Lecture 09 2nd Order, Linear, Homogeneous, Constant Coefficient

SEP. 23, 2011

Review.

- 2nd Order linear homogeneous equations:

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0 \tag{1}
\end{equation*}
$$

or "standard form":

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

- General solution:

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2} \tag{3}
\end{equation*}
$$

y_{1}, y_{2} form a "fundamental set", that is they are

1. solutions to the equation;
2. linearly independent.

- To check linear independence, use

Two solutions to the same 2 nd order linear equation are linearly independent if and only if their Wronskian $W\left[y_{1}, y_{2}\right]=y_{1}^{\prime} y_{2}-y_{2}^{\prime} y_{1}$ is not zero at some point x_{0}.
That only one point is enough follows from the following Abel's theorem:

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right](x)=W\left[y_{1}, y_{2}\right]\left(x_{0}\right) e^{-\int p} \tag{4}
\end{equation*}
$$

where p is the same $p(x)$ in the standard form of the equation:

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{5}
\end{equation*}
$$

Linear, homogeneous, 2nd order, constant coefficient.

- In other words

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{6}
\end{equation*}
$$

- How to solve:
- Step 1: Write down the characteristic equation:

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{7}
\end{equation*}
$$

- Step 2: Solve it:

$$
\begin{equation*}
r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2} \tag{8}
\end{equation*}
$$

- Step 3: Write down the general solution.
- Case 1. r_{1}, r_{2} real and different: ${ }^{1}$

$$
\begin{equation*}
y=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} \tag{9}
\end{equation*}
$$

- Case 2. r_{1}, r_{2} complex. In this case they have to look like

$$
\begin{equation*}
r_{1}=\alpha+i \beta, \quad r_{2}=\alpha-i \beta \tag{10}
\end{equation*}
$$

The general solution is

$$
\begin{equation*}
y=C_{1} e^{\alpha t} \cos \beta t+C_{2} e^{\alpha t} \sin \beta t \tag{11}
\end{equation*}
$$

[^0]- Case 3. $r_{1}=r_{2}$ real. In this case $y_{1}=e^{r_{1} t}$ and it turns out that $t e^{r_{1} t}$ always give the 2 nd solution (doesn't matter what a, b, c are!). The general solution is

$$
\begin{equation*}
y=C_{1} e^{r_{1} t}+C_{2} t e^{r_{1} t} \tag{12}
\end{equation*}
$$

- Explanations.
- Why it must be

$$
\begin{equation*}
r_{1}=\alpha+i \beta, \quad r_{2}=\alpha-i \beta \tag{13}
\end{equation*}
$$

Recall the formula

$$
\begin{equation*}
r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{14}
\end{equation*}
$$

When r_{1} is complex, we necessarily have $b^{2}-4 a c<0$. So $\sqrt{b^{2}-4 a c}=i \sqrt{4 a c-b^{2}}$ (this latter square root is a positive number!). Now clearly

$$
\begin{equation*}
r_{1,2}=\alpha \pm i \beta \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha=\frac{-b}{2 a}, \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a} . \tag{16}
\end{equation*}
$$

We can also reach the same conclusion without using the detailed formula. Recall that if r_{1}, r_{2} solves

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{17}
\end{equation*}
$$

then the following factorization is true

$$
\begin{equation*}
a r^{2}+b r+c=a\left(r-r_{1}\right)\left(r-r_{2}\right) \tag{18}
\end{equation*}
$$

As

$$
\begin{equation*}
\left(r-r_{1}\right)\left(r-r_{2}\right)=r^{2}-\left(r_{1}+r_{2}\right) r+r_{1} r_{2} \tag{19}
\end{equation*}
$$

we immediately have

$$
\begin{equation*}
r_{1}+r_{2}=-\frac{b}{a} \tag{20}
\end{equation*}
$$

which is real.

