Lecture 10 Undetermined Coefficients

SEP. 26, 2011

The method.

- Target equations:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \tag{1}
\end{equation*}
$$

with a, b, c constants, and $g(t)$ of one of the following two types

1. $g(t)=e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right)$;
2. $g(t)=e^{\alpha t} \cos \beta t\left(a_{0}+\cdots+a_{n} t^{n}\right)$ or $g(t)=e^{\alpha t} \sin \beta t\left(a_{0}+\cdots+a_{n} t^{n}\right)$.

- Procedure.
- Step 1: Solve the homogeneous equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{2}
\end{equation*}
$$

Get y_{1}, y_{2} and also a list of roots for the characteristic equation $a r^{2}+b r+c=0$.

- Step 2: Guess a "particular solution" y_{p} using the following rules:
- If $g(t)=e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right)$, guess

$$
\begin{equation*}
y_{p}=t^{s} e^{\alpha t}\left(A_{0}+\cdots+A_{n} t^{n}\right) \tag{3}
\end{equation*}
$$

with s determined as follows:

- $s=0$ if α is not a root to the characteristic equation.
- $s=1$ if α is a single root;
- $s=2$ if α is a repeated root (double root).

Here A_{0}, \ldots, A_{n} are the "undetermined coefficients" that need to be fixed.

- If $g(t)=e^{\alpha t} \cos \beta t\left(a_{0}+\cdots+a_{n} t^{n}\right)$ or $g(t)=e^{\alpha t} \sin \beta t\left(a_{0}+\cdots+a_{n} t^{n}\right)$, guess

$$
\begin{equation*}
y_{p}=t^{s} e^{\alpha t} \cos \beta t\left(A_{0}+\cdots+A_{n} t^{n}\right)+t^{s} e^{\alpha t} \sin \beta t\left(B_{0}+\cdots+B_{n} t^{n}\right) \tag{4}
\end{equation*}
$$

with s determined as follows:

- $s=0$ if $\alpha+i \beta$ is not a root to the characteristic equation.
- $s=1$ if $\alpha+i \beta$ is a root to the characteristic equation.

Here $A_{0}, \ldots, A_{n}, B_{0}, \ldots, B_{n}$ are the "undetermined coefficients" that need to be fixed.
Then substitute y_{p} into the equation $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$ to find the coefficients.

- Step 3: Write down the solution.

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2}+y_{p} \tag{5}
\end{equation*}
$$

Examples.

Example 1. Solve

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{2 t} \tag{6}
\end{equation*}
$$

Solution.

- Step 1. Solve $y^{\prime \prime}-2 y^{\prime}-3 y=0$. Characteristic equation: $r^{2}-2 r-3=0$ gives $r_{1}=3, r_{2}=-1$. So $y_{1}=e^{3 t}, y_{2}=e^{-t}$.
- Step 2. We have

$$
\begin{equation*}
g(t)=3 e^{2 t}=e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right) \tag{7}
\end{equation*}
$$

with $\alpha=2, n=0, a_{0}=3$. So guess

$$
\begin{equation*}
y_{p}=t^{s} e^{2 t} A_{0} \tag{8}
\end{equation*}
$$

We further notice that $\alpha=2$ is not a root to the characteristic equation, so $s=0$. Thus our final guess is

$$
\begin{equation*}
y_{p}=A_{0} e^{2 t} . \tag{9}
\end{equation*}
$$

Substitute into equation

$$
\begin{equation*}
\left(A_{0} e^{2 t}\right)^{\prime \prime}-2\left(A_{0} e^{2 t}\right)^{\prime}-3\left(A_{0} e^{2 t}\right)=3 e^{2 t} . \tag{10}
\end{equation*}
$$

Simplify:

$$
\begin{equation*}
4 A_{0} e^{2 t}-4 A_{0} e^{2 t}-3 A_{0} e^{2 t}=3 e^{2 t} \tag{11}
\end{equation*}
$$

So $A_{0}=-1$, which means

$$
\begin{equation*}
y_{p}=-e^{2 t} . \tag{12}
\end{equation*}
$$

Note. It's a good idea to check solution at this stage (sorry didn't do this in lecture!):

$$
\begin{equation*}
\left(-e^{2 t}\right)^{\prime \prime}-2\left(-e^{2 t}\right)^{\prime}-3\left(-e^{2 t}\right)=-4 e^{2 t}+4 e^{2 t}+3 e^{2 t}=3 e^{2 t} . \tag{13}
\end{equation*}
$$

- Step 3. Write

$$
\begin{equation*}
y=C_{1} e^{3 t}+C_{2} e^{-t}-e^{2 t} \tag{14}
\end{equation*}
$$

Example 2. Solve

$$
\begin{equation*}
2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \sin t \tag{15}
\end{equation*}
$$

Solution.

