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Math 334 Fall 2011 Homework 2 Solutions

Basic

Problem 1. The d operator. Calculate

a) d(sin x+ y);

b) d
(

x y

x2 + y2

)

;

c) d(exy);

Solution.

a) We have

d(sin x + y) =
∂(sin x + y)

∂x
dx +

∂(sin x + y)
∂y

dy = cos x dx + dy. (1)

b) We calculate

∂
(

x y

x2 + y2

)

∂x
=

∂

∂x
(x y) (x2 + y2)− x y

∂

∂x
(x2 + y2)

(x2 + y2)2
=

y (x2 + y2)− 2x2 y

(x2 + y2)2
=

y (y2−x2)
(x2 + y2)2

; (2)

Similarly we have

∂
(

x y

x2 + y2

)

∂y
=

x (x2− y2)
(x2 + y2)2

. (3)

So

d

(

x y

x2 + y2

)

=
y (y2− x2)

(x2 + y2)2
dx+

x (x2− y2)

(x2 + y2)2
dy. (4)

c) We calculate

d(exy) =
∂(exy)

∂x
dx +

∂(exy)

∂y
dy = y exy dx+ x exy dy. (5)

Problem 2. Solve the following exact equations.

a) (6 x y2 + 4 x3 y) dx + (6x2 y + x4 + ey) dy =0.

b)
(

1

y
sin

x

y
−

y

x2
cos

y

x
+ 1

)

dx+
(

1

x
cos

y

x
−

x

y2
sin

x

y
+

1

y2

)

dy = 0.

Solution.

a) We are told that it’s exact, so all we need to do is to find u. Comparing
∫

(6 x y2 + 4 x3 y) dx and

∫

(6x2 y + x4 + ey) dy, (6)

we see that they are of similar difficulty. So it doesn’t matter how we start.
Write

u(x, y) =

∫

(6x y2 + 4 x3 y) dx+ g(y)= 3 x2 y2 + x4 y + g(y). (7)

Now compute

∂u

∂y
=

∂

∂y
(3 x2 y2 + x4 y + g(y))=

∂

∂y
(3x2 y2) +

∂

∂y
(x4 y) +

∂

∂y
g(y)= 6 x2 y + x4 + g ′(y). (8)

Comparing with

N(x, y) = 6x2 y +x4 + ey (9)

we see that g ′(y) = ey which gives g(y)= ey.

So u(x, y) = 3x2 y2 + x4 y + ey and the general solution is

3x2 y2 + x4 y + ey = C. (10)

b) Comparing
∫

(

1
y
sin

x

y
−

y

x2
cos

y

x
+ 1

)

dx and

∫
(

1
x
cos

y

x
−

x

y2
sin

x

y
+

1
y2

)

dy (11)
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we see that they are of similar difficulty. We start with

u(x, y) =

∫
(

1
y
sin

x

y
−

y

x2
cos

y

x
+1

)

dx+ g(y)

=

∫

1

y
sin

x

y
dx +

∫

(

−
y

x2

)

cos
y

x
dx+

∫

1 dx+ g(y)

=

∫

sin
x

y
d

x

y
+

∫

cos
y

x
d
(

y

x

)

+x + g(y)

= −cos
x

y
+ sin

y

x
+ x + g(y). (12)

Now compute

∂u

∂y
=

∂

∂y

(

−cos
x

y

)

+
∂

∂y

(

sin
y

x

)

+ g ′(y)

=

(

sin
x

y

)

∂

∂y

(

x

y

)

+
(

cos
y

x

)

∂

∂y

(

y

x

)

+ g ′(y)

= −
x

y2
sin

x

y
+

1
x
cos

y

x
+ g ′(y).

Comparing with

N(x, y) =
1
x
cos

y

x
−

x

y2
sin

x

y
+

1
y2

(13)

we see that

g ′(y) =
1
y2

so can take g(y) =−
1
y
. (14)

Finally the general solution is given by

−cos
x

y
+ sin

y

x
+x−

1

y
= C. (15)

Problem 3. Solve the following linear equations.

a) Solve

y ′ = 1+ 3y tan x. (16)

b) Solve

y ′ =2 x y + x, y(1) = 1. (17)

Solution.

a) Write

y ′− (3 tan x) y = 1. (18)

So p(x) =−3 tan x (note that negative sign!) and g(x) = 1. The integrating factor is

µ = e
∫

−3tan x = e
−3

∫

sin x

cos x
dx = e

3
∫

dcos x

cos x = e3ln|cos x| = (cos x)3.1 (19)

Multiply both sides by (cos x)3 we should reach

((cos x)3 y)′ = (cos x)3. (20)

Check

((cos x)3 y)′ = (cos x)3 y ′− 3 sin x (cos x)2 y = (cos x)3 [y ′− 3 tan x y]. (21)

So we have found the correct integrating factor.

