Math 334 Fall 2011 Homework 12 Solutions

BASIC

INTERMEDIATE
Problem 1. Solve the following system

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 2 \tag{1}\\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right) \boldsymbol{x}
$$

Solution. We need to find all the eigenvalues and eigenvectors for the matrix $\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1\end{array}\right)$.
First find the eigenvalues:

$$
\begin{align*}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 1 & 2 \\
1 & 2-\lambda & 1 \\
2 & 1 & 1-\lambda
\end{array}\right) \\
& =(1-\lambda)(2-\lambda)(1-\lambda)+2+2-4(2-\lambda)-(1-\lambda)-(1-\lambda) \\
& =(1-\lambda)[(2-\lambda)(1-\lambda)-2]+4-4(2-\lambda) \\
& =(1-\lambda)\left[-3 \lambda+\lambda^{2}\right]-4(1-\lambda) \\
& =(1-\lambda)\left(\lambda^{2}-3 \lambda-4\right) \\
& =(1-\lambda)(\lambda-4)(\lambda+1) \tag{2}
\end{align*}
$$

Therefore we have 3 eigenvalues: $1,4,-1$.

- Eigenvectors corresponding to 1 : Solve

$$
\left(\begin{array}{l}
0 \tag{3}\\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
1-1 & 1 & 2 \\
1 & 2-1 & 1 \\
2 & 1 & 1-1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

The solution is

$$
\left(\begin{array}{l}
x_{1} \tag{4}\\
x_{2} \\
x_{3}
\end{array}\right)=a\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

- Eigenvectors corresponding to 4 : Solve

$$
\left(\begin{array}{ccc}
-3 & 1 & 2 \tag{5}\\
1 & -2 & 1 \\
2 & 1 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The solution is

$$
\left(\begin{array}{l}
x_{1} \tag{6}\\
x_{2} \\
x_{3}
\end{array}\right)=a\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

- Eigenvectors corresponding to -1 :

$$
\left(\begin{array}{lll}
2 & 1 & 2 \tag{7}\\
1 & 3 & 1 \\
2 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The solution is

$$
\left(\begin{array}{l}
x_{1} \tag{8}\\
x_{2} \\
x_{3}
\end{array}\right)=a\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

The general solution is then

$$
\boldsymbol{x}=\left(\begin{array}{l}
x_{1} \tag{9}\\
x_{2} \\
x_{3}
\end{array}\right)=C_{1} e^{t}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)+C_{2} e^{4 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+C_{3} e^{-t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Problem 2. Solve the following initial value problem

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 2 \tag{10}\\
0 & 2 & 2 \\
-1 & 1 & 3
\end{array}\right) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\left(\begin{array}{c}
2 \\
0 \\
1
\end{array}\right) .
$$

Solution. We first find the general solution, then use the initial values to fix the constants C_{1}, C_{2}, C_{3}.
First find the eigenvalues:

$$
\begin{align*}
\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 1 & 2 \\
0 & 2-\lambda & 2 \\
-1 & 1 & 3-\lambda
\end{array}\right) & =(1-\lambda)(2-\lambda)(3-\lambda)-2+2(2-\lambda)-2(1-\lambda) \\
& =(1-\lambda)(2-\lambda)(3-\lambda) \tag{11}
\end{align*}
$$

Thus the eigenvalues are $1,2,3$.

- Eigenvectors corresponding to 1 : Solve

$$
\left(\begin{array}{ccc}
0 & 1 & 2 \\
0 & 1 & 2 \\
-1 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

$$
\left(\begin{array}{cccc}
0 & 1 & 2 & 0 \tag{13}\\
0 & 1 & 2 & 0 \\
-1 & 1 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

So the eigenvectors are characterized by

$$
x_{2}+2 x_{3}=0, \quad-x_{1}=0 \Longleftrightarrow\left(\begin{array}{c}
x_{1} \tag{14}\\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2 x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right) .
$$

- Eigenvectors corresponding to 2: Solve

$$
\left(\begin{array}{ccc}
-1 & 1 & 2 \tag{15}\\
0 & 0 & 2 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

- Eigenvectors corresponding to 3: Solve

$$
\left(\begin{array}{ccc}
-2 & 1 & 2 \tag{16}\\
0 & -1 & 2 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) .
$$

The general solution is then

$$
C_{1} e^{t}\left(\begin{array}{c}
0 \tag{17}\\
-2 \\
1
\end{array}\right)+C_{2} e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+C_{3} e^{3 t}\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) .
$$