- Why are

$$
\begin{equation*}
e^{\alpha t} \cos \beta t \text { and } e^{\alpha t} \sin \beta t \tag{21}
\end{equation*}
$$

solutions?
The sleekest way of understanding this is the following. Consider our equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{22}
\end{equation*}
$$

and a complex solution $y_{1}=z_{1}+i z_{2}$ where z_{1}, z_{2} are real functions. It turns out that z_{1}, z_{2} must both be real solutions of the same equation.

To see this, substitute y be $y_{1}=z_{1}+i z_{2}$:

$$
\begin{equation*}
a\left(z_{1}+i z_{2}\right)^{\prime \prime}+b\left(z_{1}+i z_{2}\right)^{\prime}+c\left(z_{1}+i z_{2}\right)=0 \tag{23}
\end{equation*}
$$

Expand and organize the left hand side:

$$
\begin{align*}
a\left(z_{1}+i z_{2}\right)^{\prime \prime}+b\left(z_{1}+i z_{2}\right)^{\prime}+c\left(z_{1}+i z_{2}\right) & =a z_{1}^{\prime \prime}+i a z_{2}^{\prime \prime}+b z_{1}^{\prime}+i b z_{2}^{\prime}+c z_{1}+i c z_{2} \\
& =\left[a z_{1}^{\prime \prime}+b z_{1}^{\prime}+c z_{1}\right]+i\left[a z_{2}^{\prime \prime}+b z_{2}^{\prime}+c z_{2}\right] \tag{24}
\end{align*}
$$

Thus we have

$$
\begin{equation*}
\left[a z_{1}^{\prime \prime}+b z_{1}^{\prime}+c z_{1}\right]+i\left[a z_{2}^{\prime \prime}+b z_{2}^{\prime}+c z_{2}\right]=0 \tag{25}
\end{equation*}
$$

As a complex number being 0 is the same as both its real part and imaginary part are 0 , we get

$$
\begin{equation*}
a z_{1}^{\prime \prime}+b z_{1}^{\prime}+c z_{1}=0 ; \quad a z_{2}^{\prime \prime}+b z_{2}^{\prime}+c z_{2}=0 \tag{26}
\end{equation*}
$$

- How did we get $t e^{r_{1} t}$?

There are many ways. One is called "reduction of order".
Reduction of order: A method of finding a second solution to a linear differential equation when one solution is already known.

More specifically, once y_{1} is obtained, we try to find a function z such that the product $z y_{1}$ is also a solution. What's beautiful is that, the equation for z is always linear, and further more is always one order less than the equation for y, once we introduce a new unknown $v=z^{\prime}$. In our case, the equation for $v=z^{\prime}$ will be 1st order and linear - and can be readily solved.

Example 1. Solve $y^{\prime \prime}+4 y^{\prime}+4 y=0$.
First solve the characteristic equation

$$
\begin{equation*}
r^{2}+4 r+4=0 \tag{27}
\end{equation*}
$$

which gives $r_{1}=r_{2}=-2$. So $y_{1}=e^{-2 t}$.
To find y_{2}, set $y_{2}=z y_{1}$. Substitute into the equation:

$$
\begin{equation*}
\left(z y_{1}\right)^{\prime \prime}+4\left(z y_{1}\right)^{\prime}+4\left(z y_{1}\right)=0 . \tag{28}
\end{equation*}
$$

Compute

$$
\begin{align*}
\left(z y_{1}\right)^{\prime} & =z^{\prime} y_{1}+z y_{1}^{\prime} \tag{29}\\
\left(z y_{1}\right)^{\prime \prime}=\left(\left(z y_{1}\right)^{\prime}\right)^{\prime} & =\left(z^{\prime} y_{1}+z y_{1}^{\prime}\right)^{\prime}=z^{\prime \prime} y_{1}+2 z^{\prime} y_{1}^{\prime}+z y_{1}^{\prime \prime} \tag{30}
\end{align*}
$$

