Lecture 05 Integrating Factors

SEP. 16, 2011

Review.

- Exact equations:

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1}
\end{equation*}
$$

is "exact" when

$$
\begin{equation*}
\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} \tag{2}
\end{equation*}
$$

To solve, find $u(x, y)$ such that

$$
\begin{equation*}
\frac{\partial u}{\partial x}=M, \quad \frac{\partial u}{\partial y}=N \tag{3}
\end{equation*}
$$

and write down the general solution

$$
\begin{equation*}
u(x, y)=C \tag{4}
\end{equation*}
$$

In case of initial value problem, the initial condition is of the form $y\left(x_{0}\right)=y_{0}$, and the solution becomes

$$
\begin{equation*}
u(x, y)=u\left(x_{0}, y_{0}\right) \tag{5}
\end{equation*}
$$

- Linear equations:

$$
\begin{equation*}
y^{\prime}+p(x) y=g(x) \tag{6}
\end{equation*}
$$

Calculate integrating factor:

$$
\begin{equation*}
\mu(x)=e^{\int p} \tag{7}
\end{equation*}
$$

The equation becomes

$$
\begin{equation*}
(\mu y)^{\prime}=\mu g \tag{8}
\end{equation*}
$$

Integrate:

$$
\begin{equation*}
\mu(x) y=\int \mu(x) g(x)+C \Longrightarrow y=\frac{1}{\mu(x)} \int \mu(x) g(x)+\frac{C}{\mu(x)} \tag{9}
\end{equation*}
$$

In case of initial value problem, substitute $y=y_{0}, x=x_{0}$ into the formula of general solutions to obtain C.

Remark 1.

- If the equation is given as

$$
\begin{equation*}
a(x) y^{\prime}+b(x) y+c(x)=0 \tag{10}
\end{equation*}
$$

need to first re-write

$$
\begin{equation*}
y^{\prime}+\frac{b(x)}{a(x)} y=-\frac{c(x)}{a(x)} \Longrightarrow p(x)=\frac{b(x)}{a(x)}, \quad g(x)=-\frac{c(x)}{a(x)} . \tag{11}
\end{equation*}
$$

- Common mistake:

$$
\begin{equation*}
y^{\prime}=3 x y+6 \Longrightarrow p(x)=3 x \tag{12}
\end{equation*}
$$

Separable equations.

The second class of non-exact equations that can be solved easily is separable equations, which looks like

$$
\begin{equation*}
y^{\prime}=p(y) g(x) \tag{13}
\end{equation*}
$$

To solve this equation, move all y 's to left and all x 's to right:

$$
\begin{equation*}
y^{\prime}=p(y) g(x) \Longrightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=p(y) g(x) \Longrightarrow \frac{\mathrm{d} y}{p(y)}=g(x) \mathrm{d} x \tag{14}
\end{equation*}
$$

Note the during the last step (dividing by $p(y)$), all constant solutions $y=y_{i}, i=1,2,3, \ldots$, where y_{i} are such that $p\left(y_{i}\right)=0$, are lost. ${ }^{1}$ So we should add them back.

To summarize: The general solution to a separable equation

$$
\begin{equation*}
y^{\prime}=p(y) g(x) \tag{15}
\end{equation*}
$$

is

$$
\begin{equation*}
P(y)-G(x)=C \text { and } y=y_{i}, \quad i=1,2,3, \ldots \tag{16}
\end{equation*}
$$

with P, G the primitives of $1 / p(y)$ and $g(x)$, and y_{i} satisfies $p\left(y_{i}\right)=0$.
Example 2. Solve

$$
\begin{equation*}
y^{\prime}=3 x y^{2} \tag{17}
\end{equation*}
$$

Solution. Separate the variables:

Integrate

$$
\begin{equation*}
\frac{\mathrm{d} y}{y^{2}}=3 x \mathrm{~d} x \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{1}{y}=\frac{3}{2} x^{2}+C \Longrightarrow y=-\frac{1}{\frac{3}{2} x^{2}+C} \tag{19}
\end{equation*}
$$

Add back the constant solutions:

$$
\begin{equation*}
y^{2}=0 \Longrightarrow y=0 \tag{20}
\end{equation*}
$$

So the answer is

$$
\begin{equation*}
y=-\frac{1}{\frac{3}{2} x^{2}+C} \text { and } y=0 \tag{21}
\end{equation*}
$$

Homogeneous equation.

A "homogeneous equation" is of the form

$$
\begin{equation*}
y^{\prime}=H(y / x) \tag{22}
\end{equation*}
$$

It can be transformed to separable through setting $v=y / x$.
Example 3. Solve

Solution.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}+y^{2}}{2 x y} \tag{23}
\end{equation*}
$$

Notice that the right hand side is simply $\frac{1}{2} \frac{x}{y}+\frac{1}{2} \frac{y}{x}$ so the equation is homogeneous. Let $v=y / x$. We have $y=v x \Longrightarrow y^{\prime}=x v^{\prime}+v$. So the equation becomes

$$
\begin{equation*}
x v^{\prime}+v=\frac{1}{2} \frac{1}{v}+\frac{1}{2} v \Longrightarrow x v^{\prime}=\frac{1-v^{2}}{2 v} \tag{24}
\end{equation*}
$$

Separate the variables:

$$
\begin{equation*}
\frac{2 v \mathrm{~d} v}{1-v^{2}}=\frac{\mathrm{d} x}{x} \tag{25}
\end{equation*}
$$

