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Math 334 Fall 2011 Homework 8 Solutions

Basic

Problem 1. Find the general solution for the following:

a) x2 y ′′ + 4 x y ′ + 2 y =0.

b) x2 y ′′ + 5 x y ′ + 4 y =0.

c) 2 x2 y ′′ + 3 x y ′ +4 y = 0.

Solution.

a) Set y = xr we reach

r (r − 1) +4 r +2 = 0� r1,2 =−2,−1. (1)

So the general solution is

y = C1x
−2 +C2 x−1. (2)

b) Set y = xr we get the indicial equation

r (r − 1) + 5 r + 4= 0� r1,2 =−2. (3)

So the general solution is

y = C1 x−2 + C2 x−2 ln x. (4)

c) Set y = xr we get the indicial equation

2 r (r − 1) + 3 r + 4= 0� r1,2 =
−1± −31

√

4
=−1

4
± 31

√

4
i. (5)

So the general solution is

y =C1 x−1/4 cos

(

31
√

4
ln x

)

+ C2 x−1/4 sin

(

31
√

4
ln x

)

. (6)

Problem 2. Find all singular points of

x2 (1−x) y ′′ + (x− 2) y ′− 3x y = 0, (7)

and determine whether each one is regular or irregular.
Solution. Write the equation into standard form:

y ′′ +
x− 2

x2 (1− x)
y ′− 3

x (1− x)
y = 0. (8)

We see that there are two singular points x =0, x =1.

• At x= 0, we have

x p=
x− 2

x (1− x)
, x2 q =− 3x

1− x
. (9)

We see that x p is not analytic (still has singularity at 0). So x= 0 is an irregular singuar point.

• At x= 1, we have

(x− 1) p =
x− 2

x2
, (x− 1)2 q =

3 (1− x)

x
(10)

both are analytic at x = 1. So x= 1 is a regular singular point.

Intermediate

Problem 3. Determine a lower bound for the radius of convergence of series solutions about each given point
x0 for the differential equation

(1 + x3) y ′′ + 4 x y ′ +4 y = 0; x0 = 0, x0 = 2. (11)
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Solution. Write the equation into standard form

y ′′ +
4x

1 +x3
y ′ +

4

1+ x3
y =0. (12)

We see that the singular points are solutions to

x3 + 1= 0. (13)

or equivalently

x3 =−1. (14)

To find all such x, we need to write −1= R eiθ. Clearly R = 1. To determine θ we solve

cos θ =−1, sin θ =0 (15)

which gives θ = π + 2 k π. Thus the solutions are given by

x= e
i
2k+1

3
π
. (16)

Notice that k and k + 3 gives the same x. Therefore the three roots are given by setting k = 0, 1, 2.

k = 0� x= e
i

π

3 =
1

2
+

3
√

2
i; k = 1� x =−1; k = 2� x=

1

2
− 3

√

2
i. (17)

Now we discuss

• x0 = 0. The distance from 4 to the three roots are:
∣

∣

∣

∣

∣

0−
(

1

2
+

3
√

2
i

)
∣

∣

∣

∣

∣

= 1 (18)

|0− (−1)|=1; (19)

∣

∣

∣

∣

∣

0−
(

1

2
− 3

√

2
i

)
∣

∣

∣

∣

∣

= 1; (20)

The smallest distance is 1. So the radius of convergence is at least 1.

• x0 = 2. The distances are
∣

∣

∣

∣

∣

2−
(

1

2
+

3
√

2
i

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3

2
− 3

√

2
i

∣

∣

∣

∣

∣

=
9

4
+

3

4

√

= 3
√

; (21)

|2− (−1)| = 3; (22)
∣

∣

∣

∣

∣

2−
(

1
2
− 3

√

2
i

)
∣

∣

∣

∣

∣

= 3
√

. (23)

The smallest distance is 3
√

. So the radius of convergence is 3
√

.

Advanced

Problem 4. Find the first five terms of the power series solution for

x y ′′ + y ln (1− x) = 0 (24)

and determine a lower bound for its radius of convergence.

Solution.

First we determine the radius of convergence. Write the equation in standard form

y ′′ +
ln (1−x)

x
y =0. (25)

We need to find all singular points for
ln (1−x)

x
. As this is a ratio, we first determine:

• Singular point for ln (1− x): x= 1;1

1. The issue is in fact a bit more complicated than this.
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• Singular point for x: None.

