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Math 334 Fall 2011 Homework 12 Solutions

Basic

Intermediate

Problem 1. Solve the following system

x ′ =





1 1 2
1 2 1
2 1 1



x (1)

Solution. We need to find all the eigenvalues and eigenvectors for the matrix





1 1 2
1 2 1
2 1 1



.

First find the eigenvalues:

det (A−λ I) = det





1−λ 1 2
1 2−λ 1
2 1 1−λ





= (1−λ) (2−λ) (1−λ) + 2+ 2− 4 (2−λ)− (1−λ)− (1−λ)

= (1−λ) [(2−λ) (1−λ)− 2]+ 4− 4 (2−λ)

= (1−λ) [−3λ + λ2]− 4 (1−λ)

= (1−λ) (λ2− 3 λ− 4)

= (1−λ) (λ− 4) (λ + 1). (2)

Therefore we have 3 eigenvalues: 1, 4,−1.

• Eigenvectors corresponding to 1: Solve




0
0
0



=





1− 1 1 2
1 2− 1 1
2 1 1− 1









x1

x2

x3



=





0 1 2
1 1 1
2 1 0









x1

x2

x3



. (3)

The solution is




x1

x2

x3



= a





1
−2
1



. (4)

• Eigenvectors corresponding to 4: Solve




−3 1 2
1 −2 1
2 1 −3









x1

x2

x3



=





0
0
0



. (5)

The solution is




x1

x2

x3



= a





1
1
1



. (6)

• Eigenvectors corresponding to −1:




2 1 2
1 3 1
2 1 2









x1

x2

x3



=





0
0
0



. (7)

The solution is




x1

x2

x3



= a





1
0
−1



. (8)

The general solution is then

x =





x1

x2

x3



= C1 et





1
−2
1



+ C2 e4t





1
1
1



+ C3 e−t





1
0
−1



. (9)
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Problem 2. Solve the following initial value problem

x′ =





1 1 2
0 2 2
−1 1 3



x, x(0) =





2
0
1



. (10)

Solution. We first find the general solution, then use the initial values to fix the constants C1, C2, C3.

First find the eigenvalues:

det





1−λ 1 2
0 2−λ 2
−1 1 3−λ



 = (1−λ) (2−λ) (3−λ)− 2 +2 (2−λ)− 2 (1−λ)

= (1−λ) (2−λ) (3−λ). (11)

Thus the eigenvalues are 1, 2, 3.

• Eigenvectors corresponding to 1: Solve




0 1 2
0 1 2
−1 1 2









x1

x2

x3



=





0
0
0



. (12)

Use Gaussian elimination:




0 1 2 0
0 1 2 0
−1 1 2 0



→





0 1 2 0
0 0 0 0
−1 0 0 0



 (13)

So the eigenvectors are characterized by

x2 + 2 x3 = 0, − x1 = 0�



x1

x2

x3



=





0
−2x3

x3



= x3





0
−2
1



. (14)

• Eigenvectors corresponding to 2: Solve




−1 1 2
0 0 2
−1 1 1









x1

x2

x3



=





0
0
0



�



x1

x2

x3



= x2





1
1
0



. (15)

• Eigenvectors corresponding to 3: Solve




−2 1 2
0 −1 2
−1 1 0









x1

x2

x3



=





0
0
0



�



x1

x2

x3



= x3





2
2
1



. (16)

The general solution is then

C1 et





0
−2
1



+C2 e2t





1
1
0



+ C3 e3t





2
2
1



. (17)

The initial condition gives

C1





0
−2
1



+ C2





1
1
0



+ C3





2
2
1



 =





2
0
1



 (18)

that is




0 1 2
−2 1 2
1 0 1









C1

C2

C3



=





2
0
1



. (19)

Solving it using Gaussian elimination, we get

C1 =1, C2 =2, C3 =0. (20)

So the final answer is




x1

x2

x3



= et





0
−2
1



+ 2e2t





1
1
0



. (21)
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Problem 3. Solve the following initial value problem

x ′ =

(

1 −5
1 −3

)

x, x(0) =

(

1
1

)

. (22)

Solution. First solve

det

(

1−λ −5
1 −3−λ

)

=0� λ =−1± i. (23)

Next find the eigenvectors. As the eigenvalues form a pair of conjugate complex numbers, we only need to find

the eigenvectors corresponding to one of them.

