Oct. 5, 2011

Math 334 Fall 2011 Homework 4 Solutions

Basic

Problem 1. Solve the following equations:
a) $3 y^{\prime \prime}+8 y^{\prime}+4 y=0$.
b) $y^{\prime \prime}+6 y^{\prime}+9 y=0$.
c) $y^{\prime \prime}+2 y^{\prime}+10 y=0$.

Solution.

a) Characteristic equation:

$$
\begin{equation*}
3 r^{2}+8 r+4=0 \tag{1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
r_{1,2}=\frac{-8 \pm \sqrt{8^{2}-4 \cdot 3 \cdot 4}}{6}=\frac{-8 \pm 4}{6}=-\frac{2}{3},-2 . \tag{2}
\end{equation*}
$$

So the general solution is given by

$$
\begin{equation*}
y=C_{1} e^{-2 t / 3}+C_{2} e^{-2 t} . \tag{3}
\end{equation*}
$$

b) Characteristic equation:

$$
\begin{equation*}
r^{2}+6 r+9=0 \tag{4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
r_{1,2}=\frac{-6 \pm \sqrt{6^{2}-4 \cdot 9}}{2}=-3 . \tag{5}
\end{equation*}
$$

Repeated roots. So

$$
\begin{equation*}
y=C_{1} e^{-3 t}+C_{2} t e^{-3 t} . \tag{6}
\end{equation*}
$$

c) Characteristic equation:

$$
\begin{equation*}
r^{2}+2 r+10=0 \tag{7}
\end{equation*}
$$

Thus

$$
\begin{equation*}
r_{1,2}=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 10}}{2}=-1 \pm 3 i \tag{8}
\end{equation*}
$$

So the solution is given by

$$
\begin{equation*}
y=C_{1} e^{-t} \cos 3 t+C_{2} e^{-t} \sin 3 t \tag{9}
\end{equation*}
$$

Problem 2. Solve the following initial value problem.
a) $y^{\prime \prime}+3 y^{\prime}-4 y=0, y(1)=0, y^{\prime}(1)=1$.
b) $y^{\prime \prime}+2 y^{\prime}+4 y=0, y(0)=1, y^{\prime}(0)=1$.

Solution.

a) First find general solution. Characteristic equation:

$$
\begin{equation*}
r^{2}+3 r-4=0 \Longrightarrow r_{1,2}=-4,1 \tag{10}
\end{equation*}
$$

So

$$
\begin{equation*}
y=C_{1} e^{-4 t}+C_{2} e^{t} . \tag{11}
\end{equation*}
$$

Now calculate

$$
\begin{equation*}
y^{\prime}=-4 C_{1} e^{-4 t}+C_{2} e^{t} . \tag{12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
y(1)=0 \Longrightarrow C_{1} e^{-4}+C_{2} e=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime}(1)=1 \Longrightarrow-4 C_{1} e^{-4}+C_{2} e=1 \tag{14}
\end{equation*}
$$

Multiply the first equation by 4 and add to the 2 nd, we get $C_{2}=\frac{e^{-1}}{5}$. Then C_{1} can be obtained through either equation as $C_{1}=-\frac{e^{4}}{5}$.

Therefore the solution is give by

$$
\begin{equation*}
y=-\frac{1}{5} e^{4-4 t}+\frac{1}{5} e^{t-1} \tag{15}
\end{equation*}
$$

b) First find general solution:

$$
\begin{equation*}
r^{2}+2 r+4=0 \Longrightarrow r_{1,2}=-1 \pm \sqrt{3} i \tag{16}
\end{equation*}
$$

so

$$
\begin{equation*}
y=C_{1} e^{-t} \cos \sqrt{3} t+C_{2} e^{-t} \sin \sqrt{3} t \tag{17}
\end{equation*}
$$

Calculate

$$
\begin{equation*}
y^{\prime}=-C_{1} e^{-t} \cos \sqrt{3} t-\sqrt{3} C_{1} e^{-t} \sin \sqrt{3} t-C_{2} e^{-t} \sin \sqrt{3} t+\sqrt{3} C_{2} e^{-t} \cos \sqrt{3} t \tag{18}
\end{equation*}
$$

Using the initial conditions:

$$
\begin{gather*}
y(0)=1 \Longrightarrow C_{1}=1 \tag{19}\\
y^{\prime}(0)=1 \Longrightarrow-C_{1}+\sqrt{3} C_{2}=1 \tag{20}
\end{gather*}
$$

We obtain

$$
\begin{equation*}
C_{1}=1, \quad C_{2}=\frac{2}{\sqrt{3}} . \tag{21}
\end{equation*}
$$

So the solution is given by

$$
\begin{equation*}
y=e^{-t} \cos \sqrt{3} t+\frac{2}{\sqrt{3}} e^{-t} \sin \sqrt{3} t \tag{22}
\end{equation*}
$$

Intermediate

Problem 3. Find the general solution for

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=2 e^{-t} . \tag{23}
\end{equation*}
$$

Solution.

