Lecture 12 Variation of Parameters

$$
10 / 03 / 2011
$$

Variation of parameters.

What about all the equations that are either not constant-coefficient or with $g(t)$ not of any of the above types? Do we have a method that works for all equations? Yes.

- Method of variation of parameters.

The general solution of

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

is

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2}+y_{p} \tag{2}
\end{equation*}
$$

where

- y_{1}, y_{2} form a fundamental set ${ }^{11}$ of the homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{3}
\end{equation*}
$$

- If p, q are constants, we get y_{1}, y_{2} directly.
- For general p, q, have to

1. Guess a solution y_{1};
2. Obtain y_{2} from the "reduction of order" formula: ${ }^{2}$

$$
\begin{equation*}
y_{2}=y_{1} \int \frac{e^{-\int p}}{y_{1}^{2}} \tag{5}
\end{equation*}
$$

Note. It is a good idea to check that y_{2} indeed solves the homogeneous equation.

- y_{p} is given by the following formula:

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2}, u_{1}=\int \frac{-y_{2} g}{W\left[y_{1}, y_{2}\right]}, u_{2}=\int \frac{y_{1} g}{W\left[y_{1}, y_{2}\right]} \tag{6}
\end{equation*}
$$

$W\left[y_{1}, y_{2}\right]=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is the Wronskian of y_{1}, y_{2}.
Note. If is a good idea to check that y_{p} indeed solves the original equation.
Remark. It is a good idea to write the equation given into "standard form"

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{7}
\end{equation*}
$$

before applying any formulas.

Examples.

Example 1. Solve

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} e^{-2 t} \tag{8}
\end{equation*}
$$

Solution. Note that $t^{-2} e^{-2 t}$ does not belong to any type that can be attacked by undetermined coefficients.

- Write the equation in standard form. Done. We have $p=4, q=4, g=t^{-2} e^{-2 t}$.

1. are solutions and are linearly independent.
2. Later we will see that for a class of equations called "Euler equations", looking like

$$
\begin{equation*}
a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0 \tag{4}
\end{equation*}
$$

we also have formulas for y_{1}, y_{2}.

- Find y_{1}, y_{2} by solving

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=0 \tag{9}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
r^{2}+4 r+4=0 \Longrightarrow r_{1}=r_{2}=-2 \tag{10}
\end{equation*}
$$

So we have

$$
\begin{equation*}
y_{1}=e^{-2 t}, \quad y_{2}=t e^{-2 t} . \tag{11}
\end{equation*}
$$

- Find y_{p}.
- First compute the Wronskian (as it will be used twice below!)

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right]=\left(e^{-2 t}\right)\left(t e^{-2 t}\right)^{\prime}-\left(t e^{-2 t}\right)\left(e^{-2 t}\right)^{\prime}=e^{-4 t} \tag{12}
\end{equation*}
$$

- Now

$$
\begin{gather*}
u_{1}=\int \frac{-y_{2} g}{W\left[y_{1}, y_{2}\right]}=\int \frac{-\left(t e^{-2 t}\right)\left(t^{-2} e^{-2 t}\right)}{e^{-4 t}}=-\ln |t| . \tag{13}\\
u_{2}=\int \frac{y_{1} g}{W\left[y_{1}, y_{2}\right]}=\int \frac{e^{-2 t}\left(t^{-2} e^{-2 t}\right)}{e^{-4 t}}=-\frac{1}{t} . \tag{14}
\end{gather*}
$$

- Write

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |t| e^{-2 t}-\frac{1}{t} t e^{-2 t}=-e^{-2 t} \ln |t|-e^{-2 t} . \tag{15}
\end{equation*}
$$

- Check solution: As $e^{-2 t}$ solves the homogeneous equation, we only need to put $-e^{-2 t} \ln |t|$ into the equation:

$$
\begin{gather*}
\left(-e^{-2 t} \ln |t|\right)^{\prime}=-\frac{1}{t} e^{-2 t}+2 e^{-2 t} \ln |t| \tag{16}\\
\left(-e^{-2 t} \ln |t|\right)^{\prime \prime}=\left(-\frac{1}{t} e^{-2 t}+2 e^{-2 t} \ln |t|\right)^{\prime}=\frac{1}{t^{2}} e^{-2 t}+\frac{4}{t} e^{-2 t}-4 e^{-2 t} \ln |t| \tag{17}
\end{gather*}
$$

Now

$$
\begin{equation*}
\left(-e^{-2 t} \ln |t|\right)^{\prime \prime}+4\left(-e^{-2 t} \ln |t|\right)^{\prime}+4\left(-e^{-2 t} \ln |t|\right)=\frac{1}{t^{2}} e^{-2 t} \tag{18}
\end{equation*}
$$

- Write down solution.

