Lecture 14 Higher Order Linear Equations (Cont.)

$10 / 12 / 2011$

Review: Solving constant-coefficient, homogeneous, linear equations.

$$
\begin{equation*}
a_{0} y^{(n)}+\cdots+a_{n} y=0 . \tag{1}
\end{equation*}
$$

1. Solve the characteristic equation

$$
\begin{equation*}
a_{0} r^{n}+\cdots+a_{n}=0 \tag{2}
\end{equation*}
$$

and get a list of roots.
2. Order the roots: real roots first, then complex conjugate pairs. Write down the fundamental set y_{1}, \ldots, y_{n} according to the following rules:

- A real root r, repeated k times, yields k solutions in the fundamental set: $e^{r t}, t e^{r t}, \ldots, t^{k-1} e^{r t}$ (Note that when r is a single root, this automatically give only $e^{r t}$.
- A pair of complex roots $\alpha \pm i \beta$, repeated k times, yields $2 k$ solutions in the fundamental set: $e^{\alpha t} \cos \beta t, e^{\alpha t} \sin \beta t, \ldots, t^{k-1} e^{\alpha t} \cos \beta t, t^{k-1} e^{\alpha t} \sin \beta t$.

3. $y=C_{1} y_{1}+\cdots+C_{n} y_{n}$.

- In general, solving the characteristic equation is not possible for humans. However there are two cases that are solvable:
- When the equation is simple. Meaning: the characteristic equation can be solve by repeating:

$$
\text { Find a root }->\text { Factorize }->\text { Find another root }->\text { Factorize }->\ldots
$$

- When the equation is special. Meaning: It is of the form $y^{(n)}-a y=0$ where a is a constant, or it can be reduced to such form. Example of the latter case:

$$
\begin{equation*}
y^{(6)}+y^{\prime \prime}=0 \Longrightarrow r^{2}\left(r^{4}+1\right)=0 \tag{3}
\end{equation*}
$$

so the roots are 0,0 and the four roots of $(-1)^{1 / 4}$.

- Example of simple equation.

$$
\begin{equation*}
y^{(4)}-4 y^{\prime \prime \prime}+4 y^{\prime \prime}=0, \quad y(1)=-1, y^{\prime}(1)=2, y^{\prime \prime}(1)=0, y^{\prime \prime \prime}(1)=0 \tag{4}
\end{equation*}
$$

Solution. We first find the general solution, then use initial conditions to determine the four constants.

- Characteristic equation:

$$
\begin{equation*}
r^{4}-4 r^{3}+4 r^{2}=0 \Longrightarrow r^{2}\left(r^{2}-4 r+4\right)=0 \Longrightarrow r^{2}(r-2)^{2}=0 \tag{5}
\end{equation*}
$$

So the roots are $0,0,2,2$.

- Write down y_{1}, \ldots, y_{4}.

We have

$$
\begin{align*}
& 0 \text { : Real, repeated } 2 \text { times } \Longrightarrow e^{0 t}, t e^{0 t} \tag{6}\\
& \text { 2: Real, repeated } 2 \text { times } \Longrightarrow e^{2 t}, t e^{2 t} \tag{7}
\end{align*}
$$

- Write down y.

$$
\begin{equation*}
y=C_{1}+C_{2} t+C_{3} e^{2 t}+C_{4} t e^{2 t} \tag{8}
\end{equation*}
$$

- Use initial conditions.
- Preparation.

$$
\begin{gather*}
y^{\prime}=C_{2}+\left(2 C_{3}+C_{4}\right) e^{2 t}+2 C_{4} t e^{2 t} \tag{9}\\
y^{\prime \prime}=\left[2\left(2 C_{3}+C_{4}\right)+2 C_{4}\right] e^{2 t}+4 C_{4} t e^{2 t}=\left(4 C_{3}+4 C_{4}\right) e^{2 t}+4 C_{4} t e^{2 t} \tag{10}\\
y^{\prime \prime \prime}=\left[2\left(4 C_{3}+4 C_{4}\right)+4 C_{4}\right] e^{2 t}+8 C_{4} t e^{2 t}=\left(8 C_{3}+12 C_{4}\right) e^{2 t}+8 C_{4} t e^{2 t} \tag{11}
\end{gather*}
$$

- Use initial conditions.

$$
\begin{align*}
y(1)=-1 & \Longrightarrow C_{1}+C_{2}+C_{3} e^{2}+C_{4} e^{2}=-1 \tag{12}\\
y^{\prime}(1)=2 & \Longrightarrow C_{2}+\left(2 C_{3}+C_{4}\right) e^{2}+2 C_{4} e^{2}=2 \tag{13}\\
y^{\prime \prime}(1)=0 & \Longrightarrow\left(4 C_{3}+4 C_{4}\right) e^{2}+4 C_{4} e^{2}=0 \tag{14}\\
y^{\prime \prime \prime}(1)=0 & \Longrightarrow\left(8 C_{3}+12 C_{4}\right) e^{2}+8 C_{4} e^{2}=0 \tag{15}
\end{align*}
$$

