Sept. 23, 2011

MATH 334 FALL 2011 HOMEWORK 2 SOLUTIONS

Basic

Problem 1. The d operator. Calculate
a) d(sinz +y);
b) d< 1.2 + y2 )?
c) d(e™);

Solution.

a) We have

d(sinz + y) dx+8(sinm+y)

d(sinz +y) = p %

b) We calculate

ey o o
8(12+y2> a(wy) (2P 4 y?) —ry 5 (7 + y7) _y(x2+y2)—2x2y:y(y2—x

dy=coszdx +dy. (1)

2

O - (22 + y2)? - (22 + y2)?

Similarly we have
(457) _sa—v)
@y

So

d( Ty ) Zé(é/ ))dx+r€(x2—y2)d

x2+y2 x2+y2)2

c) We calculate
o(e*v)
Ox Oy

Problem 2. Solve the following exact equations.

a) (6xy’+4x3y)dz+ (622y+at+e¥)dy=0.

d(e™) =

b) <7smf——cosf+1>dx+<lcosg—%sin£+%)dy:0.
y e U@y vy 'y

Solution.

(x2+ y2)2’

xy
d:c+a(e )dy:yezydm—&—xezydy. (5)

a) We are told that it’s exact, so all we need to do is to find u. Comparing

/(6xy2+4:c3y)dx and/(6x2y—|—x4—|—ey)dy,

we see that they are of similar difficulty. So it doesn’t matter how we start.

Write

(6)

u(z, y)=/ (6zy*+42%y)de+g(y) =32y’ + 2 y+ g(y). (7)

Now compute

0 0
@“za—ywyuﬁwg(y))

Comparing with

&\@

N(z,y)=6x%y+ax*+e¥

we see that g'(y) =e¥ which gives g(y) =ev.
So u(x,y) =322 y?+ 2y + e and the general solution is

3z’ +aty+evy=C.

b) Comparing

(322 )+%<x4 y)+§yg(y>:6x2y+:c4+g’(y>. (8)

(10)

lsinf—icosg—i—l dx and lcosg—isinf—&—i dy (11)
J\y "y 2w J\e xoyr Ty P
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we see that they are of similar difficulty. We start with

1 .
u(z,y) = /<§smg—%cos%+l)dm+g(y)

Lein® —Y Y eos Y
/ys1nyd:c+/( xQ)cosxdx—t-/ldx—b-g(y)

— inZq* Ya(¥
= /31nydy+/cosxd<x)+x+g(y)

= —cosg—&—sin%—i—m—i—g(y). (12)

Now compute
ou 1s] T d/( . vy ,
vl —a<—cosg)+—a<sm;)+g(y)

. x\ 0fx y\ 0y /

= —%sing—&—%cos%—&—g’(y).

Il
/N

Comparing with
1 y x . x 1
N =—cos?d - Lgint 4 = 13
(z,v) xcosx stmy—ky2 (13)
we see that

g'(y) :% so can take g(y) = —l. (14)
Y Y
Finally the general solution is given by
—cos£+sin£+x—l:0. (15)
Yy T Y
Problem 3. Solve the following linear equations.
a) Solve
y'=1+43ytanx. (16)
b) Solve
y=2zy+x, y(1)=1. (17)
Solution.
a) Write
y'— (3tanz)y=1. (18)
So p(x) =—3tanz (note that negative sign!) and g(z) =1. The integrating factor is
p=el “3tene—=3) e _ BT = gBnleos 7l — (cosx)3.1 (19)
Multiply both sides by (cosx)? we should reach
((cosz)?y)' = (cos z)3. (20)
Check
((cosz)3y)' = (cosx)®y' — 3sinz (cos x)? y = (cos z)3 [y’ — 3 tan z y]. (21)
So we have found the correct integrating factor.
Now integrate:
(cosac)3y:/ (cosz)3dz+C. (22)
The trick now is to write
/ (cos m)3dx:/ (1 —sin%z) dsinx =sinz — %sin% (23)

1. Note that here rigorously speaking we should have p = cosz when cosz > 0 and —cos®z when cosz < 0. But this rigorous

approach will give us the same result.



