Math 334 Fall 2011 Homework 8 Solutions

BASIC

Problem 1. Find the general solution for the following:
a) $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$.
b) $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0$.
c) $2 x^{2} y^{\prime \prime}+3 x y^{\prime}+4 y=0$.

Solution.

a) Set $y=x^{r}$ we reach

$$
\begin{equation*}
r(r-1)+4 r+2=0 \Longrightarrow r_{1,2}=-2,-1 . \tag{1}
\end{equation*}
$$

So the general solution is

$$
\begin{equation*}
y=C_{1} x^{-2}+C_{2} x^{-1} . \tag{2}
\end{equation*}
$$

b) Set $y=x^{r}$ we get the indicial equation

$$
\begin{equation*}
r(r-1)+5 r+4=0 \Longrightarrow r_{1,2}=-2 . \tag{3}
\end{equation*}
$$

So the general solution is

$$
\begin{equation*}
y=C_{1} x^{-2}+C_{2} x^{-2} \ln x \tag{4}
\end{equation*}
$$

c) Set $y=x^{r}$ we get the indicial equation

$$
\begin{equation*}
2 r(r-1)+3 r+4=0 \Longrightarrow r_{1,2}=\frac{-1 \pm \sqrt{-31}}{4}=-\frac{1}{4} \pm \frac{\sqrt{31}}{4} i . \tag{5}
\end{equation*}
$$

So the general solution is

$$
\begin{equation*}
y=C_{1} x^{-1 / 4} \cos \left(\frac{\sqrt{31}}{4} \ln x\right)+C_{2} x^{-1 / 4} \sin \left(\frac{\sqrt{31}}{4} \ln x\right) . \tag{6}
\end{equation*}
$$

Problem 2. Find all singular points of

$$
\begin{equation*}
x^{2}(1-x) y^{\prime \prime}+(x-2) y^{\prime}-3 x y=0 \tag{7}
\end{equation*}
$$

and determine whether each one is regular or irregular.
Solution. Write the equation into standard form:

$$
\begin{equation*}
y^{\prime \prime}+\frac{x-2}{x^{2}(1-x)} y^{\prime}-\frac{3}{x(1-x)} y=0 . \tag{8}
\end{equation*}
$$

We see that there are two singular points $x=0, x=1$.

- At $x=0$, we have

$$
\begin{equation*}
x p=\frac{x-2}{x(1-x)}, \quad x^{2} q=-\frac{3 x}{1-x} . \tag{9}
\end{equation*}
$$

We see that $x p$ is not analytic (still has singularity at 0). So $x=0$ is an irregular singuar point.

- At $x=1$, we have

$$
\begin{equation*}
(x-1) p=\frac{x-2}{x^{2}}, \quad(x-1)^{2} q=\frac{3(1-x)}{x} \tag{10}
\end{equation*}
$$

both are analytic at $x=1$. So $x=1$ is a regular singular point.

Intermediate

Problem 3. Determine a lower bound for the radius of convergence of series solutions about each given point x_{0} for the differential equation

$$
\begin{equation*}
\left(1+x^{3}\right) y^{\prime \prime}+4 x y^{\prime}+4 y=0 ; \quad x_{0}=0, x_{0}=2 \tag{11}
\end{equation*}
$$

Solution. Write the equation into standard form

$$
\begin{equation*}
y^{\prime \prime}+\frac{4 x}{1+x^{3}} y^{\prime}+\frac{4}{1+x^{3}} y=0 \tag{12}
\end{equation*}
$$

We see that the singular points are solutions to

$$
\begin{equation*}
x^{3}+1=0 . \tag{13}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
x^{3}=-1 \tag{14}
\end{equation*}
$$

To find all such x, we need to write $-1=R e^{i \theta}$. Clearly $R=1$. To determine θ we solve

$$
\begin{equation*}
\cos \theta=-1, \quad \sin \theta=0 \tag{15}
\end{equation*}
$$

which gives $\theta=\pi+2 k \pi$. Thus the solutions are given by

$$
\begin{equation*}
x=e^{i \frac{2 k+1}{3} \pi} . \tag{16}
\end{equation*}
$$

Notice that k and $k+3$ gives the same x. Therefore the three roots are given by setting $k=0,1,2$.