The initial condition gives

$$
C_{1}\left(\begin{array}{c}
0 \tag{18}\\
-2 \\
1
\end{array}\right)+C_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+C_{3}\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
$$

that is

$$
\left(\begin{array}{ccc}
0 & 1 & 2 \tag{19}\\
-2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
1
\end{array}\right) .
$$

Solving it using Gaussian elimination, we get

$$
\begin{equation*}
C_{1}=1, C_{2}=2, C_{3}=0 . \tag{20}
\end{equation*}
$$

So the final answer is

$$
\left(\begin{array}{l}
x_{1} \tag{21}\\
x_{2} \\
x_{3}
\end{array}\right)=e^{t}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)+2 e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Problem 3. Solve the following initial value problem

Solution. First solve

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{cc}
1 & -5 \tag{22}\\
1 & -3
\end{array}\right) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\binom{1}{1} .
$$

$$
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -5 \tag{23}\\
1 & -3-\lambda
\end{array}\right)=0 \Longrightarrow \lambda=-1 \pm i
$$

Next find the eigenvectors. As the eigenvalues form a pair of conjugate complex numbers, we only need to find the eigenvectors corresponding to one of them.

We find the eigenvectors for $-1+i$. Solve

$$
\left(\begin{array}{cc}
2-i & -5 \tag{24}\\
1 & -2-i
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

we get

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=x_{2}\binom{2+i}{1} . \tag{25}
\end{equation*}
$$

Now expand
$e^{(-1+i) t}\binom{2+i}{1}=e^{-t}[\cos t+i \sin t]\left[\binom{2}{1}+i\binom{1}{0}\right]=e^{-t}\left[\cos t\binom{2}{1}-\sin t\binom{1}{0}\right]+i e^{-t}\left[\cos t\binom{1}{0}+\right.$ $\left.\sin t\binom{2}{1}\right]$.

So the general solution is given by

$$
\begin{equation*}
C_{1} e^{-t}\left[\cos t\binom{2}{1}-\sin t\binom{1}{0}\right]+C_{2} e^{-t}\left[\cos t\binom{1}{0}+\sin t\binom{2}{1}\right] . \tag{27}
\end{equation*}
$$

Now apply the initial conditions:

So finally the answer is

$$
\begin{equation*}
C_{1}\binom{2}{1}+C_{2}\binom{1}{0}=\binom{1}{1} \Longrightarrow C_{1}=1, \quad C_{2}=-1 . \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=e^{-t}\binom{\cos t-3 \sin t}{\cos t-\sin t} \tag{29}
\end{equation*}
$$

Advanced

Problem 4. Find the fundamental matrix satisfying $\Phi(0)=I$ (In other words, compute $e^{A t}$)

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 1 \tag{30}\\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right) \boldsymbol{x} \text {. }
$$

Solution. First find all eigenvalues:

$$
0=\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 1 & 1 \tag{31}\\
2 & 1-\lambda & -1 \\
-8 & -5 & -3-\lambda
\end{array}\right)=-\lambda^{3}-\lambda^{2}+4 \lambda+4=(\lambda+1)(2-\lambda)(2+\lambda) \Longrightarrow \lambda_{1,2,3}=-1,2,-2 .
$$

As we have three distinct eigenvalues, we know that the existence of 3 linearly independent eigenvectors is guaranteed.

- Eigenvectors for -1 : Solve

$$
\left(\begin{array}{ccc}
2 & 1 & 1 \tag{32}\\
2 & 2 & -1 \\
-8 & -5 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

We obtain

$$
\left(\begin{array}{l}
x_{1} \tag{33}\\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-\frac{3}{2} \\
2 \\
1
\end{array}\right)=c\left(\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right) .
$$

- Eigenvectors for 2: Solve

$$
\left(\begin{array}{ccc}
-1 & 1 & 1 \tag{34}\\
2 & -1 & -1 \\
-8 & -5 & -5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

We obtain

$$
\left(\begin{array}{l}
x_{1} \tag{35}\\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) .
$$

- Eigenvectors for -2 : Solve

$$
\left(\begin{array}{ccc}
3 & 1 & 1 \tag{36}\\
2 & 3 & -1 \\
-8 & -5 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

