Math 334 Fall 2011 Homework 8

BASIC

Problem 1. Find the general solution for the following:
a) $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$.
b) $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0$.
c) $2 x^{2} y^{\prime \prime}+3 x y^{\prime}+4 y=0$.

Problem 2. Find all singular points of

$$
\begin{equation*}
x^{2}(1-x) y^{\prime \prime}+(x-2) y^{\prime}-3 x y=0, \tag{1}
\end{equation*}
$$

and determine whether each one is regular or irregular.

Intermediate

Problem 3. Determine a lower bound for the radius of convergence of series solutions about each given point x_{0} for the differential equation

$$
\begin{equation*}
\left(1+x^{3}\right) y^{\prime \prime}+4 x y^{\prime}+4 y=0 ; \quad x_{0}=0, x_{0}=2 \tag{2}
\end{equation*}
$$

Advanced

Problem 4. Find the first five terms of the power series solution for

$$
\begin{equation*}
x y^{\prime \prime}+y \ln (1-x)=0 \tag{3}
\end{equation*}
$$

and determine a lower bound for its radius of convergence.

Problem 5. Consider the equation

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0 \tag{4}
\end{equation*}
$$

a) Is 0 a regular(ordinary) point, a regular singular point, or an irregular singular point?
b) Write down and solve the indicial equation.
c) Write down the correct forms of y_{1}, y_{2}.
d) If the two roots of the indicial equation does not differ by an integer, find y_{1}, y_{2}.

Challenge

Problem 6. Construct an example of an equation that does not have a solution of the form $x^{\alpha} \sum_{n=0}^{\infty} a_{n} x^{n}$. (Hint: What equation does $e^{1 / x^{2}}$ solve?)

Problem 7. Prove the following: If $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ for $\left|x-x_{0}\right|<R$ for some $R>0$, then

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!} \tag{5}
\end{equation*}
$$

In other words, if f is analytic at some point x_{0}, then the corresponding power series is necessarily the Taylor expansion of f.

Problem 8. Show that Euler equations

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \tag{6}
\end{equation*}
$$

can be transformed to 2 nd order constant-coefficient linear equations through the change of variable: $t=\ln x$. Write down that equation.

Problem 9. Find a function $p(x)$ for which $\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) p(x)$ is finite, but $\left(x-x_{0}\right) p(x)$ is not analytic at x_{0}. Then prove that if $p(x)$ is rational, that is $p(x)=\frac{P(x)}{Q(x)}$ where P, Q are polynomials, then the finiteness of the above limit indeed implies the analyticity of $\left(x-x_{0}\right) p$.

Problem 10. Prove the following. If all solutions to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ are analytic at $x_{0}=0$, then p, q are analytic there too.

Answers

- Problem 1
a) $y=C_{1} x^{-2}+C_{2} x^{-1}$.
b) $y=C_{1} x^{-2}+C_{2} x^{-2} \ln x$.
c) $y=C_{1} x^{-1 / 4} \cos \left(\frac{\sqrt{31}}{4} \ln x\right)+C_{2} x^{-1 / 4} \sin \left(\frac{\sqrt{31}}{4} \ln x\right)$.
- Problem 2

0 (irregular), 1 (regular)

- Problem 3
$x_{0}=0: 1 ; x_{0}=2: \sqrt{3}$.
- Problem 4

$$
y=a_{0}+a_{1} x+\frac{a_{0}}{2} x^{2}+\left(\frac{a_{0}}{12}+\frac{a_{1}}{6}\right) x^{3}+\left(\frac{a_{0}}{72}+\frac{a_{1}}{24}\right) x^{4}+\cdots
$$

- Problem 5
a) Regular singular;
b) $1,-\frac{1}{2}$;
c) $y_{1}=x \sum_{n=0}^{\infty} a_{n} x^{n}, \quad y_{2}=x^{-1 / 2} \sum_{n=0}^{\infty} b_{n} x^{n}$.
d) $y_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(n+\frac{3}{2}\right)\left(n+\frac{1}{2}\right) \cdots \frac{5}{2}} x^{n+1} . y_{2}=x^{-\frac{1}{2}} e^{-x}$.
- Problem 8

$$
a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+(b-a) \frac{\mathrm{d} y}{\mathrm{~d} t}+c y=0 .
$$

- Problem 9
$\frac{1}{x} e^{-\frac{1}{x^{2}}}$.

