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MATH 334 FALL 2011 HOMEWORK 12

Basic
INTERMEDIATE
Problem 1. Solve the following system
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Problem 2. Solve the following initial value problem
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Problem 3. Solve the following initial value problem
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Problem 4. Find the fundamental matrix satisfying ®(0) = I (In other words, compute e“?)
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CHALLENGE

Problem 5. Find the solution of the initial value problem

m’:(i :;l)a:, m(o):@). (5)

Problem 6. Let A be an n x n matrix with all a;;’s real. Let A=a + 3¢ be an eigenvalue, with z=x + iy as
one of its corresponding eigenvectors. Show the following:

a) A=« — fBiis also an eigenvalue, and & — iy is one of its corresponding eigenvector.
b) The real vectors  and y are linearly independent.
Problem 7. Consider the linear system with constant coefficients:
r=Ax. (6)

Assume that A has n distinct eigenvalues.
Try solve it using Laplace transform and reach the conclusion: The general solution takes the form

CreMtalh 4 4 etz (7)

where Aq,..., A, are eigenvalues and :c(()l)7 ...7:17(()”) are eigenvectors corresponding (respectively) to these eigenvalues.
Problem 8. Consider the linear system with variable coefficients
T =A(t) x. (8)

f(fA(s)ds A(s)ds

Explain why in general the solution is not given by e xo. In other words, if we let X = elo , in general
X # A X. (Notice that this is in sharp contrast to the constant-coefficient case: & = Az =—> = = el 2y and also

the first order linear equation case: & =a(t) x =z = eJoa()ds Zo)
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