Now integrate:

(cos x)3 y =

∫

(cos x)3 dx+ C. (22)

The trick now is to write
∫

(cos x)3 dx =

∫

(1− sin2x) dsin x = sin x−
1

3
sin3x (23)

1.Note that here rigorously speaking we should have µ= cos3x when cosx > 0 and −cos3x when cosx <0. But this rigorous

approach will give us the same result.
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So finally the general solution is

y =
1

cos3x

(

sin x−
1
3
sin3x+ C

)

. (24)

b) Rewrite it as

y ′− 2x y = x. (25)

So the integrating factor is

µ = e−
∫

2x = e−x2

. (26)

Multiplying both sides by µ we reach

(e−x2

y)′ = x e−x2

. (27)

Check

(e−x2

y)′ = e−x2

y ′− 2x e−x2

y = e−x2

[y ′− 2x y]. (28)

Integrate

(e−x2

y) =

∫

x e−x2

dx + C =
1
2

∫

e−x2

dx2 +C =−
1
2

e−x2

+ C. (29)

So finally

y = Cex2

−
1

2
. (30)

Since it’s an initial value problem, we substitute y(1) = 1 into the above formula:

1 = y(1) = C e1−
1

2
� C =

3

2 e
. (31)

So the solution to the IVP is

y =
3
2 e

ex2

−
1
2
. (32)

Problem 4. Solve the following separable equations.

a) Solve

y ′ =−
x ex y3

y +1
(33)

b) Solve

y ′ = (tan x) (tan y) (34)

Solution.

a) We have

y ′ =−x ex y3

y +1
(35)

Divide both sides by y3/(y + 1) we reach

(y + 1)
y3

y ′ =−x ex. (36)

Integrate
∫

y + 1

y3
dy =

∫

y−2 dy +

∫

y−3 dy =−y−1−
1

2
y−2; (37)

∫

−x ex dx=−

∫

xdex =−x ex + ex. (38)

So the general solution is given by

(x− 1) ex −

(

y−1 +
1
2

y−2

)

= C. (39)

At the end we have to add back the zeros of y3/(y + 1). The only value of y that makes it 0 is y = 0. So
we have another solution y = 0.

b) Divide both sides by tan y:
cos y

sin y
dy =

sin x

cos x
dx. (40)

Integrate
∫

cos y

sin y
dy =

∫

dsin y

sin y
= ln |sin y |. (41)
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Similarly
∫

sin x

cos x
dx =−ln |cos x|. (42)

So general solution is

ln |sin y |+ ln |cos x|= C (43)

which is equivalent to

|(sin y) cos x|= eC. (44)

Renaming eC by C and getting rid of the absolution value, we see that this formula is equivalent to

(sin y) (cos x) = C, C � 0. (45)

Finally we add back the zeros of
sin y

cos y
, that is those yi = k π with k =	 ,−2,−1, 0, 1, 2,	 .

Now notice that if we allow C =0, those constant solutions are already included. So the final compact

form of our solution is

(sin y) (cos x) = C (46)

with C an arbitrary constant.

Problem 5. Are the following equations exact?

a) 3 (x2 + y2) dx +x (x2 + 3 y2 + 6 y) dy = 0.

b) y (2 x− y + 2) dx+ 2 (x− y) dy = 0.

Solution.

a) We have

M = 3 (x2 + y2)� ∂M

∂y
= 6 y (47)

and

N = x (x2 +3 y2 +6 y)� ∂N

∂x
= 3 x2 + 3 y2 + 6 y (48)

So not exact.

b) We have

M = y (2x− y +2)� ∂M

∂y
= 2 x− 2 y +2 (49)

N = 2 (x− y)� ∂N

∂x
= 2 (50)

So not exact.

