Math 334 Fall 2011 Homework 2 Solutions

Basic

Problem 1. The d operator. Calculate
a) $\mathrm{d}(\sin x+y)$;
b) $\mathrm{d}\left(\frac{x y}{x^{2}+y^{2}}\right)$;
c) $\mathrm{d}\left(e^{x y}\right)$;

Solution.

a) We have

$$
\begin{equation*}
\mathrm{d}(\sin x+y)=\frac{\partial(\sin x+y)}{\partial x} \mathrm{~d} x+\frac{\partial(\sin x+y)}{\partial y} \mathrm{~d} y=\cos x \mathrm{~d} x+\mathrm{d} y . \tag{1}
\end{equation*}
$$

b) We calculate

$$
\begin{equation*}
\frac{\partial\left(\frac{x y}{x^{2}+y^{2}}\right)}{\partial x}=\frac{\frac{\partial}{\partial x}(x y)\left(x^{2}+y^{2}\right)-x y \frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y\left(x^{2}+y^{2}\right)-2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \tag{2}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\frac{\partial\left(\frac{x y}{x^{2}+y^{2}}\right)}{\partial y}=\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

So

$$
\begin{equation*}
\mathrm{d}\left(\frac{x y}{x^{2}+y^{2}}\right)=\frac{y\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \mathrm{~d} x+\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \mathrm{~d} y \tag{4}
\end{equation*}
$$

c) We calculate

$$
\begin{equation*}
\mathrm{d}\left(e^{x y}\right)=\frac{\partial\left(e^{x y}\right)}{\partial x} \mathrm{~d} x+\frac{\partial\left(e^{x y}\right)}{\partial y} \mathrm{~d} y=y e^{x y} \mathrm{~d} x+x e^{x y} \mathrm{~d} y \tag{5}
\end{equation*}
$$

Problem 2. Solve the following exact equations.
a) $\left(6 x y^{2}+4 x^{3} y\right) \mathrm{d} x+\left(6 x^{2} y+x^{4}+e^{y}\right) \mathrm{d} y=0$.
b) $\left(\frac{1}{y} \sin \frac{x}{y}-\frac{y}{x^{2}} \cos \frac{y}{x}+1\right) \mathrm{d} x+\left(\frac{1}{x} \cos \frac{y}{x}-\frac{x}{y^{2}} \sin \frac{x}{y}+\frac{1}{y^{2}}\right) \mathrm{d} y=0$.

Solution.

a) We are told that it's exact, so all we need to do is to find u. Comparing

$$
\begin{equation*}
\int\left(6 x y^{2}+4 x^{3} y\right) \mathrm{d} x \text { and } \int\left(6 x^{2} y+x^{4}+e^{y}\right) \mathrm{d} y \tag{6}
\end{equation*}
$$

we see that they are of similar difficulty. So it doesn't matter how we start.
Write

$$
\begin{equation*}
u(x, y)=\int\left(6 x y^{2}+4 x^{3} y\right) \mathrm{d} x+g(y)=3 x^{2} y^{2}+x^{4} y+g(y) \tag{7}
\end{equation*}
$$

Now compute

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(3 x^{2} y^{2}+x^{4} y+g(y)\right)=\frac{\partial}{\partial y}\left(3 x^{2} y^{2}\right)+\frac{\partial}{\partial y}\left(x^{4} y\right)+\frac{\partial}{\partial y} g(y)=6 x^{2} y+x^{4}+g^{\prime}(y) . \tag{8}
\end{equation*}
$$