We apply the method of undetermined coefficients.
First solve the corresponding homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=0 \tag{24}
\end{equation*}
$$

Characteristic equation $r^{2}+2 r+1=0$ gives repeated roots $r_{1,2}=-1$. So

$$
\begin{equation*}
y_{1}=e^{-t}, y_{2}=t e^{-t} . \tag{25}
\end{equation*}
$$

Next guess the correct form of y_{p} :

$$
\begin{equation*}
g(t)=2 e^{-t}=e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right) \tag{26}
\end{equation*}
$$

with $\alpha=-1, n=0$. So

$$
\begin{equation*}
y_{p}=t^{s} e^{-t} A_{0} \tag{27}
\end{equation*}
$$

To determine s, check $\alpha=-1$ is a repeated root of $r^{2}+2 r+1=0$ so we have to take $s=2$. Thus our guess is

$$
\begin{equation*}
y_{p}=A_{0} t^{2} e^{-t} \tag{28}
\end{equation*}
$$

Substitute back into the equation:

$$
\begin{aligned}
2 e^{-t} & =y_{p}^{\prime \prime}+2 y_{p}^{\prime}+y_{p} \\
& =\left(A_{0} t^{2} e^{-t}\right)^{\prime \prime}+2\left(A_{0} t^{2} e^{-t}\right)^{\prime}+\left(A_{0} t^{2} e^{-t}\right) \\
& =2 A_{0} e^{-t}-4 A_{0} t e^{-t}+A_{0} t^{2} e^{-t}+4 A_{0} t e^{-t}-2 A_{0} t^{2} e^{-t}+A_{0} t^{2} e^{-t} \\
& =2 A_{0} e^{-t} .
\end{aligned}
$$

So $A_{0}=1$ and therefore

$$
\begin{equation*}
y_{p}=t^{2} e^{-t} . \tag{29}
\end{equation*}
$$

Finally the general solution is given by

$$
\begin{equation*}
y=C_{1} e^{-t}+C_{2} t e^{-t}+t^{2} e^{-t} \tag{30}
\end{equation*}
$$

Problem 4. Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+4 y=t^{2}+3 e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=2 . \tag{31}
\end{equation*}
$$

Solution.

First solve the corresponding homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+4 y=0 \tag{32}
\end{equation*}
$$

whose characteristic equation is $r^{2}+4=0 \Longrightarrow r_{1,2}= \pm 2 i$ so

$$
\begin{equation*}
y_{1}=\cos 2 t, y_{2}=\sin 2 t . \tag{33}
\end{equation*}
$$

Now we guess y_{p}. Note that $g(t)=t^{2}+3 e^{t}$ is of neither type. However, t^{2} and $3 e^{t}$ are. So we write $g_{1}(t)=t^{2}$, $g_{2}(t)=3 e^{t}$, and guess

$$
\begin{equation*}
y_{p 1}=t^{s}\left(A_{0}+A_{1} t+A_{2} t^{2}\right) ; \quad y_{p 2}=t^{s} B e^{t} . \tag{34}
\end{equation*}
$$

Note that g_{1} and g_{2} both correspond to the type $e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right)$ with $\alpha=0$ and $\alpha=1$ respectively. Recall that the roots to the characteristic equation are $\pm 2 i$ so neither α is a solution. Consequently $s=0$ in both $y_{p 1}$ and $y_{p 2}$:

$$
\begin{equation*}
y_{p 1}=A_{0}+A_{1} t+A_{2} t^{2} ; \quad y_{p 2}=B e^{t} . \tag{35}
\end{equation*}
$$

- Get $y_{p 1}$. Substitute into the equation (with right hand side g_{1}):

$$
\begin{align*}
t^{2} & =y_{p 1}^{\prime \prime}+4 y_{p 1} \\
& =2 A_{2}+4\left(A_{0}+A_{1} t+A_{2} t^{2}\right) \\
& =\left(2 A_{2}+4 A_{0}\right)+\left(4 A_{1}\right) t+4 A_{2} t^{2} \tag{36}
\end{align*}
$$

therefore

$$
\begin{equation*}
2 A_{2}+4 A_{0}=0 ; \quad 4 A_{1}=0 ; \quad 4 A_{2}=1 . \tag{37}
\end{equation*}
$$

which gives

$$
\begin{equation*}
A_{2}=\frac{1}{4}, \quad A_{1}=0, \quad A_{0}=-\frac{1}{8} . \tag{38}
\end{equation*}
$$

So

$$
\begin{equation*}
y_{p 1}=-\frac{1}{8}+\frac{t^{2}}{4} . \tag{39}
\end{equation*}
$$