We obtain

$$
\left(\begin{array}{l}
x_{1} \tag{37}\\
x_{2} \\
x_{3}
\end{array}\right)=x_{1}\left(\begin{array}{c}
1 \\
-\frac{5}{4} \\
-\frac{7}{4}
\end{array}\right)=c\left(\begin{array}{c}
4 \\
-5 \\
-7
\end{array}\right)
$$

We have now

$$
X=\left(\begin{array}{ccc}
-3 & 0 & 4 \tag{38}\\
4 & -1 & -5 \\
2 & 1 & -7
\end{array}\right)
$$

Now use Gaussian elimination to compute X^{-1} :

$$
\begin{align*}
\left(\begin{array}{cccccc}
-3 & 0 & 4 & 1 & 0 & 0 \\
4 & -1 & -5 & 0 & 1 & 0 \\
2 & 1 & -7 & 0 & 0 & 1
\end{array}\right) & \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & -\frac{4}{3} & -\frac{1}{3} & 0 & 0 \\
4 & -1 & -5 & 0 & 1 & 0 \\
2 & 1 & -7 & 0 & 0 & 1
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & -\frac{4}{3} & -\frac{1}{3} & 0 & 0 \\
0 & -1 & \frac{1}{3} & \frac{4}{3} & 1 & 0 \\
2 & 1 & -7 & 0 & 0 & 1
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & -\frac{4}{3} & -\frac{1}{3} & 0 & 0 \\
0 & -1 & \frac{1}{3} & \frac{4}{3} & 1 & 0 \\
0 & 1 & -\frac{13}{3} & \frac{2}{3} & 0 & 1
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & -\frac{4}{3} & -\frac{1}{3} & 0 & 0 \\
0 & -1 & \frac{1}{3} & \frac{4}{3} & 1 & 0 \\
0 & 0 & -4 & 2 & 1 & 1
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & -\frac{4}{3} & -\frac{1}{3} & 0 & 0 \\
0 & 1 & -\frac{1}{3} & -\frac{4}{3} & -1 & 0 \\
0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & -\frac{1}{3} & -\frac{1}{3} \\
0 & 1 & 0 & -\frac{3}{2} & -\frac{13}{12} & -\frac{1}{12} \\
0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right) . \tag{39}
\end{align*}
$$

So

$$
X^{-1}=\left(\begin{array}{ccc}
-1 & -\frac{1}{3} & -\frac{1}{3} \tag{40}\\
-\frac{3}{2} & -\frac{13}{12} & -\frac{1}{12} \\
-\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right)=-\frac{1}{12}\left(\begin{array}{ccc}
12 & 4 & 4 \\
18 & 13 & 1 \\
6 & 3 & 3
\end{array}\right) .
$$

We have

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \tag{41}\\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right)=\left(\begin{array}{ccc}
-3 & 0 & 4 \\
4 & -1 & -5 \\
2 & 1 & -7
\end{array}\right)\left(\begin{array}{ccc}
-1 & & \\
& 2 & \\
& & -2
\end{array}\right)\left[-\frac{1}{12}\left(\begin{array}{ccc}
12 & 4 & 4 \\
18 & 13 & 1 \\
6 & 3 & 3
\end{array}\right)\right] .
$$

Therefore

$$
\begin{aligned}
e^{A t} & =\left(\begin{array}{ccc}
-3 & 0 & 4 \\
4 & -1 & -5 \\
2 & 1 & -7
\end{array}\right)\left(\begin{array}{ccc}
e^{-t} & & \\
& e^{2 t} & \\
& & e^{-2 t}
\end{array}\right)\left[\begin{array}{ccc}
-\frac{1}{12}\left(\begin{array}{ccc}
12 & 4 & 4 \\
18 & 13 & 1 \\
6 & 3 & 3
\end{array}\right)
\end{array}\right] \\
& =-\frac{1}{12}\left(\begin{array}{ccc}
-36 e^{-t}+24 e^{-2 t} & -12 e^{-t}+12 e^{-2 t} & -12 e^{-t}+12 e^{-2 t} \\
48 e^{-t}-18 e^{2 t}-30 e^{-2 t} & 16 e^{-t}-13 e^{2 t}-15 e^{-2 t} & 16 e^{-t}-e^{2 t}-15 e^{-2 t} \\
24 e^{-t}+18 e^{2 t}-42 e^{-2 t} & 8 e^{-t}+13 e^{2 t}-21 e^{-2 t} & 8 e^{-t}+e^{2 t}-21 e^{-2 t}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-3 e^{-t}+2 e^{-2 t} & e^{-t}-e^{-2 t} & e^{-t}-e^{-2 t} \\
-4 e^{-t}+\frac{3}{2} e^{-t}+\frac{5}{2} e^{-2 t} & -\frac{4}{3} e^{-t}+\frac{13}{12} e^{2 t}+\frac{5}{4} e^{-2 t} & -\frac{4}{3} e^{-t}+\frac{1}{12} e^{2 t}+\frac{5}{4} e^{-2 t} \\
-2 e^{-t}-\frac{3}{2} e^{2 t}+\frac{7}{2} e^{-2 t} & -\frac{2}{3} e^{-t}-\frac{13}{12} e^{2 t}+\frac{7}{4} e^{-2 t} & -\frac{2}{3} e^{-t}-\frac{1}{12} e^{2 t}+\frac{7}{4} e^{-2 t}
\end{array}\right)
\end{aligned}
$$