Comparing with

$$
\begin{equation*}
N(x, y)=6 x^{2} y+x^{4}+e^{y} \tag{9}
\end{equation*}
$$

we see that $g^{\prime}(y)=e^{y}$ which gives $g(y)=e^{y}$.
So $u(x, y)=3 x^{2} y^{2}+x^{4} y+e^{y}$ and the general solution is

$$
\begin{equation*}
3 x^{2} y^{2}+x^{4} y+e^{y}=C \tag{10}
\end{equation*}
$$

b) Comparing

$$
\begin{equation*}
\int\left(\frac{1}{y} \sin \frac{x}{y}-\frac{y}{x^{2}} \cos \frac{y}{x}+1\right) \mathrm{d} x \text { and } \int\left(\frac{1}{x} \cos \frac{y}{x}-\frac{x}{y^{2}} \sin \frac{x}{y}+\frac{1}{y^{2}}\right) \mathrm{d} y \tag{11}
\end{equation*}
$$

we see that they are of similar difficulty. We start with

$$
\begin{align*}
u(x, y) & =\int\left(\frac{1}{y} \sin \frac{x}{y}-\frac{y}{x^{2}} \cos \frac{y}{x}+1\right) \mathrm{d} x+g(y) \\
& =\int \frac{1}{y} \sin \frac{x}{y} \mathrm{~d} x+\int\left(-\frac{y}{x^{2}}\right) \cos \frac{y}{x} \mathrm{~d} x+\int 1 \mathrm{~d} x+g(y) \\
& =\int \sin \frac{x}{y} \mathrm{~d} \frac{x}{y}+\int \cos \frac{y}{x} \mathrm{~d}\left(\frac{y}{x}\right)+x+g(y) \\
& =-\cos \frac{x}{y}+\sin \frac{y}{x}+x+g(y) . \tag{12}
\end{align*}
$$

Now compute

$$
\begin{aligned}
\frac{\partial u}{\partial y} & =\frac{\partial}{\partial y}\left(-\cos \frac{x}{y}\right)+\frac{\partial}{\partial y}\left(\sin \frac{y}{x}\right)+g^{\prime}(y) \\
& =\left(\sin \frac{x}{y}\right) \frac{\partial}{\partial y}\left(\frac{x}{y}\right)+\left(\cos \frac{y}{x}\right) \frac{\partial}{\partial y}\left(\frac{y}{x}\right)+g^{\prime}(y) \\
& =-\frac{x}{y^{2}} \sin \frac{x}{y}+\frac{1}{x} \cos \frac{y}{x}+g^{\prime}(y) .
\end{aligned}
$$

Comparing with

$$
\begin{equation*}
N(x, y)=\frac{1}{x} \cos \frac{y}{x}-\frac{x}{y^{2}} \sin \frac{x}{y}+\frac{1}{y^{2}} \tag{13}
\end{equation*}
$$

we see that

$$
\begin{equation*}
g^{\prime}(y)=\frac{1}{y^{2}} \text { so can take } g(y)=-\frac{1}{y} \text {. } \tag{14}
\end{equation*}
$$

Finally the general solution is given by

$$
\begin{equation*}
-\cos \frac{x}{y}+\sin \frac{y}{x}+x-\frac{1}{y}=C . \tag{15}
\end{equation*}
$$

Problem 3. Solve the following linear equations.
a) Solve

$$
\begin{equation*}
y^{\prime}=1+3 y \tan x \tag{16}
\end{equation*}
$$

b) Solve

$$
\begin{equation*}
y^{\prime}=2 x y+x, \quad y(1)=1 . \tag{17}
\end{equation*}
$$

Solution.

a) Write

$$
\begin{equation*}
y^{\prime}-(3 \tan x) y=1 . \tag{18}
\end{equation*}
$$

So $p(x)=-3 \tan x$ (note that negative sign!) and $g(x)=1$. The integrating factor is

$$
\begin{equation*}
\mu=e^{\int-3 \tan x}=e^{-3 \int \frac{\sin x}{\cos x} \mathrm{~d} x}=e^{3 \int \frac{d \cos x}{\cos x}}=e^{3 \ln |\cos x|}=(\cos x)^{3} \cdot 1 \tag{19}
\end{equation*}
$$

Multiply both sides by $(\cos x)^{3}$ we should reach

$$
\begin{equation*}
\left((\cos x)^{3} y\right)^{\prime}=(\cos x)^{3} \tag{20}
\end{equation*}
$$

Check

$$
\begin{equation*}
\left((\cos x)^{3} y\right)^{\prime}=(\cos x)^{3} y^{\prime}-3 \sin x(\cos x)^{2} y=(\cos x)^{3}\left[y^{\prime}-3 \tan x y\right] . \tag{21}
\end{equation*}
$$

