Lecture 03 Exact Equations

SEP. 12, 2011

Review.

	Differential Equation	General Solution
Simplest	$y^{\prime}=f(x)$	$y=F(x)+C$ here $F^{\prime}=f$
Generalization	$\mathrm{d} u(x, y)=0$	$u(x, y)=C$

Table 1. Equations we can solve so far

- Equations we will meet:

$$
\begin{aligned}
& \circ \\
& y^{\prime}=f(x, y) \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \hline(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \\
&
\end{aligned}
$$

Note: These are just different ways of writing the same equation.

- How to "bridge the gap"?
- Try to establish relation between $M \mathrm{~d} x+N \mathrm{~d} y=0$ and $\mathrm{d} u=0$.

Exact equations.

- Recall

$$
\begin{equation*}
\mathrm{d} u(x, y)=\frac{\partial u(x, y)}{\partial x} \mathrm{~d} x+\frac{\partial u(x, y)}{\partial y} \mathrm{~d} y \tag{1}
\end{equation*}
$$

Example 1. Compute $\mathrm{d}\left(e^{x y}+x^{3} y\right)$.
We compute

$$
\begin{align*}
\frac{\partial}{\partial x}\left(e^{x y}+x^{3} y\right) & =\frac{\partial\left(e^{x y}\right)}{\partial x}+\frac{\partial\left(x^{3} y\right)}{\partial x} \\
& =e^{x y} \frac{\partial(x y)}{\partial x}+3 x^{2} y \quad\left(\text { Note that } y \text { is just "constant" to } \frac{\partial}{\partial x}!\right) \\
& =y e^{x y}+3 x^{2} y \tag{2}
\end{align*}
$$

Similarly we can compute

Therefore

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(e^{x y}+x^{3} y\right)=x e^{x y}+x^{3} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{d}\left(e^{x y}+x^{3} y\right)=\left(y e^{x y}+3 x^{2} y\right) \mathrm{d} x+\left(x e^{x y}+x^{3}\right) \mathrm{d} y \tag{4}
\end{equation*}
$$

- Give $M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0$, if we can find $u(x, y)$ such that

$$
\begin{equation*}
\frac{\partial u}{\partial x}=M, \quad \frac{\partial u}{\partial y}=N \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \text { becomes } \mathrm{d} u(x, y)=0 \tag{6}
\end{equation*}
$$

and the general solution is

$$
\begin{equation*}
u(x, y)=C \tag{7}
\end{equation*}
$$

Example 2. We already know

$$
\begin{equation*}
\mathrm{d}\left(e^{x y}+x^{3} y\right)=\left(y e^{x y}+3 x^{2} y\right) \mathrm{d} x+\left(x e^{x y}+x^{3}\right) \mathrm{d} y \tag{8}
\end{equation*}
$$

so we can immediately get the general solution of

$$
\begin{equation*}
\left(y e^{x y}+3 x^{2} y\right) \mathrm{d} x+\left(x e^{x y}+x^{3}\right) \mathrm{d} y=0 \tag{9}
\end{equation*}
$$

as

$$
\begin{equation*}
e^{x y}+x^{3} y=C \tag{10}
\end{equation*}
$$

Note that this is an "implicit formula" for the solution. And it is impossible to write the above as $y=\cdots .{ }^{1}$

- An equation $M \mathrm{~d} x+N \mathrm{~d} y=0$ such that there is u satisfying $\mathrm{d} u=M \mathrm{~d} x+N \mathrm{~d} y$ is called "exact".
- Two questions:
- Q1: Are all (1st order) differential equations exact?
- Q2: When an equation is exact, how do we find u ?
- How do we find u ? (Ans to Q2)
- Bruteforce integration.

Example 3. We know that $\left(y e^{x y}+3 x^{2} y\right) \mathrm{d} x+\left(x e^{x y}+x^{3}\right) \mathrm{d} y=0$ is exact. Find u.
We need u to satisfy

$$
\begin{equation*}
\frac{\partial u}{\partial x}=y e^{x y}+3 x^{2} y ; \quad \frac{\partial u}{\partial y}=x e^{x y}+x^{3} \tag{11}
\end{equation*}
$$

The idea is to use the two conditions one by one.

