Dec. 5, 2011

Math 334 Fall 2011 Homework 12

Basic
Intermediate
Problem 1. Solve the following system

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 2 \tag{1}\\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right) \boldsymbol{x}
$$

Problem 2. Solve the following initial value problem

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 2 \tag{2}\\
0 & 2 & 2 \\
-1 & 1 & 3
\end{array}\right) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\left(\begin{array}{c}
2 \\
0 \\
1
\end{array}\right) .
$$

Problem 3. Solve the following initial value problem

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{cc}
1 & -5 \tag{3}\\
1 & -3
\end{array}\right) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\binom{1}{1}
$$

Advanced

Problem 4. Find the fundamental matrix satisfying $\Phi(0)=I$ (In other words, compute $e^{A t}$)

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 1 \tag{4}\\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right) \boldsymbol{x}
$$

Challenge

Problem 5. Find the solution of the initial value problem

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{cc}
1 & -4 \tag{5}\\
4 & -7
\end{array}\right) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\binom{3}{2} .
$$

Problem 6. Let A be an $n \times n$ matrix with all $a_{i j}$'s real. Let $\lambda=\alpha+\beta i$ be an eigenvalue, with $\boldsymbol{z}=\boldsymbol{x}+i \boldsymbol{y}$ as one of its corresponding eigenvectors. Show the following:
a) $\bar{\lambda}=\alpha-\beta i$ is also an eigenvalue, and $\boldsymbol{x}-i \boldsymbol{y}$ is one of its corresponding eigenvector.
b) The real vectors \boldsymbol{x} and \boldsymbol{y} are linearly independent.

Problem 7. Consider the linear system with constant coefficients:

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A \boldsymbol{x} . \tag{6}
\end{equation*}
$$

Assume that A has n distinct eigenvalues.
Try solve it using Laplace transform and reach the conclusion: The general solution takes the form

$$
\begin{equation*}
C_{1} e^{\lambda_{1} t} \boldsymbol{x}_{0}^{(1)}+\cdots+C_{n} e^{\lambda_{n} t} \boldsymbol{x}_{0}^{(n)} \tag{7}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues and $\boldsymbol{x}_{0}^{(1)}, \ldots, \boldsymbol{x}_{0}^{(n)}$ are eigenvectors corresponding (respectively) to these eigenvalues.
Problem 8. Consider the linear system with variable coefficients

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A(t) \boldsymbol{x} \tag{8}
\end{equation*}
$$

Explain why in general the solution is not given by $e^{\int_{0}^{t} A(s) \mathrm{d} s} \boldsymbol{x}_{0}$. In other words, if we let $X=e^{\int_{0}^{t} A(s) \mathrm{d} s}$, in general $\dot{X} \neq A X$. (Notice that this is in sharp contrast to the constant-coefficient case: $\dot{\boldsymbol{x}}=A \boldsymbol{x} \Longrightarrow \boldsymbol{x}=e^{\int_{0}^{t} A} \boldsymbol{x}_{0}$ and also the first order linear equation case: $\left.\dot{x}=a(t) x \Longrightarrow x=e^{\int_{0}^{t} a(s) \mathrm{d} s} x_{0}\right)$

- Problem 1: $C_{1} e^{t}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)+C_{2} e^{4 t}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+C_{3} e^{-t}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$.
- Problem 2: $e^{t}\left(\begin{array}{c}0 \\ -2 \\ 1\end{array}\right)+2 e^{2 t}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
- Problem 3: $e^{-t}\binom{\cos t-3 \sin t}{\cos t-\sin t}$.
- Problem 4: $\left(\begin{array}{ccc}-3 e^{-t}+2 e^{-2 t} & e^{-t}-e^{-2 t} & e^{-t}-e^{-2 t} \\ -4 e^{-t}+\frac{3}{2} e^{-t}+\frac{5}{2} e^{-2 t} & -\frac{4}{3} e^{-t}+\frac{13}{12} e^{2 t}+\frac{5}{4} e^{-2 t} & -\frac{4}{3} e^{-t}+\frac{1}{12} e^{2 t}+\frac{5}{4} e^{-2 t} \\ -2 e^{-t}-\frac{3}{2} e^{2 t}+\frac{7}{2} e^{-2 t} & -\frac{2}{3} e^{-t}-\frac{13}{12} e^{2 t}+\frac{7}{4} e^{-2 t} & -\frac{2}{3} e^{-t}-\frac{1}{12} e^{2 t}+\frac{7}{4} e^{-2 t}\end{array}\right)$
- Problem 5: $e^{-3 t}\binom{3+4 t}{2+4 t}$.