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2}+y_{p}=C_{1} e^{-2 t}+C_{2} t e^{-2 t}-e^{-2 t} \ln |t|-e^{-2 t} . \tag{19}
\end{equation*}
$$

Simplify

$$
\begin{equation*}
y=C_{1} e^{-2 t}+C_{2} t e^{-2 t}-e^{-2 t} \ln |t| \tag{20}
\end{equation*}
$$

(Because $C_{1} e^{-2 t}$ and $\left(C_{1}-1\right) e^{-2 t}$ represent the same functions - those that are constant multiples of $e^{-2 t}$)

Example 2. Solve

$$
\begin{equation*}
t y^{\prime \prime}-(t+1) y^{\prime}+y=t^{2}, \quad t>0 \tag{21}
\end{equation*}
$$

Solution.

- Write the equation in standard form:

$$
\begin{equation*}
y^{\prime \prime}-\frac{t+1}{t} y^{\prime}+\frac{1}{t} y=t \tag{22}
\end{equation*}
$$

So

$$
\begin{equation*}
p(t)=-\frac{t+1}{t}, \quad q(t)=\frac{1}{t}, \quad g(t)=t \tag{23}
\end{equation*}
$$

- Find y_{1}, y_{2}.
- Guess y_{1}. The usual order is exponential then polynomials. For our problem here fortunately e^{t} solves

$$
\begin{equation*}
y^{\prime \prime}-\frac{t+1}{t} y^{\prime}+\frac{1}{t} y=0 \tag{24}
\end{equation*}
$$

so $y_{1}=e^{t}$.

- Obtain y_{2} through

We have

$$
\begin{equation*}
y_{2}=y_{1} \int \frac{e^{-\int p}}{y_{1}^{2}} \tag{25}
\end{equation*}
$$

$$
\begin{align*}
y_{2}(t) & =y_{1}(t) \int \frac{e^{-\int p(t) \mathrm{d} t}}{y_{1}(t)^{2}} \mathrm{~d} t \\
& =e^{t} \int \frac{e^{-\int-(1+1 / t)}}{e^{2 t}} \\
& \left.=e^{t} \int \frac{e^{t} e^{\ln t}}{e^{2 t}} \quad \text { (Note that as } t>0,|t|=t\right) \\
& =e^{t} \int t e^{-t} \mathrm{~d} t \\
& =e^{t}\left[-\int t \mathrm{~d} e^{-t}\right] \\
& =e^{t}\left[-t e^{-t}+\int e^{-t} \mathrm{~d} t\right] \\
& =-(t+1) \tag{26}
\end{align*}
$$

Check

$$
\begin{equation*}
y_{2}^{\prime \prime}-\frac{t+1}{t} y_{2}^{\prime}+\frac{1}{t} y_{2}=0+\frac{t+1}{t}+\frac{1}{t}(-t-1)=0 . \tag{27}
\end{equation*}
$$

- Find y_{p}.

First compute the Wronskian

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right](t)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=-e^{t}+e^{t}(t+1)=t e^{t} . \tag{28}
\end{equation*}
$$

Then

$$
\begin{align*}
u_{1}(t) & =\int \frac{-g y_{2}}{W} \\
& =\int \frac{-t(-(t+1))}{t e^{t}} \\
& =\int(t+1) e^{-t} \mathrm{~d} t \\
& =-\int(t+1) \mathrm{d} e^{-t} \\
= & -(t+1) e^{-t}+\int e^{-t} \mathrm{~d}(t+1) \\
= & -(t+1) e^{-t}+\int e^{-t} \mathrm{~d} t \\
= & -(t+2) e^{-t} \tag{29}\\
& u_{2}(t)=\int \frac{g y_{1}}{W} \\
& =\int \frac{t e^{t}}{t e^{t}} \\
& =t \tag{30}
\end{align*}
$$

So

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-(t+2)-t(t+1)=-\left(t^{2}+2 t+2\right) \tag{31}
\end{equation*}
$$

Check:

$$
\begin{equation*}
y_{p}^{\prime \prime}-\frac{t+1}{t} y_{p}^{\prime}+\frac{1}{t} y_{p}=-2+\frac{t+1}{t}(2 t+2)-\frac{t^{2}+2 t+2}{t}=t \tag{32}
\end{equation*}
$$

- Write down solution:

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2}+y_{p}=C_{1} e^{t}-C_{2}(t+1)--\left(t^{2}+2 t+2\right) \tag{33}
\end{equation*}
$$

Explanations and remarks.