Simplify to get a 4×4 system for C_{1}, \ldots, C_{4} :

$$
\begin{align*}
C_{1}+C_{2}+e^{2} C_{3}+e^{2} C_{4} & =-1 \tag{16}\\
C_{2}+2 e^{2} C_{3}+3 e^{2} C_{4} & =2 \tag{17}\\
4 C_{3}+8 C_{4} & =0 \tag{18}\\
8 C_{3}+20 C_{4} & =0 \tag{19}
\end{align*}
$$

- Solve the 4×4 system.
- Ad hoc method.

For this problem we notice that we can solve C_{3}, C_{4} first and then C_{1}, C_{2}. The C_{3}, C_{4} equations yields $C_{3}=C_{4}=0$. Substitute back into the C_{1}, C_{2} equation we get

$$
\begin{align*}
C_{1}+C_{2} & =-1 \tag{20}\\
C_{2} & =2 \tag{21}
\end{align*}
$$

We immediately get $C_{1}=-3, C_{2}=2$.

- General method.

In general we have to use the method of Gaussian elimination. See your linear algebra textbook or the following links for explanations:

- http://mathworld.wolfram.com/GaussianElimination.html
- http://www.youtube.com/watch?v=woqq3Sls1d8

First write down the matrix: Coefficient matrix with an extra column of the right hand side:

$$
\left(\begin{array}{ccccc}
1 & 1 & e^{2} & e^{2} & -1 \tag{22}\\
0 & 1 & 2 e^{2} & 3 e^{2} & 2 \\
0 & 0 & 4 & 8 & 0 \\
0 & 0 & 8 & 20 & 0
\end{array}\right)
$$

Now transform.
$\left(\begin{array}{ccccc}1 & 1 & e^{2} & e^{2} & -1 \\ 0 & 1 & 2 e^{2} & 3 e^{2} & 2 \\ 0 & 0 & 4 & 8 & 0 \\ 0 & 0 & 8 & 20 & 0\end{array}\right) \Longrightarrow\left(\begin{array}{ccccc}1 & 1 & e^{2} & e^{2} & -1 \\ 0 & 1 & 2 e^{2} & 3 e^{2} & 2 \\ 0 & 0 & 4 & 8 & 0 \\ 0 & 0 & 0 & 4 & 0\end{array}\right)$
(Row 3 times -2 add to row 4)

$$
\Longrightarrow\left(\begin{array}{ccccc}
1 & 1 & e^{2} & e^{2} & -1 \\
0 & 1 & 2 e^{2} & 3 e^{2} & 2 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 4 & 0
\end{array}\right)
$$

(Row 3 divided by 4 to make the leading number 1)

$$
\Longrightarrow\left(\begin{array}{ccccc}
1 & 1 & e^{2} & e^{2} & -1 \\
0 & 1 & 2 e^{2} & 3 e^{2} & 2 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

(Row 4 divided by 4 to make the leading number 1)

Now we are ready the solve the system bottom up - from C_{4} to C_{1}. The corresponding transformed system is

$$
\begin{align*}
C_{1}+C_{2}+e^{2} C_{3}+e^{2} C_{4} & =-1 \tag{24}\\
C_{2}+2 e^{2} C_{3}+3 e^{2} C_{4} & =2 \tag{25}\\
C_{3}+2 C_{4} & =0 \tag{26}\\
C_{4} & =0 \tag{27}
\end{align*}
$$

- Finally the solution is

$$
\begin{equation*}
y=-3+2 t \tag{28}
\end{equation*}
$$

It is easy to check that this indeed the solution.

Complex numbers.

To be able to solve "special" equations like $y^{(4)}+y=0$, we have to be familiar with complex numbers.

- Two ways to represent a complex number.
- $a+b i$: Good for addition, subtraction;
- $R e^{i \theta}$: Good for multiplication, especially powers and roots.
- Transforming back and forth.
- Write $R e^{i \theta}$ into $a+b i$.

$$
\begin{equation*}
R e^{i \theta}=R(\cos \theta+i \sin \theta) \Longrightarrow a=R \cos \theta, b=R \sin \theta \tag{29}
\end{equation*}
$$

- Write $a+b i$ into $R e^{i \theta}$.

$$
\begin{equation*}
R=\sqrt{a^{2}+b^{2}} \tag{30}
\end{equation*}
$$

and θ is determined through requiring

$$
\begin{equation*}
\cos \theta=\frac{a}{R} ; \quad \sin \theta=\frac{b}{R} \tag{31}
\end{equation*}
$$