Now as this is a ratio, one more possible singular point is x=0, which makes the denominator vanish. However,

we realize that ln (1 − x) = 0 at this point too. Expanding ln (1 − x) = −∑
n=1

∞ xn

n
we see that the x is in fact

cancelled. So x= 0 is in fact a regular point. The distance from 0 to 1 is 1, so the radius of convergence for the

solution is at least 1.

Or we can proceed more directly as follows:

ln (1− x)
x

=
−∑

n=1
∞ xn

n

x
=−

∑

n=1

∞

xn−1

n
=−

∑

n=0

∞

xn

n + 1
(26)

when |x|< 1. As the resulting power series indeed has radius of convergence 1, we have

ln (1−x)
x

=−
∑

n=0

∞

xn

n + 1
(27)

for |x|< 1. The radius of convergence for the solution is therefore at least 1.

Next we solve the equation. Write

y =
∑

n=0

∞

an xn. (28)

We can substitute this into either the original equation or the standard form. As we have already obtained the

expansion for
ln (1− x)

x
, we use the standard form:

(

∑

n=0

∞

an xn

)

′′

−
(

∑

n=0

∞

xn

n + 1

)(

∑

n=0

∞

an xn

)

= 0. (29)

This simplifies to

∑

n=0

∞

(n + 2) (n + 1) an+2 xn −
(

∑

n=0

∞

xn

n + 1

)(

∑

n=0

∞

an xn

)

= 0. (30)

We need to find the first 5 nonzero terms so we have to compute at least up to a4. The lowest order term containing
a4 is the x2 term so we try first to calculate up to x2:

(2 a2 + 6 a3 x + 12 a4 x2 +
 )−
(

1+
x

2
+

x2

3
+
 )(a0 + a1 x+ a2 x2 +
 ) = 0. (31)

The left hand side is

(2 a2− a0) +
(

6 a3− a0

2
− a1

)

x+
(

12 a4− a2− a1

2
− a0

3

)

x2 +
 = 0. (32)

Thus we have

2 a2− a0 = 0; (33)

6 a3− a0

2
− a1 = 0; (34)

12 a4− a2− a1

2
− a0

3
= 0; (35)

They lead to

a2 =
a0

2
; a3 =

a0

12
+

a1

6
; a4 =

5 a0

72
+

a1

24
; (36)

None of them is 0 so we already have 5 nonzero terms:

y = a0 + a1 x +
a0

2
x2 +

(

a0

12
+

a1

6

)

x3 +
(

a0

72
+

a1

24

)

x4 +
 (37)

Problem 5. Consider the equation

2x2 y ′′ + x (2 x+ 1) y ′− y =0. (38)

a) Is 0 a regular(ordinary) point, a regular singular point, or an irregular singular point?

b) Write down and solve the indicial equation.

c) Write down the correct forms of y1, y2.

d) If the two roots of the indicial equation does not differ by an integer, find y1, y2.
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Solution.

a) First write the equation into standard form:

y ′′ +
2x + 1

2x
y ′− 1

2x2
y = 0. (39)

Thus p =
2 x + 1

2 x
, q =− 1

2 x2
. Obviously they both are not analytic at 0. Therefore 0 is not a regular point.

Next consider x p=
2 x + 1

2
, x2 q =−1. Both are analytic at 0. Therefore 0 is a regular singular point.

b) The indicial equation is r (r−1)+ p0 r+ q0=0. Here p0, q0 are the constant terms in the Taylor expansions

of x p and x2 q. So p0 =
1

2
, q0 =−1

2
. The indicial equation is then

r (r − 1)+
r

2
− 1

2
=0� 2 r2− r − 1= 0� r1,2 = 1,−1

2
. (40)

c) As the two roots are distinct and their difference is not an integer, we have

y1 =x
∑

n=0

∞

an xn, y2 = x−1/2
∑

n=0

∞

bn xn. (41)

d)

• Finding y1: Substitute

y1 = x
∑

n=0

∞

an xn =
∑

n=0

∞

an xn+1 (42)

into the equation we have

y1
′ =

∑

n=0

∞

(n + 1) an xn; (43)

y1
′′ =

∑

n=1

∞

(n + 1) n an xn−1; (44)

Note that the summation starts from n = 0 and 1, not 1 and 2!!