$$
\begin{equation*}
k=0 \Longrightarrow x=e^{i \frac{\pi}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i ; k=1 \Longrightarrow x=-1 ; k=2 \Longrightarrow x=\frac{1}{2}-\frac{\sqrt{3}}{2} i . \tag{17}
\end{equation*}
$$

Now we discuss

- $x_{0}=0$. The distance from 4 to the three roots are:

$$
\begin{gather*}
\left|0-\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right|=1 \tag{18}\\
|0-(-1)|=1 ; \tag{19}\\
\left|0-\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right|=1 ; \tag{20}
\end{gather*}
$$

The smallest distance is 1 . So the radius of convergence is at least 1 .

- $x_{0}=2$. The distances are

$$
\begin{align*}
\left|2-\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right| & =\left|\frac{3}{2}-\frac{\sqrt{3}}{2} i\right|=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{3} \tag{21}\\
|2-(-1)| & =3 \tag{22}\\
\left|2-\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right| & =\sqrt{3} \tag{23}
\end{align*}
$$

The smallest distance is $\sqrt{3}$. So the radius of convergence is $\sqrt{3}$.

Advanced

Problem 4. Find the first five terms of the power series solution for

$$
\begin{equation*}
x y^{\prime \prime}+y \ln (1-x)=0 \tag{24}
\end{equation*}
$$

and determine a lower bound for its radius of convergence.

Solution.

First we determine the radius of convergence. Write the equation in standard form

$$
\begin{equation*}
y^{\prime \prime}+\frac{\ln (1-x)}{x} y=0 . \tag{25}
\end{equation*}
$$

We need to find all singular points for $\frac{\ln (1-x)}{x}$. As this is a ratio, we first determine:

- Singular point for $\ln (1-x): x=1 ;{ }^{1}$

[^0]- Singular point for x : None.

Now as this is a ratio, one more possible singular point is $x=0$, which makes the denominator vanish. However, we realize that $\ln (1-x)=0$ at this point too. Expanding $\ln (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ we see that the x is in fact cancelled. So $x=0$ is in fact a regular point. The distance from 0 to 1 is 1 , so the radius of convergence for the solution is at least 1 .

Or we can proceed more directly as follows:

$$
\begin{equation*}
\frac{\ln (1-x)}{x}=\frac{-\sum_{n=1}^{\infty} \frac{x^{n}}{n}}{x}=-\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}=-\sum_{n=0}^{\infty} \frac{x^{n}}{n+1} \tag{26}
\end{equation*}
$$

when $|x|<1$. As the resulting power series indeed has radius of convergence 1 , we have

$$
\begin{equation*}
\frac{\ln (1-x)}{x}=-\sum_{n=0}^{\infty} \frac{x^{n}}{n+1} \tag{27}
\end{equation*}
$$

for $|x|<1$. The radius of convergence for the solution is therefore at least 1 .
Next we solve the equation. Write

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{28}
\end{equation*}
$$

We can substitute this into either the original equation or the standard form. As we have already obtained the expansion for $\frac{\ln (1-x)}{x}$, we use the standard form:

This simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}-\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 . \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 . \tag{30}
\end{equation*}
$$

We need to find the first 5 nonzero terms so we have to compute at least up to a_{4}. The lowest order term containing a_{4} is the x^{2} term so we try first to calculate up to x^{2} :

$$
\begin{equation*}
\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots\right)-\left(1+\frac{x}{2}+\frac{x^{2}}{3}+\cdots\right)\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)=0 . \tag{31}
\end{equation*}
$$

