## Lecture 16 Power Series Method

$$
10 / 17 / 2011
$$

## Taylor Expansion.

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\cdots \tag{1}
\end{equation*}
$$

In essence, Taylor expansion is the following relation

$$
\begin{equation*}
f(x)=\text { a power series }=\text { a polynomial of degree infinity } . \tag{2}
\end{equation*}
$$

A power series is an infinite sum:

$$
\begin{equation*}
a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots \tag{3}
\end{equation*}
$$

which is often denoted in the compact form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{4}
\end{equation*}
$$

Such a sum is often called "formal" to emphasize the fact that adding up infinity many numbers may not be meaningful. For example, we know

$$
\begin{equation*}
1+1+\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} \tag{5}
\end{equation*}
$$

is meaningful because this sum converges to the number $e$. However the formal sum

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} n \tag{6}
\end{equation*}
$$

is just "formal" since there is no reasonable way to equate it with a number.
Remark. It is crucial to understand that the index $n$ in the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is only a "place holder". It's whole purpose is to indicate that the subscript of the coefficient and the power of $x-x_{0}$ are the same, and that the sum starts from the zeroth term. Therefore we can replace $n$ by any other symbol:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, \sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}, \sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k} \tag{7}
\end{equation*}
$$

all denote the same power series

$$
\begin{equation*}
a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots \tag{8}
\end{equation*}
$$

However, they are not the same as

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \text { or } \sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k+1} \tag{9}
\end{equation*}
$$

as the former starts from a different term, and the latter has a different relation between the subscript and the power.

## Power Series Method - An Example.

We solve the Airy's equation

$$
\begin{equation*}
y^{\prime \prime}=x y \tag{10}
\end{equation*}
$$

This equation looks very simple but its general solution cannot be written in "closed form". On the other hand, these solutions are very useful in practice that they were given a name and became one class of the so-called "Special functions".

1. Write power series expansion for $y$ :

$$
\begin{equation*}
y=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{11}
\end{equation*}
$$

Note that here we are taking $x_{0}=0$ as it is not specified.
2. Substitute into the equation:

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{12}
\end{equation*}
$$

3. Simplify both sides (Red = means "the operation needs justification". However they will be justified very soon)

$$
\begin{gather*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}=\sum_{n=0}^{\infty}\left(a_{n} x^{n}\right)^{\prime \prime}=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}  \tag{13}\\
x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \tag{14}
\end{gather*}
$$

Note that the $n=0$ term $a_{0}$ and the $n=1$ terms $a_{1} x$ disappear when taking two derivatives.
So the equation becomes

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}=\sum_{n=0}^{\infty} a_{n} x^{n+1} \tag{15}
\end{equation*}
$$

Remark. Keep in mind that $\sum \cdots$ is just a notation, a short hand. So $\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}$ is just a notation for the "real" power series

$$
\begin{equation*}
2 a_{2}+6 a_{3} x+\cdots \tag{16}
\end{equation*}
$$

and $\sum_{n=0}^{\infty} a_{n} x^{n+1}$ is just a notation for $a_{0} x+a_{1} x^{2}+\cdots$. In particular, we are free to change either or both $n$ to other symbols:

$$
\begin{align*}
\sum_{m=2}^{\infty} a_{m} m(m-1) x^{m-2} & =\sum_{n=0}^{\infty} a_{n} x^{n+1}  \tag{17}\\
\sum_{m=2}^{\infty} a_{m} m(m-1) x^{m-2} & =\sum_{l=0}^{\infty} a_{l} x^{l+1} \tag{18}
\end{align*}
$$

whatever... They all mean the same equation.
4. Shift indices. Note that if we do not use the short hands and just write what the equation really means:

$$
\begin{equation*}
2 a_{2}+6 a_{3} x+\cdots=a_{0} x+a_{1} x^{2}+\cdots \tag{19}
\end{equation*}
$$

we can immediately conclude

$$
\begin{equation*}
2 a_{2}=0, \quad 6 a_{3}=a_{1}, \tag{20}
\end{equation*}
$$

and so on. This is not satisfactory though ${ }^{1}$ as we won't be able to get a "universal" relation between $a_{n}$ 's. To get such relation we have to analyze

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}=\sum_{n=0}^{\infty} a_{n} x^{n+1} \tag{21}
\end{equation*}
$$

[^0]We try to do the same thing - Equate the terms on both sides with the same power of $x$. To do this efficiently we need to "shift indices", that is introducing one or more new indices so that the generic terms (currently $a_{n} n(n-1) x^{n-2}$ and $a_{n} x^{n+1}$ ) has the same power of $x$.