Now we have

∑

n=1

∞

(n +1) n an xn−1 +
2 x+ 1

2 x

∑

n=0

∞

(n + 1) an xn − 1

2 x2

∑

n=0

∞

an xn+1 =0. (45)

Simplify:

∑

n=1

∞

(n + 1) n an xn−1 +
∑

n=0

∞

(n + 1) an xn +
1

2

∑

n=0

∞

(n +1) an xn−1− 1

2

∑

n=0

∞

an xn−1 = 0. (46)

Shift indices (for this problem it is easier to shift everything to xn−1 since thus only one term needs

to be shifted)

∑

n=1

∞

(n + 1) n an xn−1 +
∑

n=1

∞

n an−1 xn−1 +
1
2

∑

n=0

∞

(n + 1) an xn−1− 1
2

∑

n=0

∞

an xn−1 = 0. (47)

Simplify:

1

2
a0 x−1− 1

2
a0 x−1 +

∑

n=1

∞ [

(n + 1) n an + n an−1 +
1

2
(n + 1) an − 1

2
an

]

xn−1 =0 (48)

Note that the blue term must be 0 if we have solved the indicial equation correctly.

So the recurrence relation is (for n > 1; Remember that a0 is arbitrary)

(n + 1)n an + n an−1 +
1
2

(n + 1)an − 1
2

an =0 (49)

which simplifies to

an =− an−1

(n + 3/2)
. (50)

Thus we have

an =− an−1

(n + 3/2)
= (−1)2

an−2
(

n +
3

2

)(

n− 1 +
3

2

)
=
 =(−1)n a0

(

n +
3

2

)(

n +
1

2

)
 5

2

. (51)
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So

y1(x) =
∑

n=0

∞

(−1)n

(

n +
3

2

)(

n +
1

2

)
 5

2

xn+1. (52)

• y2. We have

y2(x) = x
−

1

2

∑

n=0

∞

an xn =
∑

n=0

∞

an x
n−

1

2. (53)

So

y2
′ =

∑

n=0

∞

an

(

n− 1
2

)

x
n−

3

2; (54)

y2
′′ =

∑

n=0

∞

an

(

n− 1

2

)(

n− 3

2

)

x
n−

5

2. (55)

Substitute into equation we get

∑

n=0

∞

an

(

n− 1
2

)(

n− 3
2

)

x
n−

5

2 +
2x +1

2x

∑

n=0

∞

an

(

n− 1
2

)

x
n−

3

2 − 1
2

∑

n=0

∞

an x
n−

1

2 = 0. (56)

Simplify:

∑

n=0

∞

an

(

n− 1

2

)(

n− 3

2

)

x
n−

5

2 +
∑

n=0

∞

an

(

n− 1

2

)

x
n−

3

2 +
1

2

∑

n=0

∞

an

(

n− 1

2

)

x
n−

5

2 − 1

2

∑

n=0

∞

an x
n−

5

2 =

0 (57)

Shift index for the 2nd term to make all generic terms the same (all x
n−

5

2):

∑

n=0

∞

an

(

n − 1
2

) (

n − 3
2

)

x
n−

5

2 +
∑

n=1

∞

an−1

(

n − 3
2

)

x
n−

5

2 +
1
2

∑

n=0

∞

an

(

n − 1
2

)

x
n−

5

2 −

1
2

∑

n=0

∞

an x
n−

5

2 =0. (58)

Simplify

a0

[(

−1

2

) (

−3

2

)

+
1

2

(

−1

2

)

− 1

2

]

x
−

5

2 +
∑

n=1

∞ [

an

(

n − 1

2

) (

n − 3

2

)

+ an−1

(

n − 3

2

)

+

1
2

(

n− 1
2

)

an − 1
2

an

]

x
n−

5

2 = 0. (59)

Again, the blue term vanishes because we have solved the indicial equation correctly.

The recurrence relation is then

an

(

n− 1

2

)(

n− 3

2

)

+ an−1

(

n− 3

2

)

+
1

2

(

n− 1

2

)

an − 1

2
an (60)

which simplifies to

an =−an−1

n
� an =

(−1)n

n!
a0. (61)

So

y2 =x
−

1

2

∑

n=0

∞

(−1)n

n!
xn = x

−
1

2 e−x. (62)

Challenge

Problem 6. Construct an example of an equation that does not have a solution of the form xα
∑

n=0

∞

an xn.

(Hint: What equation does e1/x2

solve?)

Problem 7. Prove the following: If f(x) =
∑

n=0

∞

an (x− x0)n for |x− x0|< R for some R > 0, then

an =
f (n)(x0)

n!
. (63)
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In other words, if f is analytic at some point x0, then the corresponding power series is necessarily the Taylor
expansion of f .

