Math 334 Fall 2011 Homework 6 Solutions

BASIC

Intermediate

Advanced

Problem 1. Solve the following equations:
a) $y^{\prime \prime \prime}+2 y^{\prime \prime}+9 y^{\prime}+18 y=0$;
b) $y^{(4)}-2 y^{\prime \prime}+4 y=0$;

Solution.

a) Characteristic equation:

$$
\begin{equation*}
r^{3}+2 r^{2}+9 r+18=0 \tag{1}
\end{equation*}
$$

Clearly there is no positive roots. For negative numbers, first guess -1 . Doesn't work. Next guess -2 :

$$
\begin{equation*}
(-2)^{3}+2(-2)^{2}+9(-2)+18=-8+8-18+18=0 \tag{2}
\end{equation*}
$$

So $r_{1}=-2$ is a root.
Factorize:

$$
\begin{equation*}
r^{3}+2 r^{2}+9 r+18=(r-(-2))(\cdots)=(r+2)\left(r^{2}+9\right) . \tag{3}
\end{equation*}
$$

Therefore the other two roots are those of $r^{2}+9=0$ which are $r_{2,3}= \pm 3 i$. Summarize: List of roots: -2 , $\pm 3 i$ - one real root, and one pair of complex roots.

Now

$$
\begin{equation*}
-2 \longrightarrow e^{-2 t} ; \quad \pm 3 i=0 \pm 3 i \longrightarrow e^{0 t} \cos 3 t, e^{0 t} \sin 3 t=\cos 3 t, \sin 3 t \tag{4}
\end{equation*}
$$

Therefore the general solution is given by

$$
\begin{equation*}
y=C_{1} e^{-2 t}+C_{2} \cos 3 t+C_{3} \sin 3 t \tag{5}
\end{equation*}
$$

b) Characteristic equation:

$$
\begin{equation*}
r^{4}-2 r^{2}+4=0 \tag{6}
\end{equation*}
$$

If we let $q=r^{2}$, we have a quadratic equation for q :

$$
\begin{equation*}
q^{2}-2 q+4=0 \Longrightarrow q_{1,2}=1 \pm \sqrt{3} i . \tag{7}
\end{equation*}
$$

Therefore the 4 roots $r_{1}-r_{4}$ are obtained through computing $(1 \pm \sqrt{3} i)^{1 / 2}$.

- $(1+\sqrt{3} i)^{1 / 2}$:

First write $1+\sqrt{3} i=R e^{i\left(\theta_{0}+2 k \pi\right)}$:

$$
\begin{equation*}
R=\sqrt{1^{2}+(\sqrt{3})^{2}}=2 ; \quad \cos \theta_{0}=\frac{1}{2}, \sin \theta_{0}=\frac{\sqrt{3}}{2} \Longrightarrow \theta_{0}=\frac{\pi}{3} . \tag{8}
\end{equation*}
$$

So

$$
\begin{equation*}
1+\sqrt{3} i=2 e^{i\left(\frac{\pi}{3}+2 k \pi\right)} \tag{9}
\end{equation*}
$$

Now

$$
\begin{equation*}
(1+\sqrt{3} i)^{1 / 2}=\sqrt{2} e^{i\left(\frac{\pi}{6}+k \pi\right)} \tag{10}
\end{equation*}
$$

Take two consecutive values of k, say 0,1 .

- $k=0$ gives

$$
\begin{equation*}
\sqrt{2} e^{i \frac{\pi}{6}}=\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=\sqrt{2}\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=\frac{\sqrt{6}}{2}+i \frac{\sqrt{2}}{2} \tag{11}
\end{equation*}
$$

- $k=1$ gives

$$
\begin{equation*}
\sqrt{2} e^{i \frac{7 \pi}{6}}=\sqrt{2}\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)=-\frac{\sqrt{6}}{2}-i \frac{\sqrt{2}}{2} \tag{12}
\end{equation*}
$$

Note that since we are taking square root, we actually know that the second root has to be "-first root", so we should be able to save some time here.

To feel save, check:

$$
\begin{equation*}
\left(\frac{\sqrt{6}}{2}+i \frac{\sqrt{2}}{2}\right)^{2}=\frac{6}{4}+2 \frac{\sqrt{6} \sqrt{2}}{2 \cdot 2} i-\frac{2}{4}=1+\sqrt{3} i \tag{13}
\end{equation*}
$$

Note. The two roots we obtained here are not conjugates (or, not a "pair")!