So we have found the correct integrating factor.
Now integrate:

$$
\begin{equation*}
(\cos x)^{3} y=\int(\cos x)^{3} \mathrm{~d} x+C \tag{22}
\end{equation*}
$$

The trick now is to write

$$
\begin{equation*}
\int(\cos x)^{3} \mathrm{~d} x=\int\left(1-\sin ^{2} x\right) \mathrm{d} \sin x=\sin x-\frac{1}{3} \sin ^{3} x \tag{23}
\end{equation*}
$$

1. Note that here rigorously speaking we should have $\mu=\cos ^{3} x$ when $\cos x>0$ and $-\cos ^{3} x$ when $\cos x<0$. But this rigorous approach will give us the same result.

So finally the general solution is

$$
\begin{equation*}
y=\frac{1}{\cos ^{3} x}\left(\sin x-\frac{1}{3} \sin ^{3} x+C\right) \tag{24}
\end{equation*}
$$

b) Rewrite it as

$$
\begin{equation*}
y^{\prime}-2 x y=x \tag{25}
\end{equation*}
$$

So the integrating factor is

$$
\begin{equation*}
\mu=e^{-\int 2 x}=e^{-x^{2}} \tag{26}
\end{equation*}
$$

Multiplying both sides by μ we reach

$$
\begin{equation*}
\left(e^{-x^{2}} y\right)^{\prime}=x e^{-x^{2}} \tag{27}
\end{equation*}
$$

Check

$$
\begin{equation*}
\left(e^{-x^{2}} y\right)^{\prime}=e^{-x^{2}} y^{\prime}-2 x e^{-x^{2}} y=e^{-x^{2}}\left[y^{\prime}-2 x y\right] \tag{28}
\end{equation*}
$$

Integrate

So finally

$$
\begin{equation*}
\left(e^{-x^{2}} y\right)=\int x e^{-x^{2}} \mathrm{~d} x+C=\frac{1}{2} \int e^{-x^{2}} \mathrm{~d} x^{2}+C=-\frac{1}{2} e^{-x^{2}}+C \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
y=C e^{x^{2}}-\frac{1}{2} \tag{30}
\end{equation*}
$$

Since it's an initial value problem, we substitute $y(1)=1$ into the above formula:

$$
\begin{equation*}
1=y(1)=C e^{1}-\frac{1}{2} \Longrightarrow C=\frac{3}{2 e} . \tag{31}
\end{equation*}
$$

So the solution to the IVP is

$$
\begin{equation*}
y=\frac{3}{2 e} e^{x^{2}}-\frac{1}{2} . \tag{32}
\end{equation*}
$$

Problem 4. Solve the following separable equations.
a) Solve

$$
\begin{equation*}
y^{\prime}=-\frac{x e^{x} y^{3}}{y+1} \tag{33}
\end{equation*}
$$

b) Solve

$$
\begin{equation*}
y^{\prime}=(\tan x)(\tan y) \tag{34}
\end{equation*}
$$

Solution.

a) We have

$$
\begin{equation*}
y^{\prime}=-x e^{x} \frac{y^{3}}{y+1} \tag{35}
\end{equation*}
$$

Divide both sides by $y^{3} /(y+1)$ we reach

$$
\begin{equation*}
\frac{(y+1)}{y^{3}} y^{\prime}=-x e^{x} . \tag{36}
\end{equation*}
$$

Integrate

$$
\begin{gather*}
\int \frac{y+1}{y^{3}} \mathrm{~d} y=\int y^{-2} \mathrm{~d} y+\int y^{-3} \mathrm{~d} y=-y^{-1}-\frac{1}{2} y^{-2} \tag{37}\\
\int-x e^{x} \mathrm{~d} x=-\int x \mathrm{~d} e^{x}=-x e^{x}+e^{x} \tag{38}
\end{gather*}
$$

So the general solution is given by

$$
\begin{equation*}
(x-1) e^{x}-\left(y^{-1}+\frac{1}{2} y^{-2}\right)=C \tag{39}
\end{equation*}
$$