The left hand side is

$$
\begin{equation*}
\left(2 a_{2}-a_{0}\right)+\left(6 a_{3}-\frac{a_{0}}{2}-a_{1}\right) x+\left(12 a_{4}-a_{2}-\frac{a_{1}}{2}-\frac{a_{0}}{3}\right) x^{2}+\cdots=0 \tag{32}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
& 2 a_{2}-a_{0}=0 ; \tag{33}\\
& 6 a_{3}-\frac{a_{0}}{2}-a_{1}=0 ; \tag{34}\\
& 12 a_{4}-a_{2}-\frac{a_{1}}{2}-\frac{a_{0}}{3}=0 ;
\end{align*}
$$

They lead to

$$
\begin{equation*}
a_{2}=\frac{a_{0}}{2} ; \quad a_{3}=\frac{a_{0}}{12}+\frac{a_{1}}{6} ; \quad a_{4}=\frac{5 a_{0}}{72}+\frac{a_{1}}{24} ; \tag{36}
\end{equation*}
$$

None of them is 0 so we already have 5 nonzero terms:

$$
\begin{equation*}
y=a_{0}+a_{1} x+\frac{a_{0}}{2} x^{2}+\left(\frac{a_{0}}{12}+\frac{a_{1}}{6}\right) x^{3}+\left(\frac{a_{0}}{72}+\frac{a_{1}}{24}\right) x^{4}+\cdots \tag{37}
\end{equation*}
$$

Problem 5. Consider the equation

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0 \tag{38}
\end{equation*}
$$

a) Is 0 a regular(ordinary) point, a regular singular point, or an irregular singular point?
b) Write down and solve the indicial equation.
c) Write down the correct forms of y_{1}, y_{2}.
d) If the two roots of the indicial equation does not differ by an integer, find y_{1}, y_{2}.

Solution.

a) First write the equation into standard form:

$$
\begin{equation*}
y^{\prime \prime}+\frac{2 x+1}{2 x} y^{\prime}-\frac{1}{2 x^{2}} y=0 . \tag{39}
\end{equation*}
$$

Thus $p=\frac{2 x+1}{2 x}, q=-\frac{1}{2 x^{2}}$. Obviously they both are not analytic at 0 . Therefore 0 is not a regular point. Next consider $x p=\frac{2 x+1}{2}, x^{2} q=-1$. Both are analytic at 0 . Therefore 0 is a regular singular point.
b) The indicial equation is $r(r-1)+p_{0} r+q_{0}=0$. Here p_{0}, q_{0} are the constant terms in the Taylor expansions of $x p$ and $x^{2} q$. So $p_{0}=\frac{1}{2}, q_{0}=-\frac{1}{2}$. The indicial equation is then

$$
\begin{equation*}
r(r-1)+\frac{r}{2}-\frac{1}{2}=0 \Longleftrightarrow 2 r^{2}-r-1=0 \Longrightarrow r_{1,2}=1,-\frac{1}{2} . \tag{40}
\end{equation*}
$$

c) As the two roots are distinct and their difference is not an integer, we have

$$
\begin{equation*}
y_{1}=x \sum_{n=0}^{\infty} a_{n} x^{n}, \quad y_{2}=x^{-1 / 2} \sum_{n=0}^{\infty} b_{n} x^{n} . \tag{41}
\end{equation*}
$$

d)

- Finding y_{1} : Substitute

$$
\begin{equation*}
y_{1}=x \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+1} \tag{42}
\end{equation*}
$$

into the equation we have

$$
\begin{align*}
& y_{1}^{\prime}=\sum_{n=0}^{\infty}(n+1) a_{n} x^{n} \tag{43}\\
& y_{1}^{\prime \prime}=\sum_{n=1}^{\infty}(n+1) n a_{n} x^{n-1} \tag{44}
\end{align*}
$$

Note that the summation starts from $n=0$ and 1 , not 1 and $2!!$
Now we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+1) n a_{n} x^{n-1}+\frac{2 x+1}{2 x} \sum_{n=0}^{\infty}(n+1) a_{n} x^{n}-\frac{1}{2 x^{2}} \sum_{n=0}^{\infty} a_{n} x^{n+1}=0 . \tag{45}
\end{equation*}
$$

