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How to check your answer.

• If your solution is explicit: y =Y (x, C)1.
Write your equation in the form y ′ = f(x, y) or M(x, y) + N(x, y) y ′ = 0. Then substitute

y = Y (x, C) into the equation. If the solution is correct, the equation should be reduced to identity.

• If your solution is implicit: u(x, y)= C.
Write your equation in the form M(x, y) dx + N(x, y) dy = 0. Then compute

du(x, y) =
∂u(x, y)

∂x
dx+

∂u(x, y)

∂y
dy (1)

If du and M dx+ N dy differ only by a multiplicative factor, that is if there is µ(x, y) such that

du = µ(x, y) (M(x, y) dx +N(x, y) dy) (2)

then your answer is correct. Otherwise it is not correct.

Example 1. Check whether x2 + y2 = C solves x (x2 + y2) dx + y (x2 + y2) dy = 0.
We compute

d(x2 + y2)= 2 xdx + 2 y dy =
2

x2 + y2
[x (x2 + y2) dx+ y (x2 + y2) dy]. (3)

Therefore the solution is correct.

Existence and Uniqueness.

• Given a DE,

◦ Q1:

Is the solution unique?

◦ Q2:

Does the solution exist?

• The answer to the above is the following theorem.

Theorem 2. (Existence and Uniqueness) If f(x, y) and
∂f

∂y
(x, y) are bounded for all (x, y) near

(x0, y0), then the equation

y ′= f(x, y), y(x0)= y0 (4)

has a unique solution at least for x close to x0.

• Examples.

◦ y ′= y, y(0)=0. We have x0 =0, y0 =0, f(x, y)= y. Thus
∂f

∂y
=1. We see that it is bounded for

any x, y. So in particular, the solution to our initial value problem exists and is unique.

◦ y ′= y1/2, y(0)=0. In this case
∂f

∂y
=

1

2
y−1/2 which is not bounded for (x, y) near (0, 0). So we

cannot expect both existence and uniqueness for this problem. As y = 0 is clearly a solution
(that is solutions clearly exist), we expect the solution to be not unique, which is indeed the
case.

1. The dependence on the arbitrary constant C may or may not be simply y =Y (x)+C. For example, the general solution

to a linear equation looks like y =Y (x)+
C

µ(x)
.
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◦ y ′= y1/2, y(0)=1.
∂f

∂y
is still

1

2
y−1/2 but it is bounded close to (x0, y0)=(0,1). As a consequence,

we expect the solution to this initial value problem to exist and be unique, at least as long as

y stays away from 0 (the only value of y that makes
∂f

∂y
infinity). In fact, taking into account

the fact that y1/2 > 0 and therefore y ′ > 0 which means y keeps increasing, we see that y > 1
and the existence and uniqueness can be extended to all x.

• Proof of uniqueness.

The proof consists of the following key steps.

◦ Write the equation into the following equivalent integral equation:

y(x) = y0 +

∫

x0

x

f(τ , y(τ )) dτ . (5)

We check that

y(x0)= y0 +

∫

x0

x0

f(τ , y(τ )) dτ = y0 + 0 = y0; (6)

y ′(x) =
d

dx
(y0)+

d

dx

∫

x0

x0

f(τ , y(τ )) dτ = 0 + f(x, y(x)) = f(x, y(x)). (7)

◦ We need to prove the following: If

y(x) = y0 +

∫

x0

x

f(τ , y(τ )) dτ . (8)

and

z(x) = y0 +

∫

x0

x

f(τ , z(τ )) dτ. (9)

the necessarily y = z for all x. To do this we take the difference:

y(x)− z(x)=

∫

x0

x

[f(τ , y(τ ))− f(τ , z(τ ))] dτ . (10)

◦ The key idea is to use the following argument: if a number a satisfies

|a|6 r |a| (11)

for a factor r < 1, then a =0.

◦ In our case clearly a should be y(x) − z(x). Thus we need to create y − z in the right hand
side. This is done by using the Mean Value Theorem:

f(a)− f(b)= f ′(ξ) (a− b) (12)

for some ξ between a, b.

This leads to

f(τ , y(τ ))− f(τ , z(τ ))=
∂f

∂y
(ξ) (y(τ )− z(τ )). (13)

Here ξ is some number between y(τ ) and z(τ ).

◦ Our equation now becomes

y(x)− z(x) =

∫

x0

x ∂f

∂y
(ξ) (y(τ )− z(τ )) dτ . (14)

◦ Back to our main idea

|a|6 r |a|, r < 1 (15)

means a= 0. We observe that this is no longer true if we remove the absolute value:

a 6 r a together with r < 1 do not imply a =0. (16)
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So we have to put absolute value on

|y(x)− z(x)| =

∣

∣

∣

∣

∫

x0

x ∂f

∂y
(ξ) (y(τ )− z(τ)) dτ

∣

∣

∣

∣

6

∫

x0

x
∣

∣

∣

∣

∂f

∂y
(ξ) (y(τ )− z(τ))

∣

∣

∣

∣

dτ

=

∫

x0

x
∣

∣

∣

∣

∂f

∂y
(ξ)

∣

∣

∣

∣

|y(τ )− z(τ )| dτ (17)

◦ We know that
∂f

∂y
is bounded. Let M be a constant such that

∣

∣

∣

∂f

∂y

∣

∣

∣
6M . The above now becomes

|y(x)− z(x)|6 M

∫

x0

x

|y(τ )− z(τ )| dτ . (18)

◦ Now this is almost2

|y(x)− z(x)|6M (x− x0) |y(x)− z(x)|. (19)

We see that it becomes the

|a|6 r |a|, r < 1 (20)

situation for all x so close to x0 that |x−x0|M < 1, or equivalently |x− x0|< M−1.

◦ We have proved: If y(x0)= z(x0) then y(x)= z(x) for all |x−x0|<M−1. Now we can take any
point x in this interval as the new x0 and repeat the above argument, and obtain y(x)= z(x)
for all |x−x0|< 2M−1. Doing this again gives y = z for |x−x0|< 3M−1. As this can be done
again and again, we see that y = z for all x.3

2. See challenge problems of this week.

3. As long as

∣

∣

∣

∂f

∂y

∣

∣

∣
6M still holds.
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