Integrate

$$
\begin{equation*}
\int \frac{2 v \mathrm{~d} v}{1-v^{2}}=-\int \frac{2 v \mathrm{~d} v}{v^{2}-1}=-\int \frac{\mathrm{d} v^{2}}{v^{2}-1}=-\int \frac{\mathrm{d}\left(v^{2}-1\right)}{v^{2}-1}=-\ln \left|v^{2}-1\right|, \quad \int \frac{\mathrm{d} x}{x}=\ln |x| \tag{26}
\end{equation*}
$$

So we get

$$
\begin{equation*}
\ln \left|\left(v^{2}-1\right) x\right|=C \tag{27}
\end{equation*}
$$

Add back the constant solutions:

$$
\begin{equation*}
\frac{1-v^{2}}{2 v}=0 \Longrightarrow v= \pm 1 \tag{28}
\end{equation*}
$$

So the solutions (for the v equation) are

$$
\begin{equation*}
\ln \left|\left(v^{2}-1\right) x\right|=C, \quad v= \pm 1 \tag{29}
\end{equation*}
$$

[^0]We can simplify this through the following.

$$
\begin{array}{ll}
& \ln \left|\left(v^{2}-1\right) x\right|=\text { arbitrary constant } \\
\text { is the same as } & \left|\left(v^{2}-1\right) x\right|=e^{\text {arbitrary constant }} \\
\text { is the same as } & \left|\left(v^{2}-1\right) x\right|=\text { arbitrary positive constant } \\
\text { is the same as } & \left(v^{2}-1\right) x=\text { arbitrary non-zero constant. }
\end{array}
$$

Now it is clear that

$$
\begin{equation*}
\ln \left|\left(v^{2}-1\right) x\right|=C, \quad v= \pm 1 \tag{30}
\end{equation*}
$$

is the same as

$$
\begin{equation*}
\left(v^{2}-1\right) x=C \tag{31}
\end{equation*}
$$

where C is an arbitrary constant.
Finally we go back to y. Recall $v=y / x$. So the solution becomes
which simplify to

$$
\begin{equation*}
\left(\frac{y^{2}}{x^{2}}-1\right) x=C \tag{32}
\end{equation*}
$$

which simplify to

$$
\begin{equation*}
y^{2}-x^{2}=C x \tag{33}
\end{equation*}
$$

General non-exact equations.

- Let's review what exactly has been done.
- For exact equation, we solve it.
- For linear equation, we multiply by $\mu(x)=e^{\int p}$. Now take a closer look:

$$
\begin{equation*}
y^{\prime}+p(x) y=g(x) \Longleftrightarrow[p(x) y-g(x)] \mathrm{d} x+\mathrm{d} y=0 \tag{34}
\end{equation*}
$$

Multiply by $\mu(x)$:

$$
\begin{equation*}
[\mu(x) p(x) y-\mu(x) g(x)] \mathrm{d} x+\mu(x) \mathrm{d} y=0 \tag{35}
\end{equation*}
$$

Check

$$
\begin{gather*}
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}[\mu(x) p(x) y-\mu(x) g(x)]=\mu(x) p(x) \tag{36}\\
\frac{\partial N}{\partial x}=\frac{\partial \mu(x)}{\partial x}=\mu^{\prime}(x) \tag{37}
\end{gather*}
$$

They are the same exactly when $\mu=e^{\int p}$!
By multiplying the equation using μ, we have transformed the equation to exact.

- For separable equation, we divide by $\frac{1}{p(y)}$. The equation changes to

$$
\begin{equation*}
-g(x) \mathrm{d} x+\frac{1}{p(y)} \mathrm{d} y=0 \tag{38}
\end{equation*}
$$

which is clearly exact.

- Summary:

The only strategy we have used so far is: Multiply the equation by some "integrating factor" and make the equation exact.

- For linear equation, the integrating factor is a function of x;
- For separable equation, the integrating factor is a function of y.
- What if we use a general function $\mu(x, y)$? Will we be able to transform any equation to an exact one?
- In theory, yes. For any equation

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{39}
\end{equation*}
$$

there exists $\mu(x, y)$ such that

$$
\begin{equation*}
(\mu(x, y) M(x, y)) \mathrm{d} x+(\mu(x, y) N(x, y)) \mathrm{d} y=0 \tag{40}
\end{equation*}
$$

is exact.

- In practice, no.

Reason: To find such $\mu(x, y)$ in the general case, we need to solve the so-called "characteristics equation" first. This "characteristics equation" is exactly

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{41}
\end{equation*}
$$

- The equation satisfied by μ :

$$
\begin{equation*}
\frac{\partial}{\partial y}(\mu(x, y) M(x, y))=\frac{\partial}{\partial x}(\mu(x, y) N(x, y)) \tag{42}
\end{equation*}
$$

simplifies to the equation for μ :

$$
\begin{equation*}
M(x, y) \frac{\partial \mu}{\partial y}-N(x, y) \frac{\partial \mu}{\partial x}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu \tag{43}
\end{equation*}
$$

- A suggetion: Instead of remembering the above equation, it is a better idea (less prone to mistakes) to remember how it is derived: $\mu M \mathrm{~d} x+\mu N \mathrm{~d} y=0$ is exact.

[^0]: 1. Those who are curious can try to show that these are indeed all the constant solutions to the equation.