For example, consider $1+\sqrt{3} i$. We have

$$
\begin{equation*}
R=\sqrt{1^{2}+(\sqrt{3})^{2}}=2 \tag{32}
\end{equation*}
$$

and θ must satisfy

$$
\begin{equation*}
\cos \theta=\frac{1}{2}, \quad \sin \theta=\frac{\sqrt{3}}{2} \tag{33}
\end{equation*}
$$

and we conclude $\theta=\frac{\pi}{3} \ldots$ wait a minute... $+2 k \pi \ldots$. Now it's right. So

$$
\begin{equation*}
\theta=\frac{\pi}{3}+2 k \pi, \quad k \text { arbitrary integer } \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\sqrt{3} i=2 e^{i\left(\frac{\pi}{3}+2 k \pi\right)} \tag{35}
\end{equation*}
$$

In general,

$$
\begin{equation*}
a+b i=R e^{i\left(\theta_{0}+2 k \pi\right)} \tag{36}
\end{equation*}
$$

with k taking any integer.

- Taking roots.
- To compute $(a+b i)^{1 / n}$,

1. Write $a+b i=R e^{i\left(\theta_{0}+2 k \pi\right)}$;
2. Write

$$
\begin{equation*}
(a+b i)^{1 / n}=R^{1 / n} \exp \left[i \frac{\theta_{0}+2 k \pi}{n}\right] \tag{37}
\end{equation*}
$$

3. Set $k=n$ consecutive numbers (for example $0,1, \ldots, n-1$, or $-\frac{n}{2}+1, \ldots, 0, \ldots, \frac{n}{2}$ when n is even and similarly when n is odd. Each value of k gives one root.
4. Simplify if possible.

- Example. Compute $(1+\sqrt{3} i)^{1 / 4}$.
- First step is already done:

$$
\begin{equation*}
1+\sqrt{3} i=2 e^{i\left(\frac{\pi}{3}+2 k \pi\right)} \tag{38}
\end{equation*}
$$

- Now we need to evaluate

$$
\begin{equation*}
2^{1 / 4} \exp \left[i \frac{\frac{\pi}{3}+2 k \pi}{4}\right] \tag{39}
\end{equation*}
$$

for 4 consecutive values of k.

- Take $-1,0,1,2$.

$$
\begin{aligned}
k=-1 & \Longrightarrow 2^{1 / 4} e^{-i \frac{5}{12} \pi} \\
k=0 & \Longrightarrow 2^{1 / 4} e^{i \frac{\pi}{12}} \\
k=1 & \Longrightarrow 2^{1 / 4} e^{i \frac{7}{12} \pi} \\
k=2 & \Longrightarrow 2^{1 / 4} e^{i \frac{13}{12} \pi}
\end{aligned}
$$

- Not really possible to further simplify.
- Solving $y^{(n)}-a y=0$.

Example 1. Solve

$$
\begin{equation*}
y^{(4)}+y=0 \tag{40}
\end{equation*}
$$

Solution.

Characteristic equation

$$
\begin{equation*}
r^{4}+1=0 \Longrightarrow r^{4}=-1 \tag{41}
\end{equation*}
$$

We need to find all 4 roots of $(-1)^{1 / 4}$.
Write -1 into $R e^{i \theta}$. We have

$$
\begin{equation*}
R=1, \quad \cos \theta=-1, \quad \sin \theta=0 \tag{42}
\end{equation*}
$$

So can take $\theta_{0}=\pi$. Now

$$
\begin{equation*}
-1=e^{i(\pi+2 k \pi)} \tag{43}
\end{equation*}
$$

The four roots are given by

$$
\begin{equation*}
e^{i \frac{(2 k+1) \pi}{4}} \tag{44}
\end{equation*}
$$

We take $k=-1,0,1,2$.

$$
\begin{aligned}
& k=-1 \Longrightarrow e^{-i \frac{\pi}{4}}=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i \\
& k=0 \Longrightarrow e^{i \frac{\pi}{4}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i \\
& k=1 \Longrightarrow e^{i \frac{3 \pi}{4}}=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i \\
& k=2 \Longrightarrow e^{i \frac{5 \pi}{4}}=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i
\end{aligned}
$$

We end up with two pairs of roots:

$$
\begin{equation*}
\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} i, \quad-\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} i \tag{45}
\end{equation*}
$$

The general solution is then

$$
\begin{equation*}
y=C_{1} e^{\frac{\sqrt{2}}{2} t} \cos \frac{\sqrt{2}}{2} t+C_{2} e^{\frac{\sqrt{2}}{2} t} \sin \frac{\sqrt{2}}{2} t+C_{3} e^{-\frac{\sqrt{2}}{2} t} \cos \frac{\sqrt{2}}{2} t+C_{4} e^{-\frac{\sqrt{2}}{2} t} \sin \frac{\sqrt{2}}{2} t . \tag{46}
\end{equation*}
$$