- We can first use

$$
\begin{equation*}
\frac{\partial u}{\partial x}=y e^{x y}+3 x^{2} y \tag{12}
\end{equation*}
$$

Integrate in x : (when doing this, remember that y can be treated as constant!)

$$
\begin{align*}
u(x, y) & =\int\left(y e^{x y}+3 x^{2} y\right) \mathrm{d} x \\
& =\int y e^{x y} \mathrm{~d} x+\int 3 x^{2} y \mathrm{~d} x \\
& =\int e^{x y} \mathrm{~d}(x y)+y \int 3 x^{2} \mathrm{~d} x \\
& =e^{x y}+x^{3} y+g(y) \tag{13}
\end{align*}
$$

Notice that instead of "arbitrary constant" we have "arbitrary function of y ". This is because when integrating with respect to x, y should be treated as constant.

To summarize,

$$
\begin{equation*}
\frac{\partial u}{\partial x}=y e^{x y}+3 x^{2} y \tag{14}
\end{equation*}
$$

requires our u to take the special form

$$
\begin{equation*}
u(x, y)=e^{x y}+x^{3} y+g(y) \tag{15}
\end{equation*}
$$

- Now use

$$
\begin{equation*}
\frac{\partial u}{\partial y}=x e^{x y}+x^{3} \tag{16}
\end{equation*}
$$

Our partial knowledge of u gives

$$
\begin{equation*}
x e^{x y}+x^{3}=\frac{\partial}{\partial y}\left[e^{x y}+x^{3} y+g(y)\right]=x e^{x y}+x^{3}+g^{\prime}(y) \tag{17}
\end{equation*}
$$

[^0]which reduces to
\[

$$
\begin{equation*}
g^{\prime}(y)=0 . \tag{18}
\end{equation*}
$$

\]

In other words, if we take any $g(y)$ satisfying $g^{\prime}(y)=0$ and write $u(x, y)=e^{x y}+x^{3} y+$ $g(y)$, we would have a u satisfying

$$
\begin{equation*}
\frac{\partial u}{\partial x}=y e^{x y}+3 x^{2} y ; \quad \frac{\partial u}{\partial y}=x e^{x y}+x^{3} \tag{19}
\end{equation*}
$$

- So

$$
\begin{equation*}
u(x, y)=e^{x y}+x^{3} y+C \tag{20}
\end{equation*}
$$

for any constant C.
Remark 4. We can also start from $\frac{\partial u}{\partial y}=x e^{x y}+x^{3}$ and obtain the same result.

- Algorithm.

Given $M(x, y), N(x, y)$, find $u(x, y)$ such that $\frac{\partial u}{\partial x}=M, \frac{\partial u}{\partial y}=N$.

- Approach 1.

1. Step 1. Write

$$
\begin{equation*}
u(x, y)=\int M(x, y) \mathrm{d} x+g(y) \tag{21}
\end{equation*}
$$

2. Step 2. Determine g through

$$
\begin{equation*}
N(x, y)=\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(\int M(x, y) \mathrm{d} x\right)+g^{\prime}(y) \tag{22}
\end{equation*}
$$

3. Step 3. Write down $u(x, y)$.

- Approach 2.

1. Step 1. Write

$$
\begin{equation*}
u(x, y)=\int N(x, y) \mathrm{d} y+f(x) \tag{23}
\end{equation*}
$$

2. Step 2. Determine f through

$$
\begin{equation*}
M(x, y)=\frac{\partial u}{\partial x}=\frac{\partial}{\partial x}\left(\int N(x, y) \mathrm{d} y\right)+f^{\prime}(x) \tag{24}
\end{equation*}
$$

3. Step 3. Write down $u(x, y)$.

Which approach to take: If $\int M \mathrm{~d} x$ looks harder to do than $\int N \mathrm{~d} y$, take Approach 1 ; If $\int N \mathrm{~d} y$ seems harder, take Approach 2.

- Are all 1st order DEs exact? (Ans to Q1)
- Ans: NO.
- How do we know an equation is exact?
- Notice: If $M=\frac{\partial u}{\partial x}, N=\frac{\partial u}{\partial y}$, then

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial N}{\partial x} . \tag{25}
\end{equation*}
$$

In other words, if $M \mathrm{~d} x+N \mathrm{~d} y=0$ is exact, then necessarily

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{26}
\end{equation*}
$$

- Checking exactness.

Theorem 5. Given an equation $M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0$. If $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the equation is exact, and the solution is given by $u(x, y)=C$ where u satisfies

$$
\begin{equation*}
\frac{\partial u}{\partial x}=M, \quad \frac{\partial u}{\partial y}=N \tag{27}
\end{equation*}
$$

Remark 6. Note that if u is OK, $u+C$ is also OK for any constant C. However this does not change the general solution we obtain.