Now we have

$$
\begin{equation*}
\left[z^{\prime \prime} y_{1}+2 z^{\prime} y_{1}^{\prime}+z y_{1}^{\prime \prime}\right]+4\left[z^{\prime} y_{1}+z y_{1}^{\prime}\right]+4 z y_{1}=0 \tag{31}
\end{equation*}
$$

This can be organized to

$$
\begin{equation*}
y_{1} z^{\prime \prime}+\left(2 y_{1}^{\prime}+4 y_{1}\right) z^{\prime}+\left[y_{1}^{\prime \prime}+4 y_{1}^{\prime}+4 y_{1}\right] z=0 . \tag{32}
\end{equation*}
$$

As y_{1} is a solution, the last term is 0 . The equation for z becomes

$$
\begin{equation*}
y_{1} z^{\prime \prime}+\left(2 y_{1}^{\prime}+4 y_{1}\right) z^{\prime}=0 \tag{33}
\end{equation*}
$$

Now recall $y_{1}=e^{-2 t}$. This gives $2 y_{1}^{\prime}+4 y_{1}=0$. So finally the equation for z becomes

$$
\begin{equation*}
y_{1} z^{\prime \prime}=0 \Longleftrightarrow z^{\prime \prime}=0 \Longleftrightarrow z=C_{1}+C_{2} t \tag{34}
\end{equation*}
$$

Recall that we only need one more solution, we can simply take $z=t$ and get $y_{2}=t e^{-2 t}$. The general solution is then

$$
\begin{equation*}
y=C_{1} e^{-2 t}+C_{2} t e^{-2 t} \tag{35}
\end{equation*}
$$

Remark 2. A different approach is as follows. What we actually get is the following: For any $C_{1}, C_{2}, y=z y_{1}=\left(C_{1}+C_{2} t\right) e^{-2 t}$ solves the equation. But this no other than

$$
\begin{equation*}
y=C_{1} e^{-2 t}+C_{2} t e^{-2 t} \tag{36}
\end{equation*}
$$

and we have already get the general solution!
Remark 3. When given such a problem in exams, there is no need to "set $y_{2}=z y_{1}$ " and derive z equation. All you need to do is

1. Solve the characteristic equation;
2. Write down the general solution.

For the above problem, the answer should look like
Solution. The characteristic equation is

$$
\begin{equation*}
r^{2}+4 r+4=0 \tag{37}
\end{equation*}
$$

which has repeated root at $r=-2$. So the general solution is

$$
\begin{equation*}
y=C_{1} e^{-2 t}+C_{2} t e^{-2 t} \tag{38}
\end{equation*}
$$

- Examples.
- Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+5 y^{\prime}+6=0 ; \quad y(3)=2 ; y^{\prime}(3)=3 \tag{39}
\end{equation*}
$$

Solution. First we get the general solution. Solving the characteristic equation

$$
\begin{equation*}
r^{2}+5 r+6=0 \tag{40}
\end{equation*}
$$

we get

$$
\begin{equation*}
r_{1,2}=-2,-3 \tag{41}
\end{equation*}
$$

So the general solution is

$$
\begin{equation*}
y=C_{1} e^{-2 t}+C_{2} e^{-3 t} \tag{42}
\end{equation*}
$$

Now we use the initial conditions to fix the constants. First preparation:

$$
\begin{equation*}
y^{\prime}=-2 C_{1} e^{-2 t}-3 C_{2} e^{-3 t} \tag{43}
\end{equation*}
$$

So

$$
\begin{gather*}
y(3)=2 \Longrightarrow C_{1} e^{-6}+C_{2} e^{-9}=2 \tag{44}\\
y^{\prime}(3)=3 \Longrightarrow-2 C_{1} e^{-6}-3 C_{2} e^{-9}=3 \tag{45}
\end{gather*}
$$

Multiply the first equation by 2 and add to the second, we get

$$
\begin{equation*}
-C_{2} e^{-9}=7 \Longrightarrow C_{2}=-7 e^{9} \tag{46}
\end{equation*}
$$

Now $C_{1} e^{-6}+C_{2} e^{-9}=2$ becomes

$$
\begin{equation*}
C_{1} e^{-6}-7=2 \Longrightarrow C_{1}=9 e^{6} \tag{47}
\end{equation*}
$$

So the final answer is

$$
\begin{equation*}
y=9 e^{6} e^{-2 t}-7 e^{9} e^{-3 t}=9 e^{6-2 t}-7 e^{9-3 t} \tag{48}
\end{equation*}
$$

Note that the last step of simplification is not required.

