Lecture 18 Power Series Method

$$
10 / 21 / 2011
$$

The Problem.

Equation (+ initial value);

- Possible question 1 (Q1): Solve the equation (or find general formula for a_{n});
- Possible question 2 (Q2): Find the first 5 nonzero terms;
- Possible question 3 (Q3): Find the first 4 nonzero terms for y_{1}, y_{2}.

The Method.

1. Identify x_{0};
2. Write $y=$ power series;
3. Substitute into the equation;
4. Simplify; Shift indices where necessary;
5. Get recurrence relation;
6. Depending on the question asked, find a general formula for a_{n}, or compute a_{n} one by one until satisfactory.

Example.

$$
\begin{equation*}
y^{\prime \prime}-x y^{\prime}-y=0, \quad x_{0}=1 . \tag{1}
\end{equation*}
$$

Remark 1. When $x_{0} \neq 0$, there are two ways to proceed.

1. (Recommended) Change of variable $t=x-x_{0}$.

- Then the equation becomes

$$
\begin{equation*}
y^{\prime \prime}-(t+1) y^{\prime}-y=0, \quad t_{0}=0 . \tag{2}
\end{equation*}
$$

- Solve it. Get $y=\sum \cdots t^{n}$.
- Write down $y=\sum \cdots(x-1)^{n}$;

2. Write

$$
\begin{equation*}
y=\sum a_{n}\left(x-x_{0}\right)^{n} \tag{3}
\end{equation*}
$$

and substitute into equation.
Caution: Do not forget to write every x into $\left(x-x_{0}\right)+x_{0}$!
Solution 1. We use the first method to try Q1 and Q2.
We solve

$$
\begin{equation*}
y^{\prime \prime}-(t+1) y^{\prime}-y=0, \quad t_{0}=0 . \tag{4}
\end{equation*}
$$

Write

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} t^{n} . \tag{5}
\end{equation*}
$$

Substitute into equation:

$$
\begin{gather*}
y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n} n(n-1) t^{n-2}=\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) t^{n} . \tag{6}\\
y^{\prime}=\sum_{n=1}^{\infty} a_{n} n t^{n-1}=\sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n} . \tag{7}
\end{gather*}
$$

So equation becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) t^{n}-(t+1) \sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n}-\sum_{n=0}^{\infty} a_{n} t^{n}=0 \tag{8}
\end{equation*}
$$

We can get recurrence relation only if all sums are with generic term $\cdots t^{n}$ so we have to try to write the 2nd term into this form.

$$
\begin{align*}
(t+1) \sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n} & =t \sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n}+\sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n} \\
& =\sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n+1}+\sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n} \\
& =\sum_{n=1}^{\infty} a_{n} n t^{n}+\sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n} \tag{9}
\end{align*}
$$

Now the equation is

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) t^{n}-\sum_{n=1}^{\infty} a_{n} n t^{n}-\sum_{n=0}^{\infty} a_{n+1}(n+1) t^{n}-\sum_{n=0}^{\infty} a_{n} t^{n}=0 \tag{10}
\end{equation*}
$$

Note that we have to be careful here as the 2 nd sum starts from $n=1$ while all others starts from $n=0$. So the recurrence relation for $n=0$ is different from those for $n \geqslant 1$.

- $\quad n=0$:

$$
\begin{equation*}
2 a_{2}-a_{1}-a_{0}=0 \tag{11}
\end{equation*}
$$

- $n \geqslant 1$:

$$
\begin{equation*}
(n+2) a_{n+2}-a_{n+1}-a_{n}=0 \tag{12}
\end{equation*}
$$

Now we deal with Q1 and Q2.

- Q1. A correct answer to Q1 should be a formula for a_{n} involving only a_{0}, a_{1} and n. Sometimes this can be done, other times it cannot. The steps are the following.

1. Start from the general recurrence relation:

$$
\begin{equation*}
(n+2) a_{n+2}-a_{n+1}-a_{n}=0 \tag{13}
\end{equation*}
$$

Rewrite it as $a_{n}=\cdots$ by shifting index:

$$
\begin{equation*}
a_{n+2}=\frac{a_{n+1}+a_{n}}{n+2} \Longrightarrow a_{n}=\frac{a_{n-1}+a_{n-2}}{n} . \tag{14}
\end{equation*}
$$

2. Observe that the above represent a_{n} by a_{n-1} and a_{n-2}, while we need a representation of a_{n} by a_{0}, a_{1}. So we proceed as follows: Represent a_{n} by a_{n-2}, a_{n-3} then by a_{n-3}, a_{n-4} then by $a_{n-4}, a_{n-5} \ldots$

$$
\begin{align*}
a_{n} & =\frac{a_{n-1}+a_{n-2}}{n} \\
& =\frac{\frac{a_{n-2}+a_{n-3}}{n-1}+a_{n-2}}{n} \\
& =\frac{n a_{n-2}+a_{n-3}}{n(n-1)} \\
& =\frac{n \frac{a_{n-3}+a_{n-4}}{n-2}+a_{n-3}}{n(n-1)} \\
& =\frac{(2 n-2) a_{n-3}+n a_{n-4}}{n(n-1)(n-2)} \\
& =\frac{(2 n-2) \frac{a_{n-4}+a_{n-5}}{n-3}+n a_{n-4}}{n(n-1)(n-2)} \\
& =\frac{\left(n^{2}-n-2\right) a_{n-4}+(2 n-2) a_{n-5}}{n(n-1)(n-2)(n-3)} \tag{15}
\end{align*}
$$

3. The idea now is to look at the above several steps and try to make a clever guess of what the general formula for a_{n} is. It doesn't seem to lead to any reasonable general formula so we give up.