Proof. (by construction). We write

$$
\begin{equation*}
u(x, y)=\int M(x, y) \mathrm{d} x+g(y) \tag{28}
\end{equation*}
$$

and show that there exists a $g(y)$ such that

$$
\begin{equation*}
\frac{\partial u}{\partial x}=M ; \quad \frac{\partial u}{\partial y}=N \tag{29}
\end{equation*}
$$

As

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\int M \mathrm{~d} x+g(y)\right)=\frac{\partial}{\partial x} \int M \mathrm{~d} x+\frac{\partial g(y)}{\partial x}=M(x, y)+0=M \tag{30}
\end{equation*}
$$

all we need to do is to check the 2 nd condition.
Compute

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(\int M \mathrm{~d} x+g(y)\right)=\int \frac{\partial M}{\partial y} \mathrm{~d} x+g^{\prime}(y) \tag{31}
\end{equation*}
$$

As $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, we further have

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\int \frac{\partial N}{\partial x} \mathrm{~d} x+g^{\prime}(y) \tag{32}
\end{equation*}
$$

Thus the requirement on g is

$$
\begin{equation*}
g^{\prime}(y)=N-\int \frac{\partial N}{\partial x} \mathrm{~d} x \tag{33}
\end{equation*}
$$

Now notice that such g exists when the right hand side is independent of x. We check

$$
\begin{equation*}
\frac{\partial}{\partial x}\left[N-\int \frac{\partial N}{\partial x} \mathrm{~d} x\right]=\frac{\partial N}{\partial x}-\frac{\partial N}{\partial x}=0 \tag{34}
\end{equation*}
$$

Indeed!

- Solving exact equations.

Example 7. Solve

$$
\begin{equation*}
\left(4 x^{3}+3 y\right) \mathrm{d} x+\left(e^{y}+3 x\right) \mathrm{d} y=0 \tag{35}
\end{equation*}
$$

Solution. We have $M=\left(4 x^{3}+3 y\right)$ and $N=\left(e^{y}+3 x\right)$.
First check exactness:

$$
\begin{equation*}
\frac{\partial M}{\partial y}=3 ; \quad \frac{\partial N}{\partial x}=3 \tag{36}
\end{equation*}
$$

The equation is exact! ${ }^{2}$
Now we find u. It seems both

$$
\begin{equation*}
\int\left(4 x^{3}+3 y\right) \mathrm{d} x \text { and } \int\left(e^{y}+3 x\right) \mathrm{d} y \tag{37}
\end{equation*}
$$

[^1]are easy. So we just choose to start from
\[

$$
\begin{equation*}
u(x, y)=\int\left(4 x^{3}+3 y\right) \mathrm{d} x+g(y)=x^{4}+3 x y+g(y) \tag{38}
\end{equation*}
$$

\]

Now

$$
\begin{equation*}
e^{y}+3 x=N=\frac{\partial}{\partial y}\left(x^{4}+3 x y+g(y)\right)=3 x+g^{\prime}(y) \tag{39}
\end{equation*}
$$

We see that the requirement for g is

$$
\begin{equation*}
g^{\prime}(y)=e^{y} \tag{40}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
g(y)=e^{y}+C \tag{41}
\end{equation*}
$$

but as we are free to choose the value of C, we just choose $C=0$.
Putting things together we have

$$
\begin{equation*}
u(x, y)=x^{4}+3 x y+e^{y} \tag{42}
\end{equation*}
$$

and the general solution to the original problem is

$$
\begin{equation*}
x^{4}+3 x y+e^{y}=C . \tag{43}
\end{equation*}
$$

When time allows, we should check:

$$
\begin{align*}
0=\mathrm{d}\left(x^{4}+3 x y+e^{y}\right)= & \frac{\partial}{\partial x}\left(x^{4}+3 x y+e^{y}\right) \mathrm{d} x+\frac{\partial}{\partial y}\left(x^{4}+3 x y+e^{y}\right) \mathrm{d} y \\
= & \left(4 x^{3}+3 y\right) \mathrm{d} x+\left(e^{y}+3 x\right) \mathrm{d} y \\
& \quad \text { (Compare with the equation) } \\
= & 0 \tag{44}
\end{align*}
$$

[^0]: 1. The reason is that $e^{x}=x+C$ is a "transcendental equation" whose solution cannot be written down as formulas involving our familiar functions.
[^1]: 2. Trying to find u without checking exactness is a bad idea. Much time will have been wasted before realizing that no such u exists.