Simplify:

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+1) n a_{n} x^{n-1}+\sum_{n=0}^{\infty}(n+1) a_{n} x^{n}+\frac{1}{2} \sum_{n=0}^{\infty}(n+1) a_{n} x^{n-1}-\frac{1}{2} \sum_{n=0}^{\infty} a_{n} x^{n-1}=0 . \tag{46}
\end{equation*}
$$

Shift indices (for this problem it is easier to shift everything to x^{n-1} since thus only one term needs to be shifted)

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+1) n a_{n} x^{n-1}+\sum_{n=1}^{\infty} n a_{n-1} x^{n-1}+\frac{1}{2} \sum_{n=0}^{\infty}(n+1) a_{n} x^{n-1}-\frac{1}{2} \sum_{n=0}^{\infty} a_{n} x^{n-1}=0 . \tag{47}
\end{equation*}
$$

Simplify:

$$
\begin{equation*}
\frac{1}{2} a_{0} x^{-1}-\frac{1}{2} a_{0} x^{-1}+\sum_{n=1}^{\infty}\left[(n+1) n a_{n}+n a_{n-1}+\frac{1}{2}(n+1) a_{n}-\frac{1}{2} a_{n}\right] x^{n-1}=0 \tag{48}
\end{equation*}
$$

Note that the blue term must be 0 if we have solved the indicial equation correctly.
So the recurrence relation is (for $n \geqslant 1$; Remember that a_{0} is arbitrary)

$$
\begin{equation*}
(n+1) n a_{n}+n a_{n-1}+\frac{1}{2}(n+1) a_{n}-\frac{1}{2} a_{n}=0 \tag{49}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{(n+3 / 2)} \tag{50}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{(n+3 / 2)}=(-1)^{2} \frac{a_{n-2}}{\left(n+\frac{3}{2}\right)\left(n-1+\frac{3}{2}\right)}=\cdots=(-1)^{n} \frac{a_{0}}{\left(n+\frac{3}{2}\right)\left(n+\frac{1}{2}\right) \cdots \frac{5}{2}} . \tag{51}
\end{equation*}
$$

So

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(n+\frac{3}{2}\right)\left(n+\frac{1}{2}\right) \cdots \frac{5}{2}} x^{n+1} \tag{52}
\end{equation*}
$$

- y_{2}. We have

$$
\begin{equation*}
y_{2}(x)=x^{-\frac{1}{2}} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n-\frac{1}{2}} \tag{53}
\end{equation*}
$$

So

$$
\begin{align*}
y_{2}^{\prime} & =\sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right) x^{n-\frac{3}{2}} \tag{54}\\
y_{2}^{\prime \prime} & =\sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) x^{n-\frac{5}{2}} . \tag{55}
\end{align*}
$$

Substitute into equation we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) x^{n-\frac{5}{2}}+\frac{2 x+1}{2 x} \sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right) x^{n-\frac{3}{2}}-\frac{1}{2} \sum_{n=0}^{\infty} a_{n} x^{n-\frac{1}{2}}=0 . \tag{56}
\end{equation*}
$$

Simplify:
$\sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) x^{n-\frac{5}{2}}+\sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right) x^{n-\frac{3}{2}}+\frac{1}{2} \sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right) x^{n-\frac{5}{2}}-\frac{1}{2} \sum_{n=0}^{\infty} a_{n} x^{n-\frac{5}{2}}=$ 0
Shift index for the 2 nd term to make all generic terms the same (all $x^{n-\frac{5}{2}}$):
$\sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) x^{n-\frac{5}{2}}+\sum_{n=1}^{\infty} a_{n-1}\left(n-\frac{3}{2}\right) x^{n-\frac{5}{2}}+\frac{1}{2} \sum_{n=0}^{\infty} a_{n}\left(n-\frac{1}{2}\right) x^{n-\frac{5}{2}}-$
$\frac{1}{2} \sum_{n=0}^{\infty} a_{n} x^{n-\frac{5}{2}}=0$.
Simplify
$a_{0}\left[\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)+\frac{1}{2}\left(-\frac{1}{2}\right)-\frac{1}{2}\right] x^{-\frac{5}{2}}+\sum_{n=1}^{\infty}\left[a_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+a_{n-1}\left(n-\frac{3}{2}\right)+\right.$ $\left.\frac{1}{2}\left(n-\frac{1}{2}\right) a_{n}-\frac{1}{2} a_{n}\right] x^{n-\frac{5}{2}}=0$.
Again, the blue term vanishes because we have solved the indicial equation correctly.
The recurrence relation is then