Challenge

Problem 5. Find the solution of the initial value problem

Solution. Solve

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{cc}
1 & -4 \tag{42}\\
4 & -7
\end{array}\right) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\binom{3}{2} .
$$

$$
0=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -4 \tag{43}\\
4 & -7-\lambda
\end{array}\right)=\lambda^{2}+6 \lambda+9 \Longrightarrow \lambda_{1}=\lambda_{2}=-3
$$

So there is only one eigenvalue -3 .
Next we find the eigenvector corresponding to -3 . Solving
gives

$$
\left(\begin{array}{ll}
4 & -4 \tag{44}\\
4 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=x_{2}\binom{1}{1} \tag{45}
\end{equation*}
$$

As we have only one eigenvector, we have to go on solving (remember that we only need one solution here)

$$
\left(\begin{array}{ll}
4 & -4 \tag{46}\\
4 & -4
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{1}{1} \Longrightarrow\binom{y_{1}}{y_{2}}=\binom{1}{\frac{3}{4}}
$$

Thus the second solution to the system is

$$
\begin{equation*}
e^{-3 t}\binom{1}{\frac{3}{4}}+t e^{-3 t}\binom{1}{1} . \tag{47}
\end{equation*}
$$

Finally the general solution to the problem is given by
which can be simplified to

$$
\begin{equation*}
C_{1} e^{-3 t}\binom{1}{1}+C_{2}\left[e^{-3 t}\binom{1}{\frac{3}{4}}+t e^{-3 t}\binom{1}{1}\right] \tag{48}
\end{equation*}
$$

$$
\begin{equation*}
e^{-3 t}\left[C_{1}\binom{1}{1}+C_{2}\binom{1}{\frac{3}{4}}+t C_{2}\binom{1}{1}\right] . \tag{49}
\end{equation*}
$$

Now apply the initial conditions.

$$
\begin{equation*}
\binom{3}{2}=C_{1}\binom{1}{1}+C_{2}\binom{1}{\frac{3}{4}} \Longrightarrow C_{1}=-1, \quad C_{2}=4 \tag{50}
\end{equation*}
$$

Substitute back into the formula for general solutions, we get the final answer:

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=e^{-3 t}\binom{3+4 t}{2+4 t} \tag{51}
\end{equation*}
$$

Problem 6. Let A be an $n \times n$ matrix with all $a_{i j}$'s real. Let $\lambda=\alpha+\beta i$ be an eigenvalue, with $\boldsymbol{z}=\boldsymbol{x}+i \boldsymbol{y}$ as one of its corresponding eigenvectors. Show the following:
a) $\bar{\lambda}=\alpha-\beta i$ is also an eigenvalue, and $\boldsymbol{x}-i \boldsymbol{y}$ is one of its corresponding eigenvector.
b) The real vectors \boldsymbol{x} and \boldsymbol{y} are linearly independent.