- Shift left hand side. We try to re-write

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}=\sum \cdots x^{k} \tag{22}
\end{equation*}
$$

It is clear that we should let the new index, $k$, be related to the old one, $n$, through

$$
\begin{equation*}
k=n-2 . \tag{23}
\end{equation*}
$$

Now replace every $n$ by $k+2$ :

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}=\sum_{k+2=2}^{\infty} a_{k+2}(k+2)(k+1) x^{k} \tag{24}
\end{equation*}
$$

and simplify to

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k} \tag{25}
\end{equation*}
$$

- Similarly for the right hand side,

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{k=1}^{\infty} a_{k-1} x^{k} \tag{26}
\end{equation*}
$$

5. Balance the equation. The equation now becomes

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}=\sum_{k=1}^{\infty} a_{k-1} x^{k} \tag{27}
\end{equation*}
$$

Equating terms with same $x^{k}$ on both sides, we reach

$$
\begin{align*}
(k=0): 2 a_{2} & =0  \tag{28}\\
(k \geqslant 1): a_{k+2}(k+2)(k+1) & =a_{k-1} \tag{29}
\end{align*}
$$

This is called the "recurrence relation".
Remark. Note that when shifting indices, we use " $k$ " as the new index for both sides. This is just for convenience since at the end of the day we would like to pick terms with the same $x^{k}$ from both sides. We can also use difference symbols and reach:

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}=\sum_{l=1}^{\infty} a_{l-1} x^{l} \tag{30}
\end{equation*}
$$

This is the same equation as

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}=\sum_{k=1}^{\infty} a_{k-1} x^{k} \tag{31}
\end{equation*}
$$

The only difference is that we cannot proceed before renaming $l$ by $k$ !
Remark. Also, usually the index-shifting is done somewhat implicitly, that is we do not explicitly introduce any new symbols. In the future we will just replace every $n$ by $n+2$ and obtain

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}=\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) x^{n} \tag{32}
\end{equation*}
$$

6. Write down the solution.

There are several ways to write down the final solution. Check with your problem for specific requirement.

- General formula.

From the recurrence relation we can get:

$$
\begin{equation*}
a_{k+2}=\frac{a_{k-1}}{(k+2)(k+1)}=\frac{a_{k-4}}{(k+2)(k+1)(k-1)(k-2)}=\cdots \tag{33}
\end{equation*}
$$

which finally can be written as

So the final answer is

$$
a_{k}=\left\{\begin{array}{ll}
\frac{a_{0}}{\prod_{i=1}^{l}(3 i)(3 i-1)} & k=3 l  \tag{34}\\
\frac{a_{1}}{\prod_{i=1}^{l}(3 i+1)(3 i)} & k=3 l+1 \\
0 & k=3 l+2
\end{array} .\right.
$$

with $a_{k}$ given by the above.

$$
\begin{equation*}
y=\sum_{k=0}^{\infty} a_{k} x^{k} \tag{35}
\end{equation*}
$$

- First few terms/First few nonzero terms.

Say we are asked to write down the first 4 nonzero terms of the solution. We compute: $a_{0}$, $a_{1}$ are free, so two nonzero terms $a_{0}+a_{1} x$ now. $a_{2}=0$ so $a_{2} x^{2}=0$ does not give us the 3 rd term. We compute $a_{3}=\frac{a_{0}}{6}$ so $a_{3} x^{3}=\frac{a_{0}}{6} x^{3}$ is the 3 rd nonzero term. Then $a_{4} x^{4}=\frac{a_{1}}{12} x^{4}$ gives the 4 th term. So

$$
\begin{equation*}
y=a_{0}+a_{1} x+\frac{a_{0}}{6} x^{3}+\frac{a_{1}}{12} x^{4}+\cdots \tag{36}
\end{equation*}
$$

is the answer.

- $\quad y_{1}, y_{2}$. Recall that as $y^{\prime \prime}=x y$ is a linear second order equation, its general solution should look like

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2} \tag{37}
\end{equation*}
$$

We can put our power series solution into this form as follows:
Note that $a_{0}, a_{1}$ are "free", so they are in fact the $C_{1}, C_{2}$. Now group all $a_{0}$ terms together, all $a_{1}$ terms together we get:
which gives

$$
\begin{equation*}
y=a_{0}\left(1+\frac{x^{3}}{6}+\cdots\right)+a_{1}\left(x+\frac{x^{4}}{12}+\cdots\right) \tag{38}
\end{equation*}
$$

## Theoretical Issues.

In the above solution we have done many dubious operations and thus left many theoretical gaps open. For example

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}=\sum_{n=0}^{\infty}\left(a_{n} x^{n}\right)^{\prime \prime} \tag{40}
\end{equation*}
$$

Why can we do this? Does this hold for all $x$ ? If not, how do we tell for which $x$ the above holds?
Turns out, all these gaps are filled as long as we restrict ourselves to $|x|<\rho$, where $0 \leqslant \rho \leqslant \infty^{2}$ is a certain number, determined by the coefficients $a_{0}, a_{1}, \ldots$, called "radius of convergence".

In short, given a power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{41}
\end{equation*}
$$

let $\rho$ be its radius of convergence. Then in $\left|x-x_{0}\right|<\rho$ we can treat it as if it's a polynomial: Termwise differentiation, termwise integration, re-arrangement of terms, etc. All OK.

[^1]On the other hand, for those $x$ such that $\left|x-x_{0}\right|>\rho$, the infinite sum

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{42}
\end{equation*}
$$

diverges. In other words, for those $x$ this sum does not represent a function at all.


[^0]:    1. For a certain type of problems this is satisfactory. We will see.
[^1]:    2. Notice it's $\leqslant$, not $<$ !