$$
\begin{equation*}
a_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+a_{n-1}\left(n-\frac{3}{2}\right)+\frac{1}{2}\left(n-\frac{1}{2}\right) a_{n}-\frac{1}{2} a_{n} \tag{60}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n} \Longrightarrow a_{n}=\frac{(-1)^{n}}{n!} a_{0} \tag{61}
\end{equation*}
$$

So

$$
\begin{equation*}
y_{2}=x^{-\frac{1}{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}=x^{-\frac{1}{2}} e^{-x} \tag{62}
\end{equation*}
$$

Challenge

Problem 6. Construct an example of an equation that does not have a solution of the form $x^{\alpha} \sum_{n=0}^{\infty} a_{n} x^{n}$. (Hint: What equation does $e^{1 / x^{2}}$ solve?)

Problem 7. Prove the following: If $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ for $\left|x-x_{0}\right|<R$ for some $R>0$, then

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!} \tag{63}
\end{equation*}
$$

In other words, if f is analytic at some point x_{0}, then the corresponding power series is necessarily the Taylor expansion of f.

Proof. As $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ for all $\left|x-x_{0}\right|<R$, then necessarily $f\left(x_{0}\right)=a_{0}$.
Now show $a_{1}=f^{\prime}\left(x_{0}\right)$. As $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, we know that the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges for all $\left|x-x_{0}\right|<R$ which means its radius of convergence $\rho \geqslant R$. Therefore we have $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is differentiable and

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1}\left(x-x_{0}\right)^{n} . \tag{64}
\end{equation*}
$$

Consequently f is differentiable at x_{0} and

$$
\begin{equation*}
f^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1}\left(x-x_{0}\right)^{n} \tag{65}
\end{equation*}
$$

for all $\left|x-x_{0}\right|<R$. Setting $x=x_{0}$ we get

$$
\begin{equation*}
a_{1}=f^{\prime}\left(x_{0}\right) \tag{66}
\end{equation*}
$$

Differentiate again we reach

$$
\begin{equation*}
f^{\prime \prime}(x)=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}\left(x-x_{0}\right)^{n} \tag{67}
\end{equation*}
$$

for all $\left|x-x_{0}\right|<R$. Setting $x=x_{0}$ we have

$$
\begin{equation*}
f^{\prime \prime}\left(x_{0}\right)=2 a_{2} \tag{68}
\end{equation*}
$$

In general, taking k derivatives we reach
which gives

$$
\begin{equation*}
f^{(k)}(x)=\sum_{n=0}^{\infty}(n+k) \cdots(n+1) a_{n+k}\left(x-x_{0}\right)^{n} \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
f^{(k)}\left(x_{0}\right)=k!a_{k} \tag{70}
\end{equation*}
$$

Problem 8. Show that Euler equations

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \tag{71}
\end{equation*}
$$

can be transformed to 2 nd order constant-coefficient linear equations through the change of variable: $t=\ln x$. Write down that equation.

Solution.

