanding to x^{4} :
$\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24} \cdots\right)\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+30 a_{6} x^{4} \cdots\right)+x^{2}+a_{2} x^{3}+a_{3} x^{4} \cdots=$
0.

This gives a new recurrence relation via setting coefficients of x^{4} to be 0 :

$$
\begin{equation*}
\frac{a_{2}}{12}+a_{3}+6 a_{4}+20 a_{5}+30 a_{6}+a_{3}=0 \tag{24}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
a_{6}=-\frac{1}{60} . \tag{25}
\end{equation*}
$$

The updated y_{2} is now

$$
\begin{equation*}
y_{2}(x)=x-\frac{1}{12} x^{4}+\frac{1}{20} x^{5}-\frac{1}{60} x^{6}+\cdots \tag{26}
\end{equation*}
$$

Now we have 4 nonzero terms.
Remark 1. Note that y_{1} solves the equation with initial values $y(0)=1, y^{\prime}(0)=0$ and y_{2} solves the equation with $y(0)=0, y^{\prime}(0)=1$.

Regular points and singular points.

- Turns out that we can find out a lower bound of the radius of convergence for power series solutions without actually solving the equation. To do this we have to first write the equation into its standard form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{27}
\end{equation*}
$$

Theorem 2. The radius of convergence ρ for the power series solution satisfies

$$
\begin{equation*}
\rho \geqslant \min \left(\rho_{1}, \rho_{2}\right) \tag{28}
\end{equation*}
$$

where ρ_{1}, ρ_{2} is determined through

$$
\begin{array}{ll}
p(x)=\sum_{n=0}^{\infty} p_{n}\left(x-x_{0}\right)^{n} \quad \text { for }\left|x-x_{0}\right|<\rho_{1} \\
q(x)=\sum_{n=0}^{\infty} q_{n}\left(x-x_{0}\right)^{n} \quad \text { for }\left|x-x_{0}\right|<\rho_{2} \tag{30}
\end{array}
$$

Remark 3. Note that ρ_{1}, ρ_{2} may not be the radii of convergence for the Taylor expansion of p and q. For example, the Taylor expansion of $e^{-\frac{1}{x^{2}}}$ at $x_{0}=0$ has radius of convergence ∞, but the function equals its Taylor expansion only at x_{0} and nowhere else.

- Often the following theorem is even easier to use:

Theorem 4. The radius of convergence for the power series solution satisfies
$\rho \geqslant$ distance of x_{0} to the nearest complex singular point of the equation.
To be able to apply this we need the following notions:

- A point is singular for the equation (in standard form!)

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{32}
\end{equation*}
$$

if either p or q (or both) is not analytic at at this point; Otherwise it's called "regular".

- A function $f(x)$ is analytic at a point x_{0} if there is a sequence a_{n} and a number $\rho>0$ such that

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{33}
\end{equation*}
$$

holds $\left|x-x_{0}\right|<\rho$.
Remark 5. The function $e^{-\frac{1}{x^{2}}}$ is a typical example illustrating the following subtle fact: f is analytic at x_{0} is not the same as "The Taylor expansion of f at x_{0} has positive radius of convergence".

- How to tell?

From the above remark we see that it's not possible to tell whether $f(x)$ is analytic at a certain point x_{0} from looking at its Taylor expansion. Then how to? In theory we have to do the following:

1. Compute its Taylor expansion at x_{0};
2. Show

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{34}
\end{equation*}
$$

holds $\left|x-x_{0}\right|<\rho$ for some positive ρ.
The second step, of course is totally ad hoc and can be very difficult.
Fortunately that are several "rules of thumb" which are enough for this class.

1. $e^{x}, \sin x, \cos x$ and polynomials are analytic for all $x ; \ln (1+x)$ is analytic for $|x|<1$.
2. If $f(x)$ is analytic at x_{0} and $g(x)$ is analytic at $f\left(x_{0}\right)$, then the composite function $g(f(x))$ is analytic at x_{0}. For example, $e^{x^{2}}$ is analytic everywhere.
3. If $f(x)$ and $g(x)$ are both analytic at x_{0}, then $f \pm g$ and $f g$ are analytic at x_{0};
4. If $f(x)$ and $g(x)$ are analytic at x_{0} and $g\left(x_{0}\right) \neq 0$, then $\frac{f}{g}$ is analytic at x_{0}.