- Q2. To answer Q2 we only need to start from a_{0}, a_{1} and compute the a_{n} 's one by one, until we have 5 nonzero a_{n} 's (including a_{0}, a_{1}).

$$
\begin{align*}
& a_{2}=\frac{a_{1}+a_{0}}{2} \text { nonzero; } \tag{16}\\
& a_{3}=\frac{a_{2}+a_{1}}{3}=\frac{\frac{a_{1}+a_{0}}{2}+a_{1}}{3}=\frac{3 a_{1}+a_{0}}{6} \text { nonzero; } \tag{17}\\
& a_{4}=\frac{a_{3}+a_{2}}{4}=\frac{\frac{3 a_{1}+a_{0}}{6}+\frac{a_{1}+a_{0}}{2}}{4}=\frac{3 a_{1}+2 a_{0}}{12} \text { nonzero; } \tag{18}
\end{align*}
$$

As we already have 5 nonzero terms $\left(a_{0}-a_{4}\right)$, we stop here and write

$$
\begin{align*}
y & =a_{0}+a_{1} t+\frac{a_{1}+a_{0}}{2} t^{2}+\frac{3 a_{1}+a_{0}}{6} t^{3}+\frac{3 a_{1}+2 a_{0}}{12} t^{4}+\cdots \\
& =a_{0}+a_{1}(x-1)+\frac{a_{1}+a_{0}}{2}(x-1)^{2}+\frac{3 a_{1}+a_{0}}{6}(x-1)^{3}+\frac{3 a_{1}+2 a_{0}}{12}(x-1)^{4}+\cdots \tag{19}
\end{align*}
$$

Solution 2. We illustrate the 2nd method by trying Q3. Write

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{n}(x-1)^{n} . \tag{20}
\end{equation*}
$$

Substitute into the equation, we have

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime \prime}-[(x-1)+1]\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime}-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0 \tag{21}
\end{equation*}
$$

First compute the first term:

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2} \tag{22}
\end{equation*}
$$

Shifting index, we reach

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n} \tag{23}
\end{equation*}
$$

Now compute the second term

$$
\begin{align*}
-[(x-1)+1]\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime} & =-(x-1) \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \tag{24}\\
& =-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1}(x-1)^{n} \tag{25}
\end{align*}
$$

Now the equation becomes
$\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1}(x-1)^{n}-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0$.
Note that in the above, three sums start from 0 while one starts from 1 . Thus we need to write the $n=0$ term separately:

$$
\begin{equation*}
2 a_{2}-a_{1}-a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-n a_{n}-(n+1) a_{n+1}-a_{n}\right]=0 \tag{27}
\end{equation*}
$$

The recurrence relations are

$$
\begin{align*}
2 a_{2}-a_{1}-a_{0} & =0 \tag{28}\\
(n+2)(n+1) a_{n+2}-(n+1) a_{n}-(n+1) a_{n+1} & =0 \quad n \geqslant 1 \tag{29}
\end{align*}
$$

The second relation can be simplified to

$$
\begin{equation*}
(n+2) a_{n+2}=a_{n}+a_{n+1} . \quad n \geqslant 1 \tag{30}
\end{equation*}
$$

Solving them one by one, we have

$$
\begin{array}{ll}
(n=0) & a_{2}=\frac{1}{2} a_{0}+\frac{1}{2} a_{1} \\
(n=1) & a_{3}=\frac{1}{3}\left(a_{1}+a_{2}\right)=\frac{1}{6} a_{0}+\frac{1}{2} a_{1} \\
(n=2) & a_{4}=\frac{1}{4}\left(a_{2}+a_{3}\right)=\frac{1}{4}\left(\frac{2}{3} a_{0}+a_{1}\right)=\frac{1}{6} a_{0}+\frac{1}{4} a_{1} \tag{33}
\end{array}
$$

The general solution is
$y(x)=a_{0}+a_{1}(x-1)+\left(\frac{1}{2} a_{0}+\frac{1}{2} a_{1}\right)(x-1)^{2}+\left(\frac{1}{6} a_{0}+\frac{1}{2} a_{1}\right)(x-1)^{3}+\left(\frac{1}{6} a_{0}+\frac{1}{4} a_{1}\right)(x-1)^{4}+\cdots$
Collecting all the a_{0} 's and the a_{1} 's together we have
$y(x)=a_{0}\left[1+\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}+\frac{1}{6}(x-1)^{4}+\cdots\right]+a_{1}\left[x-1+\frac{1}{2}(x-1)^{2}+\frac{1}{2}(x-1)^{3}+\right.$ $\left.\frac{1}{4}(x-1)^{4}+\cdots\right]$.
So

$$
\begin{align*}
& y_{1}(x)=1+\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}+\frac{1}{6}(x-1)^{4}+\cdots \tag{36}\\
& y_{2}(x)=x-1+\frac{1}{2}(x-1)^{2}+\frac{1}{2}(x-1)^{3}+\frac{1}{4}(x-1)^{4}+\cdots \tag{37}
\end{align*}
$$