At the end we have to add back the zeros of $y^{3} /(y+1)$. The only value of y that makes it 0 is $y=0$. So we have another solution $y=0$.
b) Divide both sides by $\tan y$:

Integrate

$$
\begin{equation*}
\frac{\cos y}{\sin y} \mathrm{~d} y=\frac{\sin x}{\cos x} \mathrm{~d} x \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\int \frac{\cos y}{\sin y} \mathrm{~d} y=\int \frac{\mathrm{d} \sin y}{\sin y}=\ln |\sin y| . \tag{41}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\int \frac{\sin x}{\cos x} \mathrm{~d} x=-\ln |\cos x| \tag{42}
\end{equation*}
$$

So general solution is

$$
\begin{equation*}
\ln |\sin y|+\ln |\cos x|=C \tag{43}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
|(\sin y) \cos x|=e^{C} . \tag{44}
\end{equation*}
$$

Renaming e^{C} by C and getting rid of the absolution value, we see that this formula is equivalent to

$$
\begin{equation*}
(\sin y)(\cos x)=C, \quad C \neq 0 \tag{45}
\end{equation*}
$$

Finally we add back the zeros of $\frac{\sin y}{\cos y}$, that is those $y_{i}=k \pi$ with $k=\ldots,-2,-1,0,1,2, \ldots$.
Now notice that if we allow $C=0$, those constant solutions are already included. So the final compact form of our solution is

$$
\begin{equation*}
(\sin y)(\cos x)=C \tag{46}
\end{equation*}
$$

with C an arbitrary constant.
Problem 5. Are the following equations exact?
a) $3\left(x^{2}+y^{2}\right) \mathrm{d} x+x\left(x^{2}+3 y^{2}+6 y\right) \mathrm{d} y=0$.
b) $y(2 x-y+2) \mathrm{d} x+2(x-y) \mathrm{d} y=0$.

Solution.

a) We have

$$
\begin{equation*}
M=3\left(x^{2}+y^{2}\right) \Longrightarrow \frac{\partial M}{\partial y}=6 y \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
N=x\left(x^{2}+3 y^{2}+6 y\right) \Longrightarrow \frac{\partial N}{\partial x}=3 x^{2}+3 y^{2}+6 y \tag{48}
\end{equation*}
$$

So not exact.
b) We have

$$
\begin{gather*}
M=y(2 x-y+2) \Longrightarrow \frac{\partial M}{\partial y}=2 x-2 y+2 \tag{49}\\
N=2(x-y) \Longrightarrow \frac{\partial N}{\partial x}=2 \tag{50}
\end{gather*}
$$

So not exact.

Intermediate

Problem 6. Solve the following equations
a) $3\left(x^{2}+y^{2}\right) \mathrm{d} x+x\left(x^{2}+3 y^{2}+6 y\right) \mathrm{d} y=0$.
b) $y(2 x-y+2) \mathrm{d} x+2(x-y) \mathrm{d} y=0$.

Solution.

a) We have seen that it is not exact. So we need to find μ such that

$$
\begin{equation*}
M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu \tag{51}
\end{equation*}
$$

or for this problem:

$$
\begin{equation*}
3\left(x^{2}+y^{2}\right) \frac{\partial \mu}{\partial y}-x\left(x^{2}+3 y^{2}+6 y\right) \frac{\partial \mu}{\partial x}=3\left(x^{2}+y^{2}\right) \mu . \tag{52}
\end{equation*}
$$

First guess $\mu=\mu(x)$:

$$
\begin{equation*}
-x\left(x^{2}+3 y^{2}+6 y\right) \mu^{\prime}(x)=3\left(x^{2}+y^{2}\right) \mu \tag{53}
\end{equation*}
$$

Clearly won't work.
Next guess $\mu=\mu(y)$:

$$
\begin{equation*}
3\left(x^{2}+y^{2}\right) \mu^{\prime}(y)=3\left(x^{2}+y^{2}\right) \mu \Longrightarrow \mu^{\prime}=\mu \tag{54}
\end{equation*}
$$

and we can take $\mu=e^{y}$.
Multiply the equation by e^{y} :

$$
\begin{equation*}
3 e^{y}\left(x^{2}+y^{2}\right) \mathrm{d} x+x e^{y}\left(x^{2}+3 y^{2}+6 y\right) \mathrm{d} y=0 . \tag{55}
\end{equation*}
$$