Proof.

a) Short proof:

$$
\begin{equation*}
A \boldsymbol{z}=\lambda \boldsymbol{z} \Longrightarrow \overline{A \boldsymbol{z}}=\overline{\lambda \boldsymbol{z}} \Longrightarrow \bar{A} \overline{\boldsymbol{z}}=\bar{\lambda} \overline{\boldsymbol{z}} \Longrightarrow A \overline{\boldsymbol{z}}=\bar{\lambda} \overline{\boldsymbol{z}} \tag{52}
\end{equation*}
$$

Long proof:

$$
\begin{align*}
A(\boldsymbol{x}+i \boldsymbol{y})=(\alpha+\beta i)(\boldsymbol{x}+i \boldsymbol{y}) & \Longrightarrow A \boldsymbol{x}+i A \boldsymbol{y}=(\alpha \boldsymbol{x}-\beta \boldsymbol{y})+i(\alpha \boldsymbol{y}+\beta \boldsymbol{x}) \\
& \Longrightarrow A \boldsymbol{x}-i A \boldsymbol{y}=(\alpha \boldsymbol{x}-\beta \boldsymbol{y})-i(\alpha \boldsymbol{y}+\beta \boldsymbol{x}) \\
& \Longrightarrow A(\boldsymbol{x}-i \boldsymbol{y})=(\alpha-\beta i)(\boldsymbol{x}-i \boldsymbol{y}) . \tag{53}
\end{align*}
$$

b) Assume the contrary: there are constants a, b, not both zero, such that $a \boldsymbol{x}+b \boldsymbol{y}=\mathbf{0}$. Without loss of generality we can assume $\boldsymbol{x}=c \boldsymbol{y}$ for some constant c. This leads to

$$
\begin{equation*}
\boldsymbol{x}+i \boldsymbol{y}=(c+i) \boldsymbol{y}, \quad(\boldsymbol{x}-i y)=(c-i) \boldsymbol{y} \tag{54}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
(c-i)(\boldsymbol{x}+i \boldsymbol{y})-(c+i)(\boldsymbol{x}-i \boldsymbol{y})=\mathbf{0} \tag{55}
\end{equation*}
$$

that is $\boldsymbol{x}+i \boldsymbol{y}$ and $\boldsymbol{x}-i \boldsymbol{y}$ are linearly dependent.
However, as $\alpha+\beta i$ and $\alpha-\beta i$ are different eigenvalues, we know that their eigenvectors must be linearly independent.

Thus we reach a contradiction, which means the assumption we make at the beginning: $\boldsymbol{x}, \boldsymbol{y}$ linearly dependent, must be false.

Problem 7. Consider the linear system with constant coefficients:

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A \boldsymbol{x} \tag{56}
\end{equation*}
$$

Assume that A has n distinct eigenvalues.
Try solve it using Laplace transform and reach the conclusion: The general solution takes the form

$$
\begin{equation*}
C_{1} e^{\lambda_{1} t} \boldsymbol{x}_{0}^{(1)}+\cdots+C_{n} e^{\lambda_{n} t} \boldsymbol{x}_{0}^{(n)} \tag{57}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues and $\boldsymbol{x}_{0}^{(1)}, \ldots, \boldsymbol{x}_{0}^{(n)}$ are eigenvectors corresponding (respectively) to these eigenvalues.
Proof. Taking Laplace transform we obtain:

$$
\begin{equation*}
s X-\boldsymbol{x}(0)=A X \tag{58}
\end{equation*}
$$

Here

This gives

$$
X(s):=\left(\begin{array}{c}
\mathcal{L}\left\{x_{1}\right\} \tag{59}\\
\vdots \\
\mathcal{L}\left\{x_{n}\right\}
\end{array}\right)
$$

$(s I-A) X=\boldsymbol{x}(0) \Longrightarrow X(s)=(s I-A)^{-1} \boldsymbol{x}(0)$.
Now using Cramer's rule we have

$$
(s I-A)^{-1}=\frac{B(s)}{\operatorname{det}(s I-A)}
$$

where $B(s)$ is a certain matrix satisfying

$$
\begin{equation*}
(s I-A) B(s)=(\operatorname{det}(s I-A)) I \tag{62}
\end{equation*}
$$

Substituting into the formula for $X(s)$ we get

$$
\begin{equation*}
X(s)=\frac{\boldsymbol{p}(s)}{\operatorname{det}(s I-A)} \tag{63}
\end{equation*}
$$

where $\boldsymbol{p}(s)=B(s) \boldsymbol{x}(0)$ is an n-vector with each entry a polynomial of s of degree at most $n-1$.
By assumption A has n distinct eigenvalues, therefore we can factorize

$$
\begin{equation*}
\operatorname{det}(s I-A)=\left(s-\lambda_{1}\right) \cdots\left(s-\lambda_{n}\right) . \tag{64}
\end{equation*}
$$

