MATH 334 FALL 2011 HOMEWORK 8

BASIC

Problem 1. Find the general solution for the following:

- a) $x^2 y'' + 4 x y' + 2 y = 0.$
- b) $x^2 y'' + 5 x y' + 4 y = 0.$
- c) $2x^2y'' + 3xy' + 4y = 0.$

Problem 2. Find all singular points of

$$x^{2}(1-x)y'' + (x-2)y' - 3xy = 0,$$
(1)

and determine whether each one is regular or irregular.

INTERMEDIATE

Problem 3. Determine a lower bound for the radius of convergence of series solutions about each given point x_0 for the differential equation

$$(1+x^3) y'' + 4 x y' + 4 y = 0; \qquad x_0 = 0, \ x_0 = 2.$$
(2)

Advanced

Problem 4. Find the first five terms of the power series solution for

$$x \, y'' + y \ln\left(1 - x\right) = 0 \tag{3}$$

and determine a lower bound for its radius of convergence.

Problem 5. Consider the equation

$$2x^{2}y'' + x(2x+1)y' - y = 0.$$
(4)

- a) Is 0 a regular(ordinary) point, a regular singular point, or an irregular singular point?
- b) Write down and solve the indicial equation.
- c) Write down the correct forms of y_1, y_2 .
- d) If the two roots of the indicial equation does not differ by an integer, find y_1, y_2 .

CHALLENGE

Problem 6. Construct an example of an equation that does not have a solution of the form $x^{\alpha} \sum_{n=0}^{\infty} a_n x^n$. (Hint: What equation does e^{1/x^2} solve?)

Problem 7. Prove the following: If $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ for $|x - x_0| < R$ for some R > 0, then

$$a_n = \frac{f^{(n)}(x_0)}{n!}.$$
 (5)

In other words, if f is analytic at some point x_0 , then the corresponding power series is necessarily the Taylor expansion of f.

Problem 8. Show that Euler equations

$$a x^2 y'' + b x y' + c y = 0 (6)$$

can be transformed to 2nd order constant-coefficient linear equations through the change of variable: $t = \ln x$. Write down that equation.

Problem 9. Find a function p(x) for which $\lim_{x\to x_0} (x-x_0) p(x)$ is finite, but $(x-x_0) p(x)$ is **not** analytic at x_0 . Then prove that if p(x) is rational, that is $p(x) = \frac{P(x)}{Q(x)}$ where P, Q are polynomials, then the finiteness of the above limit indeed implies the analyticity of $(x-x_0) p$.

Problem 10. Prove the following. If all solutions to y'' + p(x) y' + q(x)y = 0 are analytic at $x_0 = 0$, then p, q are analytic there too.

See Next Page for Answers

• Problem 1

a)
$$y = C_1 x^{-2} + C_2 x^{-1}$$
.
b) $y = C_1 x^{-2} + C_2 x^{-2} \ln x$.
c) $y = C_1 x^{-1/4} \cos\left(\frac{\sqrt{31}}{4} \ln x\right) + C_2 x^{-1/4} \sin\left(\frac{\sqrt{31}}{4} \ln x\right)$.

- Problem 2 0 (irregular), 1 (regular)
- Problem 3 $x_0 = 0: 1; x_0 = 2: \sqrt{3}.$
 - Problem 4 $y = a_0 + a_1 x + \frac{a_0}{2} x^2 + \left(\frac{a_0}{12} + \frac{a_1}{6}\right) x^3 + \left(\frac{a_0}{72} + \frac{a_1}{24}\right) x^4 + \cdots$
- Problem 5

•

a) Regular singular;

b)
$$1, -\frac{1}{2};$$

c) $y_1 = x \sum_{n=0}^{\infty} a_n x^n, \qquad y_2 = x^{-1/2} \sum_{n=0}^{\infty} b_n x^n.$
d) $y_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\left(n + \frac{3}{2}\right)\left(n + \frac{1}{2}\right) \cdots \frac{5}{2}} x^{n+1}. \quad y_2 = x^{-\frac{1}{2}} e^{-x}.$

• Problem 8

$$a\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + (b-a)\frac{\mathrm{d}y}{\mathrm{d}t} + cy = 0.$$

• Problem 9 $\frac{1}{x}e^{-\frac{1}{x^2}}$.