- $(1-\sqrt{3} i)^{1 / 2}$:

First write $1-\sqrt{3} i=R^{i\left(\theta_{0}+2 k \pi\right)}$:

$$
\begin{equation*}
R=\sqrt{1^{2}+(-\sqrt{3})^{2}}=2 ; \quad \cos \theta_{0}=\frac{1}{2}, \sin \theta_{0}=-\frac{\sqrt{3}}{2} \Longrightarrow \theta_{0}=-\frac{\pi}{3} . \tag{14}
\end{equation*}
$$

So

$$
\begin{equation*}
1-\sqrt{3} i=2 e^{i\left(-\frac{\pi}{3}+2 k \pi\right)} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\sqrt{3} i)^{1 / 2}=\sqrt{2} e^{i\left(-\frac{\pi}{6}+k \pi\right)} . \tag{16}
\end{equation*}
$$

Taking $k=0,1$ we obtain

$$
\begin{align*}
& \sqrt{2}\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right)=\frac{\sqrt{6}}{2}-i \frac{\sqrt{2}}{2} \tag{17}\\
& \sqrt{2}\left(\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right)=-\frac{\sqrt{6}}{2}+i \frac{\sqrt{2}}{2} \tag{18}
\end{align*}
$$

Notice how these two roots pair up with those obtained in $(1+\sqrt{3} i)^{1 / 2}$!
So we finally obtained the four roots in two pairs:

$$
\begin{equation*}
\frac{\sqrt{6}}{2} \pm i \frac{\sqrt{2}}{2} ; \quad-\frac{\sqrt{6}}{2} \pm i \frac{\sqrt{2}}{2} . \tag{19}
\end{equation*}
$$

and the fundamental set is obtained as:

$$
\begin{equation*}
\frac{\sqrt{6}}{2} \pm i \frac{\sqrt{2}}{2} \Longrightarrow e^{\frac{\sqrt{6}}{2} t} \cos \frac{\sqrt{2}}{2} t, e^{\frac{\sqrt{6}}{2} t} \sin \frac{\sqrt{2}}{2} t \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{\sqrt{6}}{2} \pm i \frac{\sqrt{2}}{2} \Longrightarrow e^{-\frac{\sqrt{6}}{2} t} \cos \frac{\sqrt{2}}{2} t, e^{-\frac{\sqrt{6}}{2} t} \sin \frac{\sqrt{2}}{2} t \tag{21}
\end{equation*}
$$

The final answer is then

$$
\begin{equation*}
y=C_{1} e^{\frac{\sqrt{6}}{2} t} \cos \frac{\sqrt{2}}{2} t+C_{2} e^{\frac{\sqrt{6}}{2} t} \sin \frac{\sqrt{2}}{2} t+C_{3} e^{-\frac{\sqrt{6}}{2} t} \cos \frac{\sqrt{2}}{2} t+C_{4} e^{-\frac{\sqrt{6}}{2} t} \sin \frac{\sqrt{2}}{2} t \tag{22}
\end{equation*}
$$

Problem 2. Solve the following equations:
a) $y^{(4)}-4 y^{\prime \prime}=2 t^{2}$;
b) $y^{(4)}+2 y^{\prime \prime}+y=3 t+4 ; \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1$.

Solution.

a) We use undetermined coefficients.

First solve the homogeneous equation:

$$
\begin{equation*}
y^{(4)}-4 y^{\prime \prime}=0 . \tag{23}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
r^{4}-4 r^{2}=0 \Longrightarrow r_{1,2}=0, r_{3}=2, r_{4}=-2 \tag{24}
\end{equation*}
$$

The general solution (to the homogeneous equation) is

$$
\begin{equation*}
y=C_{1}+C_{2} t+C_{3} e^{2 t}+C_{4} e^{-2 t} \tag{25}
\end{equation*}
$$

Next guess the form of y_{p}. As

$$
\begin{equation*}
2 t^{2}=e^{0 t}\left(0+0 t+2 t^{2}\right) \tag{26}
\end{equation*}
$$

we have

$$
\begin{equation*}
y_{p}=t^{s} e^{0 t}\left(A_{0}+A_{1} t+A_{2} t^{2}\right) \tag{27}
\end{equation*}
$$

To determine s we check the multiplicity of 0 as a root to the characteristic equation (that is how many time 0 appears in the list of roots): 2 . So $s=2$.

$$
\begin{equation*}
y_{p}=t^{2}\left(A_{0}+A_{1} t+A_{2} t^{2}\right) . \tag{28}
\end{equation*}
$$

Compute

$$
\begin{equation*}
y_{p}^{(4)}=24 A_{2} ; \quad y_{p}^{\prime \prime}=2 A_{0}+6 A_{1} t+12 A_{2} t^{2} \tag{29}
\end{equation*}
$$

Substitute into the equation:

$$
\begin{equation*}
24 A_{2}-4\left(2 A_{0}+6 A_{1} t+12 A_{2} t^{2}\right)=2 t^{2} \tag{30}
\end{equation*}
$$

So

$$
\begin{equation*}
24 A_{2}-8 A_{0}=0 ; \quad-24 A_{1}=0 ; \quad-48 A_{2}=2 \tag{31}
\end{equation*}
$$

which gives

$$
\begin{equation*}
A_{2}=-\frac{1}{24}, \quad A_{0}=-\frac{1}{8} \tag{32}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
y_{p}=-\frac{t^{2}}{8}-\frac{t^{4}}{24} \tag{33}
\end{equation*}
$$

(Check y_{p} is time allows!)
Finally the general solution is

$$
\begin{equation*}
y=C_{1}+C_{2} t+C_{3} e^{2 t}+C_{4} e^{-2 t}-\frac{t^{2}}{8}-\frac{t^{4}}{24} \tag{34}
\end{equation*}
$$

b) This is initial value problem. So we should

1. Find the general solution: First get solution to homogeneous equation, then get y_{p}, then put everything together;
2. Use initial conditions to determine the four constants.