- Get $y_{p 2}$: Substitute into the equation with right hand side g_{2} :

$$
\begin{align*}
3 e^{t} & =y_{p 2}^{\prime \prime}+4 y_{p 2} \\
& =B e^{t}+4 B e^{t} \\
& =5 B e^{t} \Longrightarrow B=\frac{3}{5} . \tag{40}
\end{align*}
$$

So

$$
\begin{equation*}
y_{p 2}=\frac{3}{5} e^{t} . \tag{41}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
y_{p}=y_{p 1}+y_{p 2}=-\frac{1}{8}+\frac{t^{2}}{4}+\frac{3}{5} e^{t} . \tag{42}
\end{equation*}
$$

The general solution is

$$
\begin{equation*}
y=C_{1} \cos 2 t+C_{2} \sin 2 t-\frac{1}{8}+\frac{t^{2}}{4}+\frac{3}{5} e^{t} \tag{43}
\end{equation*}
$$

To use the initial conditions, first calculate

$$
\begin{equation*}
y^{\prime}=-2 C_{1} \sin 2 t+2 C_{2} \cos 2 t+\frac{t}{2}+\frac{3}{5} e^{t} \tag{44}
\end{equation*}
$$

Now

$$
\begin{gather*}
y(0)=0 \Longrightarrow C_{1}-\frac{1}{8}+\frac{3}{5}=0 \Longrightarrow C_{1}=-\frac{19}{40} \tag{45}\\
y^{\prime}(0)=2 \Longrightarrow 2 C_{2}+\frac{3}{5}=2 \Longrightarrow C_{2}=\frac{7}{10} \tag{46}
\end{gather*}
$$

Thus the final answer is

$$
\begin{equation*}
y=-\frac{19}{40} \cos 2 t+\frac{7}{10} \sin 2 t-\frac{1}{8}+\frac{t^{2}}{4}+\frac{3}{5} e^{t} \tag{47}
\end{equation*}
$$

Advanced

Problem 5. Consider $a y^{\prime \prime}+b y^{\prime}+c y=0$ with a, b, c constants. Assume that $a r^{2}+b r+c=0$ has repeated root $r_{1}=r_{2}$. Thus $y_{1}=e^{r_{1} t}$. Show that reduction of order always gives $y_{2}=t y_{1}$.

Proof. Let $y_{2}=v y_{1}$. Substitute into the equation:

$$
\begin{equation*}
0=a\left(v y_{1}\right)^{\prime \prime}+b\left(v y_{1}\right)^{\prime}+c\left(v y_{1}\right)=v\left[a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right]+a y_{1} v^{\prime \prime}+\left[2 a y_{1}^{\prime}+b y_{1}\right] v^{\prime} \tag{48}
\end{equation*}
$$

As y_{1} is a solution, the first $[\cdots]$ is zero. So

$$
\begin{equation*}
a y_{1} v^{\prime \prime}+\left[2 a y_{1}^{\prime}+b y_{1}\right] v^{\prime}=0 \tag{49}
\end{equation*}
$$

Now because $a r^{2}+b r+c=0$ has repeated root, necessarily $r_{1}=\frac{-b}{2 a}$. So $y_{1}^{\prime}=\left(e^{-\frac{b}{2 a} t}\right)^{\prime}=-\frac{b}{2 a} y_{1}$. Substitute into the above equation we have

$$
\begin{equation*}
2 a y_{1}^{\prime}+b y_{1}=0 \tag{50}
\end{equation*}
$$

So

$$
\begin{equation*}
a y_{1} v^{\prime \prime}=0 \Longrightarrow v^{\prime \prime}=0 \Longrightarrow v=C_{1} t+C_{2} \tag{51}
\end{equation*}
$$

Thus we can always take $y_{2}=t y_{1}$.

Challenge

Problem 6. Explain why the method of undetermined coefficients is not practical anymore when the coefficients are not constants.

Problem 7. Show that reduction of order always works. That is it always gives a y_{2} that is linearly independent of y_{1}.

Proof. The method works by letting $y_{2}=v y_{1}$ and the solve the following equation to get v :

$$
\begin{equation*}
a y_{1} v^{\prime \prime}+\left[2 a y^{\prime}+b y_{1}\right] v^{\prime}=0 \tag{52}
\end{equation*}
$$

Now as $y_{1} \neq 0$, if y_{2} is linearly dependent with y_{1}, then necessarily $v=$ constant. In other words, the method does not work only when all solutions to the v equation are constants, that is the general solution to the v equation has to be

$$
\begin{equation*}
v=C_{1} \tag{53}
\end{equation*}
$$

However, as a $y_{1} \neq 0$, the v equation is a second order equation whose general solution involves two arbitrary constants.

