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Problem 1. Transform the following initial value problem into an initial value problem for a system:

w4 p(t)u' g u=g(t),  u(0)=uo,u'(0)=wvo.
Solution. Let v=wu'. Then v/ =u" and the equation becomes
v +p(t)v+q(t)u=g(t)
and the initial value becomes
u(0) =wug, ©v(0)=1q.

The system we are looking for is then

v = —q(t)u—p(t)v+g(t)

u = v

with initial values
u(0) =wug, ©v(0)=0o.

INTERMEDIATE

Problem 2. Express the solution of the following initial value problem in terms of a convolution integral:

y'+4y' +4y=g(t);  y(0)=2,y'(0)=-3.
Solution.
First transform the equation:

L{y"} = 2V —sy(0)—y'(0)=s2Y —25+3;
L{y'} = sY —y(0)=sY —2

Denoting L{g} = G(s), we have the transformed equation as

(s2+4s5s+4)Y =G(s)+2s+5.
So
G(s) 2545

Y = .
s2+4s+4 s2+4s+4

Now take inverses:

-1 G(s) : .
o L {m}. We use the convolution theorem:

g—l{%} :L‘il{ﬁ}*fil{G} — (e~ 2t t)xg= ./Ot e 27 (t—7) g(7) dr.

— 2s+5 — 1 2 — —
o R Gt e M ir2e ™

So the final answer is

t
y:/ e=2(=7) (1 — 1) g(r) dr + e~2t (£ 4+ 2).
0

Problem 3. Express the solution of the following initial value problem in terms of a convolution integral:

yW—y=g@t);  y(0)=y'(0)=y"(0)=y""(0)=0.

Solution. Taking transform of the equation we obtain

(84—1)Y:G(5):>Y:S

Therefore

y(t) :[,’1{841_1}*9

(14)

(15)

(16)
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We compute

1 1 1 1 1 1 1 2 1
-1 — -1 — —1 _ t —t :
£ {54—1}_§£ {32—1_324—1}_1[' {5—1_s+1_32+1}_1[6_6 — 2sint]. (17)

So the answer is

y(t) = i /Ot [et=™) —e=(=7) _2sin (t — 7)] g(7) dr. (18)

Problem 4. Find all eigenvalues and eigenvectors for

a) A=( 7 1)

Solution.
a) We have
—2-x 1 )
det (A —AT)=det 1 9\ =A+41+3. (19)
Solving
A2+ 4A+3=0=> X =—3do=—1. (20)

So eigenvalues are —3, —1.
e Eigenvectors corresponding to —3: We solve

(A—(=3))z =0 (21)
() )=o=(2)=( %) 2

e Eigenvectors corresponding to —1: We solve
T 1
— = . 2

(-

which becomes

b) We have
3—A 2 4
det (A— A1) = det 2 =X 2
4 2 3—-A

= B=AN)(-ANB-N+2-2-4+2-2-4
—4(=N)4-2-2-3-X)—2-2-(3—X)
= —MH+6A2—9N+164+16+16A—12+4X—12+4 )

= —A4+6A2+15)+8. (24)
Now we solve
A3 +6A2+151+8=0. (25)
Observe: \; = —1 is a root. Factorize:
A+ 6A2H15A+8=(A+1) (=2 +T7A+38). (26)
Now solve:
A2+ T7TA+8=0= Ay=8, 3=—1. (27)
So in fact we have two eigenvalues: A\; =X o =—1,A\3=38.

Next we find eigenvectors corresponding to —1. We need to solve

4 2 4 X 0
21 2 z |=| 0 | (28)
4 2 4 I3 0

Note that the solutions are given by z1, xo, 3 satisfying

2:171—|—LE2+2LE3:O. (29)



In other words the eigenvectors are all vectors satisfying this equation.
To get an explicit formula for eigenvectors, we write

T T1 1 0
T2 = —2501—2273 =T -2 —+ x3 —2 . (30)
r3 T3 0 1

There are no restriction on x1, 2. Therefore the eigenvectors corresponding to —1 is given by

1 0
al =2 |+b| -2 | (31)
0 1

Remark. Keep in mind that for an eigenvalue, its eigenvectors are not “several single vectors”, but a
collection of infinitely many vectors. As a consequence, there are more than one way to represent them.
For example, in the above we have shown that eigenvectors corresponding to —1 can be represented as

1 0
al -2 |+b] -2 | (32)
0 1

with a, b arbitrary constants. The same set of vectors can also be writtn as

al 2 |4+bl 0 | (33)

To see that they indeed represent the same set of vectors, we check:

1. The former includes the latter: That is any vector in the form of the latter can be represented by
the former.

2 |=(=D| -2 |, 0 |==n| -2 |+[ -2 | (34)

—2 = 2 | —2 == 2 |+[ o | (35)

Now we turn to the eigenvalue 8. We need to solve

-5 2 4 1 0
2 -8 2 zo |=| 0 | (36)
4 2 -5 s 0
We use Gaussian elimination:
-5 2 4 0 -5 2 40
2 -8 2 0| = 1 -4 1 0 (Simplify the 2nd row)
4 2 -50 4 2 =50
1 -4 1 0
== -5 2 4 0 (Switch 1st and 2nd row)
4 2 -50
-4 1
== —-18 9 (first row x5 add to 2nd; x(—4) add to 3rd)
18 -9

ocokrR OO~ OO~
Lo
o =~
O
oo
N oo o



MATH 334 FALL 2011 HOMEWORK 11 SOLUTIONS

So the system for x1, x2, x3 is equivalent to

T1—4zatzs = 0 (37)
—2zo+x3 = 0 (38)
Represent xq, x5 by z3:
1 = 3 (39)
Ty = %ZC;g (40)