Intermediate

Problem 6. Solve the following equations

a) 3 (x2 + y2) dx +x (x2 + 3 y2 + 6 y) dy = 0.

b) y (2 x− y + 2) dx+ 2 (x− y) dy = 0.

Solution.

a) We have seen that it is not exact. So we need to find µ such that

M
∂µ

∂y
−N

∂µ

∂x
=

(

∂N

∂x
−

∂M

∂y

)

µ (51)

or for this problem:

3 (x2 + y2)
∂µ

∂y
− x (x2 + 3 y2 + 6 y)

∂µ

∂x
= 3(x2 + y2) µ. (52)

First guess µ = µ(x):

−x (x2 + 3 y2 + 6 y) µ′(x) = 3(x2 + y2) µ. (53)

Clearly won’t work.

Next guess µ = µ(y):

3 (x2 + y2) µ′(y) = 3(x2 + y2) µ� µ′ = µ (54)
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and we can take µ = ey.

Multiply the equation by ey:

3 ey (x2 + y2) dx+ x ey (x2 + 3 y2 + 6 y) dy = 0. (55)

We check
∂

∂y
[3 ey (x2 + y2)]= 3 ey (x2 + y2) + 6 y ey (56)

and compare with
∂

∂x
[x ey (x2 +3 y2 + 6 y)]= 3 x2 ey + ey (3 y2 + 6 y). (57)

We see that they are the same so we have found the correct integrating factor.

Now integrate

3 ey (x2 + y2) dx+ x ey (x2 + 3 y2 + 6 y) dy = 0. (58)

Comparing
∫

3 ey (x2 + y2) dx and

∫

x ey (x2 + 3 y2 + 6 y) dy (59)

we see that the former is much eaiser. So write

u(x, y) =

∫

3 ey (x2 + y2) dx + g(y) = x3 ey + 3 x y2 ey + g(y). (60)

Compute
∂u

∂y
= x3 ey + 3 x y2 ey +6 x y ey + g ′(y) (61)

and compare with x ey (x2 + 3 y2 + 6 y) we see that g ′(y) =0 so we take g = 0.
The solution is given by

x3 ey + 3 x y2 ey =C. (62)

Finally, note that as the integrating factor µ = ey is never zero, the equation after multiplication of µ is
equivalent to the original equation. So the solution to the original equation is also

x3 ey + 3 x y2 ey =C. (63)

b) As we already know that the equation is not exact, we try to find µ(x, y) solving

M
∂µ

∂y
−N

∂µ

∂x
=

(

∂N

∂x
−

∂M

∂y

)

µ (64)

which becomes for this problem

y (2x− y +2)
∂µ

∂y
− 2 (x− y)

∂µ

∂x
=−2 (x− y) µ. (65)

Try µ = µ(x):

−2 (x− y) µ′ =−2 (x− y) µ� µ′ = µ (66)

and we take µ = ex.

Multiply the equation by µ we get

ex y (2x− y +2) dx+ 2 ex (x− y) dy = 0. (67)

Check
∂

∂y
ex y (2 x− y + 2) = 2 x ex − 2 y ex + 2 ex (68)

and
∂

∂x
[2 ex (x− y) ]= 2 ex (x− y) + 2 ex (69)

and indeed the same.

Now comparing
∫

ex y (2x− y +2) dx and

∫

2 ex (x− y) dy (70)

we see that the latter is clearly easier. So write

u(x, y) =

∫

2 ex (x− y) dy + g(x) = 2 ex x y − ex y2 + g(x). (71)
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Comparing
∂u

∂x
= 2 ex y +2 ex x y − ex y2 + g ′(x) (72)

and ex y (2 x − y + 2) we see that g ′(x) = 0 so can take g = 0. So the general solution to the transformed

equation is

2 ex x y − ex y2 =C. (73)

As the transformed equation is obtained from the original one by multiplying ex which is never zero, the

general solution to the original equation is also

2 ex x y − ex y2 =C. (74)

Advanced

Problem 7. Solve

y ′ +
x

y
+2 = 0, y(0) = 1. (75)

Solution. This is a homogeneous equation. So we let v = y/x. This gives y ′ = x v ′ + v and the equation for v

turns out to be

x v ′ + v +
1

v
+ 2= 0 (76)

which simplifies to

x v ′ +
(v + 1)2

v
= 0� v

(v + 1)2
v ′ =−

1

x
. (77)

Integrate:
∫

v dv

(v + 1)2
=

∫

dv

v + 1
−

∫

dv

(v + 1)2
= ln |v + 1|+

1
v + 1

;

∫
(

−
1
x

)

dx=−ln |x|. (78)

So the solution reads

ln |v + 1|+
1

v + 1
=−ln |x|+ C (79)

together with the zeros of
(v + 1)2

v
which is v =−1.