- The reduction of order formula

$$
\begin{equation*}
y_{2}=y_{1} \int \frac{e^{-\int p}}{y_{1}^{2}} . \tag{34}
\end{equation*}
$$

Consider the equation in standard form

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \text {. } \tag{35}
\end{equation*}
$$

Let $y_{2}=v y_{1}$. Then

$$
\begin{equation*}
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime} ; \quad y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime} . \tag{36}
\end{equation*}
$$

So y_{2} is a solution is the same as

$$
\begin{equation*}
\left[v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right]+p(t)\left[v^{\prime} y_{1}+v y_{1}^{\prime}\right]+q(t) v y_{1}=0 . \tag{37}
\end{equation*}
$$

Grouping $v^{\prime \prime}, v^{\prime}, v$ terms we get

$$
\begin{equation*}
y_{1} v^{\prime \prime}+\left[2 y_{1}^{\prime}+p(t) y_{1}\right] v^{\prime}+\left[y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right] v=0 . \tag{38}
\end{equation*}
$$

But y_{1} is a solution so

$$
\begin{equation*}
y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0 \Longrightarrow\left[y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right] v=0 . \tag{39}
\end{equation*}
$$

So v only needs to satisfy

$$
\begin{equation*}
y_{1} v^{\prime \prime}+\left[2 y_{1}^{\prime}+p(t) y_{1}\right] v^{\prime}=0 \tag{40}
\end{equation*}
$$

Let $w=v^{\prime}$. The above becomes a 1 st order linear equation for w

$$
\begin{equation*}
y_{1} w^{\prime}+\left[2 y_{1}^{\prime}+p(t) y_{1}\right] w=0 \Longrightarrow w^{\prime}+\left(\frac{2 y_{1}^{\prime}}{y_{1}}+p(t)\right) w=0 . \tag{41}
\end{equation*}
$$

The integrating factor is

$$
\begin{equation*}
\exp \left[\int\left(\frac{2 y_{1}^{\prime}}{y_{1}}+p(t)\right)\right]=\exp \left[\left(\ln y_{1}^{2}\right)+\int p\right]=y_{1}^{2} e^{\int_{p}} . \tag{42}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\left(y_{1}^{2} e^{\int p} w\right)^{\prime}=0 . \tag{43}
\end{equation*}
$$

Note that we only need one solution, so we take

$$
\begin{equation*}
v^{\prime}=w=y_{1}^{-2} e^{-\int p} \Longrightarrow v=\int \frac{e^{-\int p}}{y_{1}^{2}} . \tag{44}
\end{equation*}
$$

- The y_{p} formula

$$
\begin{equation*}
y_{p}=\left(\int \frac{-y_{2} g}{W\left[y_{1}, y_{2}\right]}\right) y_{1}+\left(\int \frac{y_{1} g}{W\left[y_{1}, y_{2}\right]}\right) y_{2} . \tag{45}
\end{equation*}
$$

We look for a particular solution of the form

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2} . \tag{46}
\end{equation*}
$$

This gives

$$
\begin{equation*}
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} . \tag{47}
\end{equation*}
$$

Then $y_{p}^{\prime \prime}$ would involve 8 terms and the equation will get very complicated. However, things are much simplified if we require

$$
\begin{equation*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 . \tag{48}
\end{equation*}
$$

In this case

$$
\begin{equation*}
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} . \tag{50}
\end{equation*}
$$

Substitute into the equation we get

$$
\begin{equation*}
\left[u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}\right]+p(t)\left[u_{1} y_{1}^{\prime}+u_{2} y_{2}\right]+q(t)\left[u_{1} y_{1}+u_{2} y_{2}\right]=g(t) . \tag{51}
\end{equation*}
$$

Grouping similar terms we get

$$
\begin{equation*}
\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+u_{1}\left[y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right]+u_{2}\left[y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right]=g(t) \tag{52}
\end{equation*}
$$

As y_{1}, y_{2} solves the homogeneous equation, this is just

$$
\begin{equation*}
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t) \tag{53}
\end{equation*}
$$

Summarizing, to get y_{p}, all we need are u_{1}, u_{2} satisfying

$$
\begin{align*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2} & =0 \tag{54}\\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} & =g(t) \tag{55}
\end{align*}
$$

Multiply the first equation by $-y_{2}^{\prime}$, and add to the second multiplied by y_{2}, we get

$$
\begin{equation*}
\left(-y_{1} y_{2}^{\prime}+y_{1}^{\prime} y_{2}\right) u_{1}^{\prime}=g y_{2} \Longrightarrow u_{1}=\int \frac{-g y_{2}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}=\int \frac{-g y_{2}}{W} \tag{56}
\end{equation*}
$$

Substitute into $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ we get

$$
\begin{equation*}
u_{2}=\int \frac{g y_{1}}{W} \tag{57}
\end{equation*}
$$