- Step 0. Notice that $g(t)=t^{2}+3 \sin t$ satisfies neither $g(t)=e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right)$ nor $g(t)=$ $e^{\alpha t} \cos \beta t\left(a_{0}+\cdots+a_{n} t^{n}\right)$ or $g(t)=e^{\alpha t} \sin \beta t\left(a_{0}+\cdots+a_{n} t^{n}\right)$. However, we can break g into a sum of two functions $g_{1}+g_{2}$ with

$$
\begin{equation*}
g_{1}=t^{2}, \quad g_{2}=3 \sin t \tag{16}
\end{equation*}
$$

Now it is clear that

- $g_{1}=e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right)$ with $\alpha=0, n=2$, and
- $g_{2}=e^{\alpha t} \sin t\left(a_{0}+\cdots+a_{n} t^{n}\right)$ with $\alpha=0, \beta=1, n=0$.

It turns out that we can find the general solution for (note that the homogeneous part $2 y^{\prime \prime}+3 y^{\prime}+y=$ 0 is the same for both equations and therefore they share y_{1}, y_{2}.

$$
\begin{equation*}
2 y^{\prime \prime}+3 y^{\prime}+y=t^{2} \Longrightarrow y=C_{1} y_{1}+C_{2} y_{2}+y_{p 1} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
2 y^{\prime \prime}+3 y^{\prime}+y=3 \sin t \Longrightarrow y=C_{1}^{\prime} y_{1}+C_{2}^{\prime} y_{2}+y_{p 2} \tag{18}
\end{equation*}
$$

and then add them up to get the solution for

$$
\begin{equation*}
2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \sin t \tag{19}
\end{equation*}
$$

as

$$
\begin{equation*}
y=\left(C_{1}+C_{1}^{\prime}\right) y_{1}+\left(C_{2}+C_{2}^{\prime}\right) y_{2}+y_{p 1}+y_{p 2} . \tag{20}
\end{equation*}
$$

But $C_{1}, C_{2}, C_{1}^{\prime}, C_{2}^{\prime}$ are just arbitrary constants, so the above is the same as

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2}+\left(y_{p 1}+y_{p 2}\right) \tag{21}
\end{equation*}
$$

Effectively, we are saying $y_{p}=y_{p 1}+y_{p 2}$.

- Step 1. Solve homogeneous equation $2 y^{\prime \prime}+3 y^{\prime}+y=0$. Characteristic equation: $2 r^{2}+3 r+1=0$. So

$$
\begin{equation*}
r_{1}=-1 / 2, \quad r_{2}=-1, \quad y_{1}=e^{-t / 2}, \quad y_{2}=e^{-t} \tag{22}
\end{equation*}
$$

- \quad Step 2 a . Find $y_{p 1}$.

As $g_{1}=e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right)$ with $\alpha=0, n=2$ we guess

$$
\begin{equation*}
y_{p 1}=t^{s} e^{\alpha t}\left(A_{0}+\cdots+A_{n} t^{n}\right) \tag{23}
\end{equation*}
$$

with $\alpha=0, n=2$. Furthermore as $\alpha=0$ is not a root of the characteristic equation, we set $s=0$ and consequently

$$
\begin{equation*}
y_{p}=A_{0}+A_{1} t+A_{2} t^{2} . \tag{24}
\end{equation*}
$$

Substitute into the equation:

$$
\begin{equation*}
2\left(A_{0}+A_{1} t+A_{2} t^{2}\right)^{\prime \prime}+3\left(A_{0}+A_{1} t+A_{2} t^{2}\right)+\left(A_{0}+A_{1} t+A_{2} t^{2}\right)=t^{2} \tag{25}
\end{equation*}
$$