We find the eigenvectors for −1+ i. Solve
(

2− i −5
1 −2− i

)(

x1

x2

)

=

(

0
0

)

(24)

we get
(

x1

x2

)

= x2

(

2+ i

1

)

. (25)

Now expand

e(−1+i)t

(

2+ i

1

)

= e−t [cos t + i sin t]

[(

2
1

)

+ i

(

1
0

)]

= e−t

[

cos t

(

2
1

)

− sin t

(

1
0

)]

+ i e−t

[

cos t

(

1
0

)

+

sin t

(

2
1

)]

. (26)

So the general solution is given by

C1 e−t

[

cos t

(

2
1

)

− sin t

(

1
0

)]

+ C2 e−t

[

cos t

(

1
0

)

+ sin t

(

2
1

)]

. (27)

Now apply the initial conditions:

C1

(

2
1

)

+ C2

(

1
0

)

=

(

1
1

)� C1 = 1, C2 =−1. (28)

So finally the answer is
(

x1

x2

)

= e−t

(

cos t− 3 sin t

cos t− sin t

)

(29)

Advanced

Problem 4. Find the fundamental matrix satisfying Φ(0) = I (In other words, compute eAt)

x ′ =





1 1 1
2 1 −1
−8 −5 −3



x. (30)

Solution. First find all eigenvalues:

0= det





1−λ 1 1
2 1−λ −1
−8 −5 −3−λ



=−λ3−λ2 +4 λ +4 = (λ+ 1) (2−λ) (2 + λ)� λ1,2,3 =−1, 2,−2. (31)

As we have three distinct eigenvalues, we know that the existence of 3 linearly independent eigenvectors is
guaranteed.

• Eigenvectors for −1: Solve




2 1 1
2 2 −1
−8 −5 −2









x1

x2

x3



=





0
0
0



. (32)

We obtain




x1

x2

x3



=x3







−
3

2

2
1





= c





−3
4
2



. (33)
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• Eigenvectors for 2: Solve




−1 1 1
2 −1 −1
−8 −5 −5









x1

x2

x3



=





0
0
0



. (34)

We obtain




x1

x2

x3



= x3





0
−1
1



. (35)

• Eigenvectors for −2: Solve




3 1 1
2 3 −1
−8 −5 −1









x1

x2

x3



=





0
0
0



. (36)

We obtain




x1

x2

x3



= x1









1

−
5

4

−
7

4









= c





4
−5
−7



 (37)

We have now

X =





−3 0 4
4 −1 −5
2 1 −7



. (38)

Now use Gaussian elimination to compute X−1:





−3 0 4 1 0 0
4 −1 −5 0 1 0
2 1 −7 0 0 1



 � 





1 0 −
4

3
−

1

3
0 0

4 −1 −5 0 1 0
2 1 −7 0 0 1





� 







1 0 −
4

3
−

1

3
0 0

0 −1
1

3

4

3
1 0

2 1 −7 0 0 1







� 







1 0 −
4

3
−

1

3
0 0

0 −1
1

3

4

3
1 0

0 1 −
13

3

2

3
0 1







� 







1 0 −
4

3
−

1

3
0 0

0 −1
1

3

4

3
1 0

0 0 −4 2 1 1







� 







1 0 −
4

3
−

1

3
0 0

0 1 −
1

3
−

4

3
−1 0

0 0 1 −
1

2
−

1

4
−

1

4







� 







1 0 0 −1 −
1

3
−

1

3

0 1 0 −
3

2
−

13

12
−

1

12

0 0 1 −
1

2
−

1

4
−

1

4









. (39)