We check

$$
\begin{equation*}
\frac{\partial}{\partial y}\left[3 e^{y}\left(x^{2}+y^{2}\right)\right]=3 e^{y}\left(x^{2}+y^{2}\right)+6 y e^{y} \tag{56}
\end{equation*}
$$

and compare with

$$
\begin{equation*}
\frac{\partial}{\partial x}\left[x e^{y}\left(x^{2}+3 y^{2}+6 y\right)\right]=3 x^{2} e^{y}+e^{y}\left(3 y^{2}+6 y\right) . \tag{57}
\end{equation*}
$$

We see that they are the same so we have found the correct integrating factor.
Now integrate

$$
\begin{equation*}
3 e^{y}\left(x^{2}+y^{2}\right) \mathrm{d} x+x e^{y}\left(x^{2}+3 y^{2}+6 y\right) \mathrm{d} y=0 \tag{58}
\end{equation*}
$$

Comparing

$$
\begin{equation*}
\int 3 e^{y}\left(x^{2}+y^{2}\right) \mathrm{d} x \text { and } \int x e^{y}\left(x^{2}+3 y^{2}+6 y\right) \mathrm{d} y \tag{59}
\end{equation*}
$$

we see that the former is much eaiser. So write

Compute

$$
\begin{equation*}
u(x, y)=\int 3 e^{y}\left(x^{2}+y^{2}\right) \mathrm{d} x+g(y)=x^{3} e^{y}+3 x y^{2} e^{y}+g(y) \tag{60}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial y}=x^{3} e^{y}+3 x y^{2} e^{y}+6 x y e^{y}+g^{\prime}(y) \tag{61}
\end{equation*}
$$

and compare with $x e^{y}\left(x^{2}+3 y^{2}+6 y\right)$ we see that $g^{\prime}(y)=0$ so we take $g=0$.
The solution is given by

$$
\begin{equation*}
x^{3} e^{y}+3 x y^{2} e^{y}=C \tag{62}
\end{equation*}
$$

Finally, note that as the integrating factor $\mu=e^{y}$ is never zero, the equation after multiplication of μ is equivalent to the original equation. So the solution to the original equation is also

$$
\begin{equation*}
x^{3} e^{y}+3 x y^{2} e^{y}=C \tag{63}
\end{equation*}
$$

b) As we already know that the equation is not exact, we try to find $\mu(x, y)$ solving

$$
\begin{equation*}
M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu \tag{64}
\end{equation*}
$$

which becomes for this problem

$$
\begin{equation*}
y(2 x-y+2) \frac{\partial \mu}{\partial y}-2(x-y) \frac{\partial \mu}{\partial x}=-2(x-y) \mu . \tag{65}
\end{equation*}
$$

Try $\mu=\mu(x)$:

$$
\begin{equation*}
-2(x-y) \mu^{\prime}=-2(x-y) \mu \Longrightarrow \mu^{\prime}=\mu \tag{66}
\end{equation*}
$$

and we take $\mu=e^{x}$.
Multiply the equation by μ we get

$$
\begin{equation*}
e^{x} y(2 x-y+2) \mathrm{d} x+2 e^{x}(x-y) \mathrm{d} y=0 . \tag{67}
\end{equation*}
$$

Check

$$
\begin{equation*}
\frac{\partial}{\partial y} e^{x} y(2 x-y+2)=2 x e^{x}-2 y e^{x}+2 e^{x} \tag{68}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial x}\left[2 e^{x}(x-y)\right]=2 e^{x}(x-y)+2 e^{x} \tag{69}
\end{equation*}
$$

and indeed the same.
Now comparing

$$
\begin{equation*}
\int e^{x} y(2 x-y+2) \mathrm{d} x \text { and } \int 2 e^{x}(x-y) \mathrm{d} y \tag{70}
\end{equation*}
$$

we see that the latter is clearly easier. So write

$$
\begin{equation*}
u(x, y)=\int 2 e^{x}(x-y) \mathrm{d} y+g(x)=2 e^{x} x y-e^{x} y^{2}+g(x) \tag{71}
\end{equation*}
$$