Applying the method of partial fraction, we have

$$
\begin{equation*}
X(s)=\frac{\boldsymbol{c}_{1}}{s-\lambda_{1}}+\cdots+\frac{\boldsymbol{c}_{n}}{s-\lambda_{n}} . \tag{65}
\end{equation*}
$$

To decide $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{n}$ we return to

$$
\begin{equation*}
(s I-A) \boldsymbol{X}(s)=\boldsymbol{x}(0) \tag{66}
\end{equation*}
$$

Multiply both sides by $\left(s-\lambda_{1}\right)$ we have

$$
\begin{equation*}
(s I-A)\left[\boldsymbol{c}_{1}+\left(s-\lambda_{1}\right)\left(\frac{\boldsymbol{c}_{2}}{s-\lambda_{2}}+\cdots+\frac{\boldsymbol{c}_{n}}{s-\lambda_{n}}\right)\right]=\left(s-\lambda_{1}\right) \boldsymbol{x}(0) \tag{67}
\end{equation*}
$$

Now set $s=\lambda_{1}$ we reach

$$
\begin{equation*}
\left(\lambda_{1} I-A\right) \boldsymbol{c}_{1}=\mathbf{0} \tag{68}
\end{equation*}
$$

Therefore \boldsymbol{c}_{1} is an eigenvector corresponding to λ_{1} and can be written as

$$
\begin{equation*}
\boldsymbol{c}_{1}=C_{1} \boldsymbol{x}_{0}^{(1)} \tag{69}
\end{equation*}
$$

By multiplying the equation by $s-\lambda_{i}$ for other i 's we reach similar conclusions for $\boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}$.
Now that we have established

$$
\begin{equation*}
X(s)=\frac{C_{1}}{s-\lambda_{1}} \boldsymbol{x}_{0}^{(1)}+\cdots+\frac{C_{n}}{s-\lambda_{n}} \boldsymbol{x}_{0}^{(n)} \tag{70}
\end{equation*}
$$

it is immediately that

$$
\begin{equation*}
\boldsymbol{x}(t)=C_{1} e^{\lambda_{1} t} \boldsymbol{x}_{0}^{(1)}+\cdots+C_{n} e^{\lambda_{n} t} \boldsymbol{x}_{0}^{(n)} \tag{71}
\end{equation*}
$$

Thus ends the proof.
Problem 8. Consider the linear system with variable coefficients

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A(t) \boldsymbol{x} \tag{72}
\end{equation*}
$$

Explain why in general the solution is not given by $e^{\int_{0}^{t} A(s) \mathrm{d} s} \boldsymbol{x}_{0}$. In other words, if we let $X=e^{\int_{0}^{t} A(s) \mathrm{d} s}$, in general $\dot{X} \neq A X$. (Notice that this is in sharp contrast to the constant-coefficient case: $\dot{\boldsymbol{x}}=A \boldsymbol{x} \Longrightarrow \boldsymbol{x}=e^{\int_{0}^{t} A} \boldsymbol{x}_{0}$ and also the first order linear equation case: $\left.\dot{x}=a(t) x \Longrightarrow x=e^{\int_{0}^{t} a(s) \mathrm{d} s} x_{0}\right)$
Solution. By definition we have

$$
\begin{equation*}
X:=e^{\int_{0}^{t} A(s) \mathrm{d} s}=I+B+\frac{B^{2}}{2}+\cdots \tag{73}
\end{equation*}
$$

where $B=\int_{0}^{t} A(s) \mathrm{d} s$. All we need to show is that in general $\dot{X} \neq A X$.
Compute

$$
\begin{equation*}
\dot{B}=A ; \quad \frac{\mathrm{d}}{\mathrm{~d} t}\left(B^{2}\right)=\dot{B} B+B \dot{B}=A B+B A, \ldots \tag{74}
\end{equation*}
$$

Note that $A B+B A \neq 2 B A$ or $2 A B$ because in general $\int_{0}^{t} A(s) \mathrm{d} s$ and $A(t)$ do not commute - For a fixed $A(t)$ we can make $A(s), s<t$ be any matrices totally unrelated to $A(t)$ so $\int_{0}^{t} A(s) \mathrm{d} s$, which is a "sum" of these matrices, clearly does not need to commute with $A(t)$.

Now it's clear that

$$
\begin{equation*}
\dot{X}=\dot{B}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{B^{2}}{2}\right)+\cdots=A+\frac{A B+B A}{2}+\cdots \neq A+A B+\cdots=A X \tag{75}
\end{equation*}
$$