So

X−1 =









−1 −
1

3
−

1

3

−
3

2
−

13

12
−

1

12

−
1

2
−

1

4
−

1

4









=−
1
12





12 4 4
18 13 1
6 3 3



. (40)

We have




1 1 1
2 1 −1
−8 −5 −3



=





−3 0 4
4 −1 −5
2 1 −7









−1
2

−2







−
1

12





12 4 4
18 13 1
6 3 3







. (41)
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Therefore

eAt =





−3 0 4
4 −1 −5
2 1 −7











e−t

e2t

e−2t









−
1

12





12 4 4
18 13 1
6 3 3









= −
1

12







−36 e−t + 24 e−2t −12 e−t + 12 e−2t −12 e−t + 12 e−2t

48 e−t − 18 e2t − 30 e−2t 16 e−t − 13 e2t − 15 e−2t 16 e−t − e2t − 15 e−2t

24 e−t + 18 e2t − 42 e−2t 8 e−t + 13 e2t − 21 e−2t 8 e−t + e2t − 21 e−2t







=









−3 e−t +2 e−2t e−t − e−2t e−t − e−2t

−4 e−t +
3

2
e−t +

5

2
e−2t −

4

3
e−t +

13

12
e2t +

5

4
e−2t −

4

3
e−t +

1

12
e2t +

5

4
e−2t

−2 e−t −
3

2
e2t +

7

2
e−2t −

2

3
e−t −

13

12
e2t +

7

4
e−2t −

2

3
e−t −

1

12
e2t +

7

4
e−2t









Challenge

Problem 5. Find the solution of the initial value problem

x ′ =

(

1 −4
4 −7

)

x, x(0) =

(

3
2

)

. (42)

Solution. Solve

0 =det

(

1−λ −4
4 −7−λ

)

= λ2 + 6 λ+ 9� λ1 = λ2 =−3. (43)

So there is only one eigenvalue −3.
Next we find the eigenvector corresponding to −3. Solving

(

4 −4
4 −4

)(

x1

x2

)

=

(

0
0

)

(44)

gives
(

x1

x2

)

= x2

(

1
1

)

. (45)

As we have only one eigenvector, we have to go on solving (remember that we only need one solution here)

(

4 −4
4 −4

)(

y1

y2

)

=

(

1
1

)�(

y1

y2

)

=

(

1
3

4

)

. (46)

Thus the second solution to the system is

e−3t

(

1
3

4

)

+ t e−3t

(

1
1

)

. (47)

Finally the general solution to the problem is given by

C1 e−3t

(

1
1

)

+ C2

[

e−3t

(

1
3

4

)

+ t e−3t

(

1
1

)

]

(48)

which can be simplified to

e−3t

[

C1

(

1
1

)

+ C2

(

1
3

4

)

+ t C2

(

1
1

)

]

. (49)

Now apply the initial conditions.

(

3
2

)

= C1

(

1
1

)

+ C2

(

1
3

4

)� C1 =−1, C2 = 4; (50)

Substitute back into the formula for general solutions, we get the final answer:
(

x1

x2

)

= e−3t

(

3+ 4 t

2+ 4 t

)

. (51)

Problem 6. Let A be an n × n matrix with all aij’s real. Let λ = α + β i be an eigenvalue, with z = x + i y as
one of its corresponding eigenvectors. Show the following:

a) λ̄ = α− β i is also an eigenvalue, and x − i y is one of its corresponding eigenvector.
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b) The real vectors x and y are linearly independent.