So finally the general solution is

yzﬁ(sinx—%sin%—i—C). (24)
b) Rewrite it as
y —2zy=uw. (25)
So the integrating factor is
p=e =g (26)
Multiplying both sides by p we reach
(e " y) =ze " (27)
Check
(e y) =e ™y —2ze " y=e""[y' -2y (28)
Integrate
(e y) = /:c e dz+C= % /6712 dz?+C= —% e 4+ C. (29)
So finally
y=Ce" — % (30)
Since it’s an initial value problem, we substitute y(1) =1 into the above formula:
1:y(1):061—%:>c:%. (31)
So the solution to the IVP is
y:%exz—%. (32)
Problem 4. Solve the following separable equations.
a) Solve ,
y=-22Y (33)
b) Solve
y' = (tanz) (tan y) (34)
Solution.
a) We have .
1/’:—91,’e””y_|_1 (35)
Divide both sides by 3%/(y + 1) we reach
(y;;)l) y'=—ze* (36)
Integrate
/y+31dy:/yfzdy+/y’3dy=—y’l—ly’z; (37)
Y 2
/—xezdm:—/xdez:—xe“—i—ez. (38)
So the general solution is given by
(x—1)ez—(y*1+%y*2):c. (39)
At the end we have to add back the zeros of y3/(y+1). The only value of y that makes it 0 is y=0. So
we have another solution y =0.
b) Divide both sides by tan y:

COSY gy =317 g (40)
smy COS T

= =1n |sin y].
cosydy dsin y In [sin y 11

sin y sin y

Integrate
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Similarly
/ ﬁdm:—ln|cosm|. (42)
cos T
So general solution is
In|siny|+In|cosz|=C (43)
which is equivalent to
|(sin y) cos z| = e€. (44)

Renaming e© by C and getting rid of the absolution value, we see that this formula is equivalent to

(siny) (cosz) =C, C+0. (45)

Finally we add back the zeros of z::Z’ that is those y;=km with k=..., -2,-1,0,1,2,....
Now notice that if we allow C' =0, those constant solutions are already included. So the final compact

form of our solution is
(siny) (cosz)=C (46)

with C an arbitrary constant.

Problem 5. Are the following equations exact?
a) 3(z2+y?)dz+x(22+3y*>+6y)dy=0.
b) yQz—y+2)dz+2(z—y)dy=0.

Solution.
a) We have
M:3(x2+y2):%\4:6y (47)
and
2 2 ON 2 2
N=z(z*+3y +6y):%:3x +3y“+6y (48)
So not exact.
b) We have
M=yRz—y+2)— —=22—-2y+2 (49)
ON
So not exact.
INTERMEDIATE

Problem 6. Solve the following equations
a) 3(z2+y?)dr+x(22+3y2+6y)dy=0.
b) yQzx—y+2)dz+2(z—y)dy=0.

Solution.

a) We have seen that it is not exact. So we need to find p such that

Op _ NOn_(ON_ oM
Ma—y Nai(&c 8y)u (51)
or for this problem:
2 OB o 2 O _ o o
3(x +y)8y z(x*+3y +6y)ax—3(:c +y°) p. (52)
First guess u= u(x):
—z (z?+3y° +6y) p'(z) =3(2?+ y?) p. (53)

Clearly won’t work.
Next guess u= u(y):

3@+ y?) p'(y) =3 +y?) p=p/=p (54)



and we can take pu=eY.
Multiply the equation by e¥:

3e¥ (22 +y?)dr+ze¥(x2+3y?+6y)dy=0. (55)
We check
%[3 eV (z?+y?)]=3e¥ (22 4+ y*) +6ye? (56)
and compare with
a—i[wey(x2+3y2+6y)]:3m26y+ey(3y2+6y). (57)

We see that they are the same so we have found the correct integrating factor.
Now integrate

3e¥ (22 +y?)dr+ze¥(x2+3y?+6y)dy=0. (58)
Comparing
/3ey(x2+y2)dx and /wey(m2+3y2+6y)dy (59)
we see that the former is much eaiser. So write
u(z, y) :/ Bev(2?+y?) dr+g(y) =ae’+3xy’e? + g(y). (60)
Compute
%::c3ey+3xy26y+6xyey+g’(y) (61)

and compare with xe¥ (2243 y2+ 6 y) we see that g’(y) =0 so we take g=0.
The solution is given by

z3evV+3zy?e?y=C. (62)

Finally, note that as the integrating factor p=e¥ is never zero, the equation after multiplication of p is
equivalent to the original equation. So the solution to the original equation is also

eV +3xy?ey=C. (63)

As we already know that the equation is not exact, we try to find p(x,y) solving

Ou_ yOu_(ON_OM
M@y Nﬁx_(ﬁx 8y)u (64)
which becomes for this problem
10} 0,
y(2m—y+2)@“—2(m—y)£=—2(w—y)u. (65)
Try p=p(z):
2@-—yp'=="2@-yp=p=p (66)

and we take pu=e".
Multiply the equation by p we get

ey —y+2)dz+2e* (x —y)dy=0. (67)
Check

%e“y@a@—y—|—2):2:tce””—2ye””—|—26z (68)
and

%{2ew(x—y)]:2ew(x—y)+2ew (69)
and indeed the same.
Now comparing
/ezy(Qav—y+2)dacand/Qez(m—y)dy (70)

we see that the latter is clearly easier. So write

u(x,y):/ 2e" (x —y)dy+g(z) =2e"zy — "y + g(x). (71)
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Comparing
%:2e’cy+2e”my—e’cy2+g’(w) (72)
and ey (2z — y + 2) we see that ¢g’(x) =0 so can take g=0. So the general solution to the transformed

equation is
2ezy —e®y?=C. (73)