Comparing

$$
\begin{equation*}
\frac{\partial u}{\partial x}=2 e^{x} y+2 e^{x} x y-e^{x} y^{2}+g^{\prime}(x) \tag{72}
\end{equation*}
$$

and $e^{x} y(2 x-y+2)$ we see that $g^{\prime}(x)=0$ so can take $g=0$. So the general solution to the transformed equation is

$$
\begin{equation*}
2 e^{x} x y-e^{x} y^{2}=C \tag{73}
\end{equation*}
$$

As the transformed equation is obtained from the original one by multiplying e^{x} which is never zero, the general solution to the original equation is also

$$
\begin{equation*}
2 e^{x} x y-e^{x} y^{2}=C \tag{74}
\end{equation*}
$$

Advanced

Problem 7. Solve

$$
\begin{equation*}
y^{\prime}+\frac{x}{y}+2=0, \quad y(0)=1 \tag{75}
\end{equation*}
$$

Solution. This is a homogeneous equation. So we let $v=y / x$. This gives $y^{\prime}=x v^{\prime}+v$ and the equation for v turns out to be

$$
\begin{equation*}
x v^{\prime}+v+\frac{1}{v}+2=0 \tag{76}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
x v^{\prime}+\frac{(v+1)^{2}}{v}=0 \Longrightarrow \frac{v}{(v+1)^{2}} v^{\prime}=-\frac{1}{x} . \tag{77}
\end{equation*}
$$

Integrate:

$$
\begin{equation*}
\int \frac{v \mathrm{~d} v}{(v+1)^{2}}=\int \frac{\mathrm{d} v}{v+1}-\int \frac{\mathrm{d} v}{(v+1)^{2}}=\ln |v+1|+\frac{1}{v+1} ; \quad \int\left(-\frac{1}{x}\right) \mathrm{d} x=-\ln |x| . \tag{78}
\end{equation*}
$$

So the solution reads

$$
\begin{equation*}
\ln |v+1|+\frac{1}{v+1}=-\ln |x|+C \tag{79}
\end{equation*}
$$

together with the zeros of $\frac{(v+1)^{2}}{v}$ which is $v=-1$.
Back to y :

$$
\begin{equation*}
\ln \left|\frac{y}{x}+1\right|+\frac{1}{(y / x)+1}=-\ln |x|+C, \quad \frac{y}{x}=-1 \tag{80}
\end{equation*}
$$

which simplify to

$$
\begin{equation*}
\ln |y+x|+\frac{x}{y+x}=C, \quad y=-x . \tag{81}
\end{equation*}
$$

Now use the initial value $y(0)=-1$. First note that $y=-x$ does not satisfy it. Next substitute this IV into the general solution formula we get

$$
\begin{equation*}
\ln |-1+0|+\frac{0}{-1+0}=C \Longrightarrow C=0 \tag{82}
\end{equation*}
$$

So the solution to the IVP is

$$
\begin{equation*}
\ln |y+x|+\frac{x}{y+x}=0 \tag{83}
\end{equation*}
$$

It cannot be simplified anymore.

Challenge

Problem 8. Consider the general linear 1st order equation

$$
\begin{equation*}
y^{\prime}+p(x) y=g(x) \tag{84}
\end{equation*}
$$

Write it as $M \mathrm{~d} x+N \mathrm{~d} y=0$ and show that it is exact only when $p(x)=0$. Explore possible integrating factors using the general theory.
Solution. We have

$$
\begin{equation*}
y^{\prime}+p(x) y=g(x) \Longrightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}+p(x) y=g(x) \Longrightarrow \mathrm{d} y+[p(x) y-g(x)] \mathrm{d} x=0 \Longrightarrow[p(x) y-g(x)] \mathrm{d} x+\mathrm{d} y=0 . \tag{85}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}[p(x) y-g(x)]=p(x) ; \quad \frac{\partial N}{\partial x}=0 \tag{86}
\end{equation*}
$$