This gives

1
al 1/2 (42)
1
where a is an arbitrary number.
ADVANCED

Problem 5. Prove the basic properties of convolution:

fxg=g*f;
fr(g1+ g2) = fxg1+ f*g2;
(fxg)xh= fx(g*h);

Proof.

fx0=0xf=0.
f*xg=gxf. Recall definition:
t
fra= [ $(t=r)ar)ar (43)
Now do the change of variable: 0
t'=t—r7=dr=—dt’ (44)
and the integral becomes
t 0 t
| re=namar= [ rrgu—eyar)= [ ge—e) ) ar=ges. (45)
0 t 0

We have

Felgr + g2) = / F(t = 7) [ou(r) + ga(r)] dr = / [t = ) gu(r) dr + / f(t = 7) galr) dr =
f*g1+ f*go. (46)
Use definition:

(f*g)*h

/ " (Fra)(t — ) h(r)dr

[)t U}tﬂ ft—7—15)g(s) ds} h(r)dr

- /t /tin(t—T—s)g(s)h(T) dsdr. (47)
0 0

As we would like to pair g and h together, we have to write f as f(t —t’). So introduce t'=s+ 7 in the

inner integral — Thus ds=d¢’. Then we have
L] re=r=sg@as|nmrar = [* [ se-tygw-rar|neyar
/Ot /: ft—=t") g(t' =) h(r)dt'dr. (48)



Now we switch the order of the integration. The domain of the integration is 0 <7 <t’<t. So t' runs from

0 to ¢ while 7 from 0 to ¢’. Therefore
t t!
/ / F(t—1)) g(t' — 1) h(7) dr | dt’
0 0

/Ot /Tt F(t—t") g(t' — 1) h(r) dt’ dr
/t fe=n {/t g(t' =) h(r) dT}dt’

/ft—t (gh) (t") dt

= [x(g*h). (49)
e This one is trivial:

t
f*O:/ f(t—7)0dr=0. (50)

0
Note that, all the above can be easily proved by the property £{fxg}=L{f}L{g}. However, implicit in that
approach is the assumption that £L={L£{f}} = f whose proof is actually not easy. d

CHALLENGE

Problem 6. Derive the formula £-*{e=%* F(s)} = f(t — a) u(t — a) using convolution.

Proof. We have

L7He = Fs)} = L7He LT H{F(s)}
= 8t —a) (1)
:/ft—T (r—a)dt’
= f(t—a)u(t—a).

The last step follows from the following observation: When ¢ < a, 7 — a < 0 and therefore in the integral
5(t'—a)=0. 0

Problem 7. Recall that we can write any single linear homogeneous equation of order n into a 1st order system
consisting of n equations. Show that the Wronskian of the latter is the same as the Wronskian of the former.

Proof. Let the n-th order equation be

Y+ pa(D) YD 4t pu() y =0, (5D

It can be written into a system of n first order equations

Z=P(t)x (52)
through setting
( 0 1 0 0 \
z1 0 0 1
r1=Y, m2:yl7--~7 mn:y(n71)7w: 7P(t): (53)
Tn 1
—pn(t) —pa-1(t) —Pn—2(t) - —pi(t)

The Wronskian for the n-th order equation reads:

/ !

Y1 Yn

_/

det (54)

ygn.il) y'ELn Y
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which becomes the Wronskian for the system after identifying

. )

!
2= % (55)
y* Y
|
Problem 8. Let W be the Wronskian of n solutions <, ..., (™ to the system
Z1 = pi(t)z1 4+ pin(t) z, (56)
Tn = Pri(t) T1 4+ Pan(t) Tn. (57)
Prove that
dw
W:(Pu(t)“"““'l)nn(t))w- (58)
Proof. From properties of determinants we have
W . S
dldet| 7 T ( iy ey \ ( (RO \
RO JC DR () zi zi
z ~ =det 2 2 +--- +det : : (59)
dt (1) . (n)
"I:n e "I:n

gl e

Here we have used the following property: The derivative of a determinant is the sum of n determinants, each
obtained by putting derivative on one single row (or one single column). This can be proved by using the ultimate
definition of determinants:

det (M) = Z (sign of o) Mis(1) Mno(n)- (60)

o €All permutations of {1,...,n}

or through definition of derivative (the lims_,o one) and use the following property of determinants:

det| a1 4+by - an+b, |=det| a1 - an |+det| b, - b, (61)
Now we have ' '
eV =pu ) 2+ pra(t) a8 s 2™ = pu () 2 4 pua(t) 2. (62)

Substituting into the first determinant and use the property

det| a1 40y - antbn |=det| a1 -~ an |+det| b - b, (63)
we have
(&0 ) (n@e? el ) [ peaf - pua )
det 37;1) x;n) — det le xén) +det z® x;")
2O g N e e
+Terms similar to the 2nd one. (64)

Now using the following property: If a matrix has one row a multiple of another, then the determinant is 0, we
see that only the first one is not 0.
But the first one is simply

(@ z® — pu(a S

) (n) afV el
det 2 T3 =p11(t) det : : =pu()W. (65)

: L

A0 W el



Dealing with the rest similarly, we reach

dW

E:(pll(t)"""""'pnn(t)) w. (66)

Remark. It’s interesting that if we put derivative on each column and write

2D 2
d| det P
w2 ) ) (1) (n) (1) ()
a =det (2™ . ™ )+ 4det(z® .. £) (67)

and then use (M = P(t) 2™ and so on, we seem to get stuck. The philosophical reason for this difference between
the row-by-row approach and column-by-column approach seems to be that, when doing the row-by-row approach
we are using the fact that ™, ..., 2™ are all solutions in each determinant, while when in the column-by-column
approach, in each determinant in the right hand side, we only take advantage of one (* being a solution. O