This is simply

$$
\begin{equation*}
4 A_{2}+3\left(A_{1}+2 A_{2} t\right)+\left(A_{0}+A_{1} t+A_{2} t^{2}\right)=t^{2} \tag{26}
\end{equation*}
$$

which in turn can be written as

$$
\begin{equation*}
\left(4 A_{2}+3 A_{1}+A_{0}\right)+\left(6 A_{2}+A_{1}\right) t+A_{2} t^{2}=t^{2}=0+0 \cdot t+1 \cdot t^{2} \tag{27}
\end{equation*}
$$

We know that if two polynomials are equal:

$$
\begin{equation*}
a_{0}+\cdots+a_{n} t^{n}=b_{0}+\cdots+b_{n} t^{n} \tag{28}
\end{equation*}
$$

then necessarily $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{n}=b_{n}$.
Therefore the "undetermined coefficients" must satisfy

$$
\begin{array}{r}
4 A_{2}+3 A_{1}+A_{0}=0 \\
6 A_{2}+A_{1}=0 \\
A_{2}=1 \tag{31}
\end{array}
$$

This can be solved in the order $A_{2} \rightarrow A_{1} \rightarrow A_{0}$ to get

$$
\begin{equation*}
A_{2}=1, \quad A_{1}=-6, \quad A_{0}=14 \tag{32}
\end{equation*}
$$

Thus

$$
\begin{equation*}
y_{p 1}=t^{2}-6 t+14 \tag{33}
\end{equation*}
$$

Note that $y_{p 1}$ should be checked when there is time to do so.

- \quad Step 2b. Find $y_{p 2}$.

As $g_{2}=e^{\alpha t} \sin t\left(a_{0}+\cdots+a_{n} t^{n}\right)$ with $\alpha=0, \beta=1, n=0$ we guess

$$
\begin{equation*}
y_{p 2}=t^{s} e^{\alpha t} \cos t\left(A_{0}+\cdots+A_{n} t^{n}\right)+t^{s} e^{\alpha t} \sin t\left(B_{0}+\cdots+B_{n} t^{n}\right) \tag{34}
\end{equation*}
$$

with $\alpha=0, \beta=1, n=0$. Further notice that $\alpha+i \beta=i$ is not a root to the characteristic equation. So $s=0$.

Therefore

$$
\begin{equation*}
y_{p 2}=A_{0} \cos t+B_{0} \sin t . \tag{35}
\end{equation*}
$$

Substitute into the equation:

$$
\begin{equation*}
2\left(A_{0} \cos t+B_{0} \sin t\right)^{\prime \prime}+3\left(A_{0} \cos t+B_{0} \sin t\right)^{\prime}+\left(A_{0} \cos t+B_{0} \sin t\right)=3 \sin t \tag{36}
\end{equation*}
$$

This simplifies to

$$
\begin{equation*}
\left(-A_{0}+3 B_{0}\right) \cos t+\left(-B_{0}-3 A_{0}\right) \sin t=3 \sin t=0 \cdot \cos t+3 \sin t \tag{37}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& -A_{0}+3 B_{0}=0 \tag{38}\\
& -B_{0}-3 A_{0}=3 \tag{39}
\end{align*}
$$

Take the 2 nd equation, multiply by 3 and add to the 1 st:

$$
\begin{equation*}
-10 A_{0}=9 \Longrightarrow A_{0}=-\frac{9}{10} . \tag{40}
\end{equation*}
$$

This then gives

$$
\begin{equation*}
B=-\frac{3}{10} . \tag{41}
\end{equation*}
$$

So

$$
\begin{equation*}
y_{p 2}=-\frac{9}{10} \cos t-\frac{3}{10} \sin t \tag{42}
\end{equation*}
$$

Again $y_{p 2}$ should be substituted back into the equation to check whether we have done everything correctly.

- Step 2. Write

$$
\begin{equation*}
y_{p}=y_{p 1}+y_{p 2}=t^{2}-6 t+14-\frac{9}{10} \cos t-\frac{3}{10} \sin t . \tag{43}
\end{equation*}
$$

- Step 3. The solution to the original problem is

$$
\begin{equation*}
y=C_{1} e^{-t / 2}+C_{2} e^{-t}+t^{2}-6 t+14-\frac{9}{10} \cos t-\frac{3}{10} \sin t . \tag{44}
\end{equation*}
$$