Proof. As f(x) =
∑

n=0

∞

an (x− x0)n for all |x− x0|< R, then necessarily f(x0)= a0.

Now show a1 = f ′(x0). As f(x) =
∑

n=0

∞

an (x − x0)
n, we know that the power series

∑

n=0

∞

an (x − x0)
n

converges for all |x−x0|<R which means its radius of convergence ρ > R. Therefore we have
∑

n=0

∞

an (x−x0)n

is differentiable and
(

∑

n=0

∞

an (x− x0)n

)

′

=
∑

n=1

∞

n an (x− x0)n−1 =
∑

n=0

∞

(n + 1) an+1 (x−x0)n. (64)

Consequently f is differentiable at x0 and

f ′(x) =
∑

n=0

∞

(n + 1) an+1 (x− x0)
n (65)

for all |x−x0|< R. Setting x= x0 we get

a1 = f ′(x0). (66)

Differentiate again we reach

f ′′(x) =
∑

n=0

∞

(n + 2) (n + 1) an+2 (x− x0)n (67)

for all |x−x0|< R. Setting x= x0 we have

f ′′(x0) = 2 a2. (68)

In general, taking k derivatives we reach

f (k)(x) =
∑

n=0

∞

(n + k)
 (n + 1) an+k (x− x0)
n (69)

which gives

f (k)(x0) = k! ak. (70)

�

Problem 8. Show that Euler equations

a x2 y ′′ + b x y ′ + c y = 0 (71)

can be transformed to 2nd order constant-coefficient linear equations through the change of variable: t = ln x.

Write down that equation.

Solution.

t= ln x so x = et. The chain rule then gives

dy

dt
=

dy

dx

dx

dt
= et y ′ = x y ′; (72)

d2y

dt2
=

d
dt

(

dy

dt

)

=
d
dt

(x y ′) =
dx

dt
y ′ +x

d
dt

(y ′) = x y ′ +x
d(y ′)
dx

dx

dt
= x y ′ + x2 y ′′. (73)

Thus

a x2 y ′′ + b x y ′ + c y = 0 (74)

becomes

a
d2y

dt2
+ (b− a)

dy

dt
+ c y = 0. (75)

Problem 9. Find a function p(x) for which limx→x0
(x − x0) p(x) is finite, but (x − x0) p(x) is not analytic at

x0. Then prove that if p(x) is rational, that is p(x)=
P (x)

Q(x)
where P , Q are polynomials, then the finiteness of the

above limit indeed implies the analyticity of (x− x0) p.

Proof. The example can be, say, x0 = 0 and p(x) =
1

x
e
−

1

x2.

To prove the claim, use the following fact: Any polynomial of degree k can be factorized:

a0 +
 + ak xk = ak (x− r1)
 (x− rk) (76)
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where r1,	 , rk are the k complex roots of the polynomial.
Therefore if r1,	 , rn and s1,	 , sm are the roots of P , Q, we have

(x− x0) p(x) = (x−x0)
pn

qn

(x− r1)
 (x− rn)
(x− s1)
 (x− sm)

=
P̃ (x)

Q̃(x)
. (77)

Here P̃ , Q̃ are polynomials such that no further cancellation can be done. In particular, P̃ (x) and Q̃(x) do not
both have the factor (x− x0).

The finiteness of the limit limx→x0
(x−x0) p(x) then means that Q̃(x0)� 0. Therefore (according to our rules)

P̃

Q̃
is analytic at x0. �

Problem 10. Prove the following. If all solutions to y ′′+ p(x) y ′+ q(x)y =0 are analytic at x0=0, then p, q are
analytic there too.

Proof. Since all solutions are analytic, in particular y1, y2 are, with y1(0)= y2
′(0)=1, y1

′(0)= y2(0) =0. Now we

have

y1
′′ + p(x) y1

′ + q(x)y1 =0, y2
′′ + p(x) y2

′ + q(x)y2 = 0. (78)

Treating this as a system with unknown p, q we reach

y1
′ p+ y1 q = −y1

′′ (79)

y2
′ p+ y2 q = −y2

′′ (80)

Solving it we get

p =
−y1

′′ y2 + y2
′′ y1

y2 y1
′ − y1 y2

′
; q =

−y1
′′ y2

′ + y2
′′ y1

′

y1 y2
′ − y2 y1

′
. (81)

Both are of the form f/g with f , g analytic at 0. So all we need to check is the the denominator is not 0 at
x0 = 0, which is obvious. �
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