As the transformed equation is obtained from the original one by multiplying e® which is never zero, the
general solution to the original equation is also

2ezy—e*y*=C. (74)
ADVANCED
Problem 7. Solve
y’+§+2:0, y(0)=1. (75)

Solution. This is a homogeneous equation. So we let v = y/x. This gives y’=x v’ + v and the equation for v
turns out to be

xv’+v+%+2:0 (76)
which simplifies to
xv’+(v+1)2:0:>(vj1)2vl:_% (77)
Integrate:
/ (va;j)z:/ v(ile _/ (vi"’l)z:ln|v+1|+v7j_l; / (—%)dx:—ln|x|. (78)
So the solution reads
1n|v+1|+ﬁ:—1n|x|+c (79)
together with the zeros of O)%l)z which is v=—1.
Back to y:
1n’%+1‘+wl)+1:—1n|x|+c7 4= (80)
which simplify to
ln|y+:c|+y%=07 y=—uz. (81)

Now use the initial value y(0) = —1. First note that y = —z does not satisfy it. Next substitute this IV into the
general solution formula we get

0
In|—1 —_—= =0. 2
n| —|—O|~6—_1_~_0 C=C=0 (82)
So the solution to the IVP is
T
1 —=0. 83
nly+ax|+ = (83)
It cannot be simplified anymore.
CHALLENGE

Problem 8. Consider the general linear 1st order equation

y'+p(x) y=g(x). (84)
Write it as M dx + N dy =0 and show that it is exact only when p(xz) =0. Explore possible integrating factors
using the general theory.
Solution. We have

y' +p(z)y=g(x) = % +p(@)y=g(x)=dy+[p(z)y — g(z)] dz=0= [p(z) y — g(x)]dz +dy=0.  (85)

So

%=%[p(w) y — 9(2)] =p(o); %ﬂl (86)



It is clear that the equation is exact only when p=0.
An integrating factor must satisfy

Op _yOu_(ON _OM
M@y Nax_(ﬁx 8y)u (87)
which means
— gl OO
p(z)y —9(2)l 5 — 5, = —Pl@) 1 (88)
e  Guess p= pu(z). We reach
1 =p(z) p=> p=Cel? is a class of integrating factors. (89)
e Guess u=pu(y). We reach
[p(x) y — g(@)] ' = —p(z) p (90)

which has no solution that is independent of x.

e Guess p=p(zy). We have Z—Z:p’x, %:u’y SO

(Ip(z) y —g(@)]z —y) p' =—p(z) 1 (91)
still doesn’t work.

Warning: In what follows we try to find out a formula for all possible integrating factors. That is, are there any
other integrating factors besides Cel?? Read on only if you are curious about this.

What’s below is not related to the exams!

We can try to show that p= Cel? is the only possible integrating factor, that is all integrating factors must
be independent of y. Write

[p(z) y — g(x)] % - % =—p(r) p (92)
[p(x) y—g(x)]%I%—p(x) w (93)

Multiply both sides by e /7 and let Z(z,y)= e /P . All we need to do is to show that Z is independent of y
(in fact, since we know /J,IC(ifp, Z must be a constant if our conjecture is true).
We have
0Z 07 e

[p(z) y — g(z) Er p(z)y —g(z)= 7, (94)

Note that p(x), g(x) are just arbitrary functions of x, the above the equivalent to

(%)yy:o. (95)

But at this stage we realize that our claim (Z = Z(x)) cannot be true, as Z = x y clearly satisfies the above
equation. '
So it seems there may indeed be other integrating factors than Celr.

In fact, we can reach the above conclusion in the following much more straightforward way. Assume that the
solution is given by

u(z,y)=C. (96)

Then clearly u(z,y) e/? is also an integrating factor.
Inspired by this, we can actually show that any integrating factor takes the form

p(z, y)=H(u)el?. (97)
= 2—, we have

dZ = f(z,y) du. (98)

To see this, notice that H(u) is exactly Z. As Z satisfies p(z) y — g(z)

This means, Z(z, y) and u(x, y) share level sets (that is if u is constant along a curve, Z is also constant along
the same curve). In other words, Z = H (u) for some single variable function H.