It is clear that the equation is exact only when $p=0$.
An integrating factor must satisfy

$$
\begin{equation*}
M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu \tag{87}
\end{equation*}
$$

which means

$$
\begin{equation*}
[p(x) y-g(x)] \frac{\partial \mu}{\partial y}-\frac{\partial \mu}{\partial x}=-p(x) \mu . \tag{88}
\end{equation*}
$$

- Guess $\mu=\mu(x)$. We reach

$$
\begin{equation*}
\mu^{\prime}=p(x) \mu \Longrightarrow \mu=C e^{\int p} \text { is a class of integrating factors. } \tag{89}
\end{equation*}
$$

- Guess $\mu=\mu(y)$. We reach

$$
\begin{equation*}
[p(x) y-g(x)] \mu^{\prime}=-p(x) \mu \tag{90}
\end{equation*}
$$

which has no solution that is independent of x.

- Guess $\mu=\mu(x y)$. We have $\frac{\partial \mu}{\partial y}=\mu^{\prime} x, \frac{\partial \mu}{\partial x}=\mu^{\prime} y$ so

$$
\begin{equation*}
([p(x) y-g(x)] x-y) \mu^{\prime}=-p(x) \mu \tag{91}
\end{equation*}
$$

still doesn't work.
Warning: In what follows we try to find out a formula for all possible integrating factors. That is, are there any other integrating factors besides $C e^{\int p}$? Read on only if you are curious about this.
\qquad What's below is not related to the exams! \qquad
We can try to show that $\mu=C e^{\int p}$ is the only possible integrating factor, that is all integrating factors must be independent of y. Write

$$
\begin{equation*}
[p(x) y-g(x)] \frac{\partial \mu}{\partial y}-\frac{\partial \mu}{\partial x}=-p(x) \mu \tag{92}
\end{equation*}
$$

as

$$
\begin{equation*}
[p(x) y-g(x)] \frac{\partial \mu}{\partial y}=\frac{\partial \mu}{\partial x}-p(x) \mu \tag{93}
\end{equation*}
$$

Multiply both sides by $e^{-\int p}$ and let $Z(x, y)=e^{-\int p} \mu$. All we need to do is to show that Z is independent of y (in fact, since we know $\mu=C e^{\int p}, Z$ must be a constant if our conjecture is true).

We have

$$
\begin{equation*}
[p(x) y-g(x)] \frac{\partial Z}{\partial y}=\frac{\partial Z}{\partial x} \Longrightarrow p(x) y-g(x)=\frac{Z_{x}}{Z_{y}} \tag{94}
\end{equation*}
$$

Note that $p(x), g(x)$ are just arbitrary functions of x, the above the equivalent to

$$
\begin{equation*}
\left(\frac{Z_{x}}{Z_{y}}\right)_{y y}=0 . \tag{95}
\end{equation*}
$$

But at this stage we realize that our claim $(Z=Z(x))$ cannot be true, as $Z=x y$ clearly satisfies the above equation.

So it seems there may indeed be other integrating factors than $C e^{\int p}$.
In fact, we can reach the above conclusion in the following much more straightforward way. Assume that the solution is given by

$$
\begin{equation*}
u(x, y)=C . \tag{96}
\end{equation*}
$$

Then clearly $u(x, y) e^{\int p}$ is also an integrating factor.
Inspired by this, we can actually show that any integrating factor takes the form

$$
\begin{equation*}
\mu(x, y)=H(u) e^{\int p} \tag{97}
\end{equation*}
$$

To see this, notice that $H(u)$ is exactly Z. As Z satisfies $p(x) y-g(x)=\frac{Z_{x}}{Z_{y}}$, we have

$$
\begin{equation*}
\mathrm{d} Z=f(x, y) \mathrm{d} u \tag{98}
\end{equation*}
$$

This means, $Z(x, y)$ and $u(x, y)$ share level sets (that is if u is constant along a curve, Z is also constant along the same curve). In other words, $Z=H(u)$ for some single variable function H.