To find the general solution we first solve the homogeneous equation

$$
\begin{equation*}
y^{(4)}+2 y^{\prime \prime}+y=0 \tag{35}
\end{equation*}
$$

whose characteristic equation is

$$
\begin{equation*}
r^{4}+2 r^{2}+1=0 \Longrightarrow r^{2}=-1(\text { repeated }) \tag{36}
\end{equation*}
$$

therefore

$$
\begin{equation*}
r_{1,2}= \pm i, \quad r_{3,4}= \pm i \tag{37}
\end{equation*}
$$

The fundamental set is then

$$
\begin{equation*}
\pm i(\text { repeated } 2 \text { times }) \Longrightarrow \cos t, \sin t, t \cos t, t \sin t \tag{38}
\end{equation*}
$$

The general solution to the homogeneous equation is

$$
\begin{equation*}
y=C_{1} \cos t+C_{2} \sin t+C_{3} t \cos t+C_{4} t \sin t . \tag{39}
\end{equation*}
$$

Next we try to fix the form of y_{p}. As the right hand side is

$$
\begin{equation*}
3 t+4=e^{0 t}(4+3 t) \tag{40}
\end{equation*}
$$

we guess

$$
\begin{equation*}
y_{p}=t^{s} e^{0 t}\left(A_{0}+A_{1} t\right) . \tag{41}
\end{equation*}
$$

As 0 does not appear in the list of roots (appears 0 times; has multiplicity 0), $s=0$. So

$$
\begin{equation*}
y_{p}=A_{0}+A_{1} t \tag{42}
\end{equation*}
$$

Now compute

$$
\begin{equation*}
y_{p}^{\prime \prime}=0, y_{p}^{(4)}=0 . \tag{43}
\end{equation*}
$$

So

$$
\begin{equation*}
A_{0}+A_{1} t=3 t+4 \Longrightarrow A_{0}=4, A_{1}=3 \tag{44}
\end{equation*}
$$

Thus

$$
\begin{equation*}
y_{p}=3 t+4 \tag{45}
\end{equation*}
$$

The general solution for the nonhomogeneous equation is

$$
\begin{equation*}
y=C_{1} \cos t+C_{2} \sin t+C_{3} t \cos t+C_{4} t \sin t+3 t+4 \tag{46}
\end{equation*}
$$

To apply initial conditions, prepare:

$$
\begin{align*}
& y^{\prime}=\left(C_{2}+C_{3}\right) \cos t+\left(-C_{1}+C_{4}\right) \sin t+C_{4} t \cos t-C_{3} t \sin t+3 \tag{47}\\
& y^{\prime \prime}=\left(-C_{1}+2 C_{4}\right) \cos t+\left(-C_{2}-2 C_{3}\right) \sin t-C_{3} t \cos t-C_{4} t \sin t \tag{48}\\
& y^{\prime \prime \prime}=\left(-C_{2}-3 C_{3}\right) \cos t+\left(C_{1}-3 C_{4}\right) \sin t-C_{4} t \cos t+C_{3} t \sin t . \tag{49}
\end{align*}
$$

Apply initial conditions:

$$
\begin{align*}
y(0) & =0 \tag{50}\\
y^{\prime}(0) & \Longrightarrow C_{1}+4=0 \tag{51}\\
y^{\prime \prime}(0) & \Longrightarrow C_{2}+C_{3}+3=0 \tag{52}\\
y^{\prime \prime \prime}(0) & \Longrightarrow-C_{1}+2 C_{4}=1 \tag{53}\\
& \Longrightarrow-C_{2}-3 C_{3}=1
\end{align*}
$$

Instead of using the general procedure (Gaussian elimination), we observe that this system is special: equations 1,3 only involve C_{1}, C_{4} while equations 2,4 only involve C_{2}, C_{3}. So it's more efficient to solve the system in the following ad hoc manner:

Getting C_{1}, C_{4} :

$$
\begin{array}{ll}
C_{1}+4 & =0 \tag{54}\\
-C_{1}+2 C_{4} & =1
\end{array} \Longrightarrow C_{1}=-4, C_{4}=-\frac{3}{2}
$$

Getting C_{2}, C_{3} :

$$
\begin{align*}
& C_{2}+C_{3}+3=0 \tag{55}\\
& -C_{2}-3 C_{3}=1
\end{align*} \Longrightarrow C_{3}=1, C_{2}=-4
$$

Therefore

$$
\begin{equation*}
y=-4 \cos t-4 \sin t+t \cos t-\frac{3}{2} t \sin t+3 t+4 \tag{56}
\end{equation*}
$$

Challenge