Proof.

a) Short proof:

A z =λ z� A z = λz� Ā z̄ = λ̄ z̄� A z̄ = λ̄ z̄ . (52)

Long proof:

A (x + i y) = (α + β i) (x + i y) � A x + i A y = (α x − β y) + i (α y + β x)� A x − i A y = (α x − β y)− i (α y + β x)� A (x − i y)= (α− β i) (x − i y). (53)

b) Assume the contrary: there are constants a, b, not both zero, such that a x + b y = 0. Without loss of
generality we can assume x = c y for some constant c. This leads to

x + i y = (c + i) y , (x − i y) = (c− i) y (54)

and consequently

(c− i) (x + i y)− (c + i) (x − i y) = 0 (55)

that is x + i y and x − i y are linearly dependent.
However, as α + β i and α − β i are different eigenvalues, we know that their eigenvectors must be

linearly independent.
Thus we reach a contradiction, which means the assumption we make at the beginning: x, y linearly

dependent, must be false. �

Problem 7. Consider the linear system with constant coefficients:

ẋ = Ax. (56)

Assume that A has n distinct eigenvalues.
Try solve it using Laplace transform and reach the conclusion: The general solution takes the form

C1 eλ1t x0
(1) +
 + Cn eλnt x0

(n) (57)

where λ1,	 ,λn are eigenvalues and x0
(1)

,	 ,x0
(n) are eigenvectors corresponding (respectively) to these eigenvalues.

Proof. Taking Laplace transform we obtain:

s X −x(0) = A X (58)

Here

X(s)6 L{x1}�
L{xn}



. (59)

This gives

(s I −A) X =x(0)� X(s) = (s I −A)−1 x(0). (60)

Now using Cramer’s rule we have

(s I −A)−1 =
B(s)

det (s I −A)
(61)

where B(s) is a certain matrix satisfying

(s I −A) B(s) = (det (s I −A)) I. (62)

Substituting into the formula for X(s) we get

X(s) =
p(s)

det (s I −A)
(63)

where p(s) = B(s) x(0) is an n-vector with each entry a polynomial of s of degree at most n− 1.
By assumption A has n distinct eigenvalues, therefore we can factorize

det (s I −A) = (s−λ1)
 (s−λn). (64)

Applying the method of partial fraction, we have

X(s) =
c1

s−λ1
+
 +

cn

s−λn

. (65)
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To decide c1,	 , cn we return to

(s I −A)X(s) =x(0). (66)

Multiply both sides by (s−λ1) we have

(s I −A)

[

c1 +(s−λ1)

(

c2

s−λ2
+
 +

cn

s−λn

)]

= (s−λ1) x(0). (67)

Now set s =λ1 we reach

(λ1 I −A) c1 = 0. (68)

Therefore c1 is an eigenvector corresponding to λ1 and can be written as

c1 = C1 x0
(1)

. (69)

By multiplying the equation by s−λi for other i’s we reach similar conclusions for c2,	 , cn.

Now that we have established

X(s) =
C1

s−λ1
x0

(1) +
 +
Cn

s−λn

x0
(n)

, (70)

it is immediately that

x(t) =C1 eλ1t x0
(1) +
 + Cn eλnt x0

(n)
. (71)

Thus ends the proof. �

Problem 8. Consider the linear system with variable coefficients

ẋ = A(t) x. (72)

Explain why in general the solution is not given by e
∫

0

t

A(s)ds
x0. In other words, if we let X =e

∫

0

t

A(s)ds, in general

Ẋ � A X . (Notice that this is in sharp contrast to the constant-coefficient case: ẋ =A x� x = e
∫

0

t

A
x0 and also

the first order linear equation case: ẋ = a(t) x� x= e
∫

0

t

a(s)ds
x0)

Solution. By definition we have

X 6 e
∫

0

t

A(s)ds = I + B +
B2

2
+
 (73)

where B =
∫

0

t
A(s) ds. All we need to show is that in general Ẋ � A X .

Compute

Ḃ = A;
d

dt
(B2) = Ḃ B + B Ḃ = A B +B A,	 (74)

Note that A B + B A � 2 B A or 2 A B because in general
∫

0

t
A(s) ds and A(t) do not commute – For a fixed

A(t) we can make A(s), s < t be any matrices totally unrelated to A(t) so
∫

0

t
A(s) ds, which is a “sum” of these

matrices, clearly does not need to commute with A(t).
Now it’s clear that

Ẋ = Ḃ +
d

dt

(

B2

2

)

+
 = A+
AB + B A

2
+
 � A + AB +
 = A X. (75)
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