- Solve

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+5 y=0, \quad y(3)=2, \quad y^{\prime}(3)=3 \tag{49}
\end{equation*}
$$

Solution. First we get general solution. Solving the characteristic equation

$$
\begin{equation*}
r^{2}+4 r+5=0 \tag{50}
\end{equation*}
$$

we get

$$
\begin{equation*}
r_{1,2}=\frac{-4 \pm \sqrt{4^{2}-4 \times 1 \times 5}}{2}=-2 \pm i \tag{51}
\end{equation*}
$$

So general solution is

$$
\begin{equation*}
y=C_{1} e^{-2 t} \cos t+C_{2} e^{-2 t} \sin t \tag{52}
\end{equation*}
$$

To use the initial conditions, first prepare

$$
\begin{equation*}
y^{\prime}=\left[-2 e^{-2 t} \cos t-e^{-2 t} \sin t\right] C_{1}+\left[-2 e^{-2 t} \sin t+e^{-2 t} \cos t\right] C_{2} \tag{53}
\end{equation*}
$$

Now

$$
\begin{gather*}
y(3)=2 \Longrightarrow C_{1} e^{-6} \cos 3+C_{2} e^{-6} \sin 3=2 \tag{54}\\
y^{\prime}(3)=3 \Longrightarrow\left[-2 e^{-6} \cos 3-e^{-6} \sin 3\right] C_{1}+\left[-2 e^{-6} \sin 3+e^{-6} \cos 3\right] C_{2}=3 \tag{55}
\end{gather*}
$$

Simplify a bit:

$$
\begin{align*}
(\cos 3) C_{1}+(\sin 3) C_{2} & =2 e^{6} \tag{56}\\
{[-2 \cos 3-\sin 3] C_{1}+[-2 \sin 3+\cos 3] C_{2} } & =3 e^{6}
\end{align*}
$$

Multiply the first equation by $2+\frac{\sin 3}{\cos 3}$ and add to the second we get

Note that

$$
\begin{equation*}
\left[\frac{(\sin 3)^{2}}{\cos 3}+\cos 3\right] C_{2}=7 e^{6}+\frac{2 \sin 3}{\cos 3} e^{6} \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\frac{(\sin 3)^{2}}{\cos 3}+\cos 3=\frac{1-(\cos 3)^{2}}{\cos 3}+\cos 3=\frac{1}{\cos 3} \tag{58}
\end{equation*}
$$

So finally

$$
\begin{equation*}
C_{2}=7(\cos 3) e^{6}+2(\sin 3) e^{6} \tag{59}
\end{equation*}
$$

Substitute back into

$$
\begin{equation*}
(\cos 3) C_{1}+(\sin 3) C_{2}=2 e^{6} \tag{60}
\end{equation*}
$$

we get

$$
\begin{equation*}
C_{1}=2(\cos 3) e^{6}-7(\sin 3) e^{6} \tag{61}
\end{equation*}
$$

Final answer:

$$
\begin{equation*}
y=[2 \cos 3-7 \sin 3] e^{6-2 t} \cos t+[7 \cos 3+2 \sin 3] e^{6-2 t} \sin t \tag{62}
\end{equation*}
$$

[^0]: 1. In most books t instead of x is used when discussing such equations. The reason is that originally most initial value problems for ordinary differential equations come from mechanics where t (time) is the "universal variable". On the other hand, in discussions of boundary value problems x dominates.