Back to y:

ln
∣

∣

∣

y

x
+ 1

∣

∣

∣
+

1

(y/x) + 1
=−ln |x|+ C,

y

x
=−1 (80)

which simplify to

ln |y + x|+
x

y +x
= C, y =−x. (81)

Now use the initial value y(0) =−1. First note that y =−x does not satisfy it. Next substitute this IV into the
general solution formula we get

ln |−1 +0|+
0

−1 + 0
= C� C = 0. (82)

So the solution to the IVP is

ln |y + x|+
x

y + x
= 0. (83)

It cannot be simplified anymore.

Challenge

Problem 8. Consider the general linear 1st order equation

y ′ + p(x) y = g(x). (84)

Write it as M dx + N dy = 0 and show that it is exact only when p(x) = 0. Explore possible integrating factors
using the general theory.

Solution. We have

y ′ + p(x) y = g(x)� dy

dx
+ p(x) y = g(x)� dy + [p(x) y − g(x)] dx = 0� [p(x) y − g(x)] dx + dy = 0. (85)

So
∂M

∂y
=

∂

∂y
[p(x) y − g(x)]= p(x);

∂N

∂x
= 0. (86)
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It is clear that the equation is exact only when p= 0.
An integrating factor must satisfy

M
∂µ

∂y
−N

∂µ

∂x
=

(

∂N

∂x
−

∂M

∂y

)

µ (87)

which means

[p(x) y − g(x)]
∂µ

∂y
−

∂µ

∂x
=−p(x) µ. (88)

• Guess µ = µ(x). We reach

µ′ = p(x) µ� µ = C e
∫

p is a class of integrating factors. (89)

• Guess µ = µ(y). We reach

[p(x) y − g(x)] µ′ =−p(x) µ (90)

which has no solution that is independent of x.

• Guess µ = µ(x y). We have
∂µ

∂y
= µ′ x,

∂µ

∂x
= µ′ y so

([p(x) y − g(x)] x− y) µ′ =−p(x) µ (91)

still doesn’t work.

Warning: In what follows we try to find out a formula for all possible integrating factors. That is, are there any

other integrating factors besides Ce
∫

p? Read on only if you are curious about this.

———————————— What’s below is not related to the exams! ———————————————

We can try to show that µ = C e
∫

p is the only possible integrating factor, that is all integrating factors must
be independent of y. Write

[p(x) y − g(x)]
∂µ

∂y
−

∂µ

∂x
=−p(x) µ (92)

as

[p(x) y − g(x)]
∂µ

∂y
=

∂µ

∂x
− p(x) µ (93)

Multiply both sides by e−
∫

p and let Z(x, y) = e−
∫

p µ. All we need to do is to show that Z is independent of y

(in fact, since we know µ = Ce
∫

p, Z must be a constant if our conjecture is true).

We have

[p(x) y − g(x)]
∂Z

∂y
=

∂Z

∂x
� p(x) y − g(x) =

Zx

Zy

. (94)

Note that p(x), g(x) are just arbitrary functions of x, the above the equivalent to
(

Zx

Zy

)

yy

= 0. (95)

But at this stage we realize that our claim (Z = Z(x)) cannot be true, as Z = x y clearly satisfies the above
equation.

So it seems there may indeed be other integrating factors than C e
∫

p.

In fact, we can reach the above conclusion in the following much more straightforward way. Assume that the
solution is given by

u(x, y) = C. (96)

Then clearly u(x, y) e
∫

p is also an integrating factor.

Inspired by this, we can actually show that any integrating factor takes the form

µ(x, y) = H(u) e
∫

p. (97)

To see this, notice that H(u) is exactly Z. As Z satisfies p(x) y − g(x) =
Zx

Zy

, we have

dZ = f(x, y) du. (98)

This means, Z(x, y) and u(x, y) share level sets (that is if u is constant along a curve, Z is also constant along

the same curve). In other words, Z = H(u) for some single variable function H .
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