$t=\ln x$ so $x=e^{t}$. The chain rule then gives

$$
\begin{gather*}
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}=e^{t} y^{\prime}=x y^{\prime} \tag{72}\\
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(x y^{\prime}\right)=\frac{\mathrm{d} x}{\mathrm{~d} t} y^{\prime}+x \frac{\mathrm{~d}}{\mathrm{~d} t}\left(y^{\prime}\right)=x y^{\prime}+x \frac{\mathrm{~d}\left(y^{\prime}\right)}{\mathrm{d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}=x y^{\prime}+x^{2} y^{\prime \prime} \tag{73}
\end{gather*}
$$

Thus

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \tag{74}
\end{equation*}
$$

becomes

$$
\begin{equation*}
a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+(b-a) \frac{\mathrm{d} y}{\mathrm{~d} t}+c y=0 . \tag{75}
\end{equation*}
$$

Problem 9. Find a function $p(x)$ for which $\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) p(x)$ is finite, but $\left(x-x_{0}\right) p(x)$ is not analytic at x_{0}. Then prove that if $p(x)$ is rational, that is $p(x)=\frac{P(x)}{Q(x)}$ where P, Q are polynomials, then the finiteness of the above limit indeed implies the analyticity of $\left(x-x_{0}\right) p$.

Proof. The example can be, say, $x_{0}=0$ and $p(x)=\frac{1}{x} e^{-\frac{1}{x^{2}}}$.
To prove the claim, use the following fact: Any polynomial of degree k can be factorized:

$$
\begin{equation*}
a_{0}+\cdots+a_{k} x^{k}=a_{k}\left(x-r_{1}\right) \cdots\left(x-r_{k}\right) \tag{76}
\end{equation*}
$$

where r_{1}, \ldots, r_{k} are the k complex roots of the polynomial.
Therefore if r_{1}, \ldots, r_{n} and s_{1}, \ldots, s_{m} are the roots of P, Q, we have

$$
\begin{equation*}
\left(x-x_{0}\right) p(x)=\left(x-x_{0}\right) \frac{p_{n}}{q_{n}} \frac{\left(x-r_{1}\right) \cdots\left(x-r_{n}\right)}{\left(x-s_{1}\right) \cdots\left(x-s_{m}\right)}=\frac{\tilde{P}(x)}{\tilde{Q}(x)} . \tag{77}
\end{equation*}
$$

Here \tilde{P}, \tilde{Q} are polynomials such that no further cancellation can be done. In particular, $\tilde{P}(x)$ and $\tilde{Q}(x)$ do not both have the factor $\left(x-x_{0}\right)$.

The finiteness of the limit $\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) p(x)$ then means that $\tilde{Q}\left(x_{0}\right) \neq 0$. Therefore (according to our rules) $\frac{\tilde{P}}{\tilde{Q}}$ is analytic at x_{0}.
Problem 10. Prove the following. If all solutions to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ are analytic at $x_{0}=0$, then p, q are analytic there too.

Proof. Since all solutions are analytic, in particular y_{1}, y_{2} are, with $y_{1}(0)=y_{2}^{\prime}(0)=1, y_{1}^{\prime}(0)=y_{2}(0)=0$. Now we have

$$
\begin{equation*}
y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}=0, \quad y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}=0 . \tag{78}
\end{equation*}
$$

Treating this as a system with unknown p, q we reach

$$
\begin{align*}
y_{1}^{\prime} p+y_{1} q & =-y_{1}^{\prime \prime} \tag{79}\\
y_{2}^{\prime} p+y_{2} q & =-y_{2}^{\prime \prime} \tag{80}
\end{align*}
$$

Solving it we get

$$
\begin{equation*}
p=\frac{-y_{1}^{\prime \prime} y_{2}+y_{2}^{\prime \prime} y_{1}}{y_{2} y_{1}^{\prime}-y_{1} y_{2}^{\prime}} ; \quad q=\frac{-y_{1}^{\prime \prime} y_{2}^{\prime}+y_{2}^{\prime \prime} y_{1}^{\prime}}{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}} . \tag{81}
\end{equation*}
$$

Both are of the form f / g with f, g analytic at 0 . So all we need to check is the the denominator is not 0 at $x_{0}=0$, which is obvious.

[^0]: 1. The issue is in fact a bit more complicated than this.
