
Dec. 2, 2011

Math 334 Fall 2011 Homework 11 Solutions

Basic

Problem 1. Transform the following initial value problem into an initial value problem for a system:

u′′ + p(t)u′ + q(t) u = g(t), u(0) = u0, u
′(0) = v0. (1)

Solution. Let v = u′. Then v ′ = u′′ and the equation becomes

v ′ + p(t) v + q(t) u = g(t) (2)

and the initial value becomes

u(0)= u0, v(0) = v0. (3)

The system we are looking for is then

v ′ = −q(t) u− p(t) v + g(t) (4)

u′ = v (5)

with initial values

u(0)= u0, v(0) = v0. (6)

Intermediate

Problem 2. Express the solution of the following initial value problem in terms of a convolution integral:

y ′′ +4 y ′ + 4 y = g(t); y(0) = 2, y ′(0)=−3. (7)

Solution.

First transform the equation:

L{y ′′} = s2 Y − s y(0)− y ′(0)= s2 Y − 2 s + 3; (8)

L{y ′} = s Y − y(0) = s Y − 2 (9)

Denoting L{g}= G(s), we have the transformed equation as

(s2 +4 s +4) Y = G(s)+ 2 s+ 5. (10)

So

Y =
G(s)

s2 + 4 s + 4
+

2 s + 5

s2 + 4 s+ 4
. (11)

Now take inverses:

• L−1
{

G(s)

s2 + 4 s + 4

}

. We use the convolution theorem:

L−1

{

G(s)

s2 + 4 s + 4

}

=L−1

{

1

(s + 2)2

}

∗L−1{G}=(e−2t t)∗g =

∫

0

t

e−2(t−τ) (t− τ ) g(τ) dτ . (12)

• L−1
{

2 s + 5

s2 + 4 s + 4

}

=L−1
{

1

(s + 2)2
+

2

(s + 2)

}

= e−2t t + 2 e−2t.

So the final answer is

y =

∫

0

t

e−2(t−τ) (t− τ) g(τ ) dτ + e−2t (t +2). (13)

Problem 3. Express the solution of the following initial value problem in terms of a convolution integral:

y(4)− y = g(t); y(0) = y ′(0) = y ′′(0)= y ′′′(0)= 0. (14)

Solution. Taking transform of the equation we obtain

(s4− 1) Y = G(s)� Y =
G(s)
s4− 1

. (15)

Therefore

y(t) =L−1

{

1
s4− 1

}

∗g. (16)
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We compute

L−1

{

1

s4− 1

}

=
1

2
L−1

{

1

s2− 1
−

1

s2 + 1

}

=
1

4
L−1

{

1

s− 1
−

1

s + 1
−

2

s2 + 1

}

=
1

4
[et − e−t − 2 sin t]. (17)

So the answer is

y(t)=
1

4

∫

0

t

[e(t−τ)− e−(t−τ)− 2 sin (t− τ )] g(τ ) dτ . (18)

Problem 4. Find all eigenvalues and eigenvectors for

a) A =
(

−2 1
1 −2

)

;

b) A =





3 2 4
2 0 2
4 2 3



.

Solution.

a) We have

det (A−λ I) = det

(

−2−λ 1
1 −2−λ

)

= λ2 + 4 λ+ 3. (19)

Solving

λ2 + 4 λ + 3= 0� λ1 =−3, λ2 =−1. (20)

So eigenvalues are −3,−1.

• Eigenvectors corresponding to −3: We solve

(A− (−3) I) x =0 (21)

which becomes
(

1 1
1 1

)(

x1

x2

)

=0� (

x1

x2

)

= a

(

1
−1

)

. (22)

• Eigenvectors corresponding to −1: We solve
(

−1 1
1 −1

)(

x1

x2

)

=0� (

x1

x2

)

= a

(

1
1

)

. (23)

b) We have

det (A−λ I) = det





3−λ 2 4
2 −λ 2
4 2 3−λ





= (3−λ) (−λ) (3−λ) +2 · 2 · 4+ 2 · 2 · 4

−4 (−λ) 4− 2 · 2 · (3−λ)− 2 · 2 · (3−λ)

= −λ3 + 6 λ2− 9λ + 16+ 16+ 16 λ− 12+ 4 λ− 12+4 λ

= −λ3 + 6 λ2 + 15 λ+ 8. (24)

Now we solve

−λ3 +6 λ2 + 15 λ +8 = 0. (25)

Observe: λ1 =−1 is a root. Factorize:

−λ3 + 6 λ2 + 15 λ + 8= (λ + 1) (−λ2 + 7 λ + 8). (26)

Now solve:

−λ2 + 7 λ + 8= 0� λ2 = 8, λ3 =−1. (27)

So in fact we have two eigenvalues: λ1 = λ2 =−1, λ3 = 8.
Next we find eigenvectors corresponding to −1. We need to solve





4 2 4
2 1 2
4 2 4









x1

x2

x3



=





0
0
0



. (28)

Note that the solutions are given by x1, x2, x3 satisfying

2 x1 +x2 +2 x3 = 0. (29)
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In other words the eigenvectors are all vectors satisfying this equation.

To get an explicit formula for eigenvectors, we write




x1

x2

x3



=





x1

−2 x1− 2 x3

x3



=x1





1
−2
0



+ x3





0
−2
1



. (30)

There are no restriction on x1, x2. Therefore the eigenvectors corresponding to −1 is given by

a





1
−2
0



+ b





0
−2
1



. (31)

Remark. Keep in mind that for an eigenvalue, its eigenvectors are not “several single vectors”, but a

collection of infinitely many vectors. As a consequence, there are more than one way to represent them.
For example, in the above we have shown that eigenvectors corresponding to −1 can be represented as

a





1
−2
0



+ b





0
−2
1



. (32)

with a, b arbitrary constants. The same set of vectors can also be writtn as

a





−1
2
0



+ b





−1
0
1



. (33)

To see that they indeed represent the same set of vectors, we check:

1. The former includes the latter: That is any vector in the form of the latter can be represented by
the former.





−1
2
0



= (−1)





1
−2
0



,





−1
0
1



= (−1)





1
−2
0



+





0
−2
1



. (34)

2. The latter includes the former:




1
−2
0



= (−1)





−1
2
0



,





0
−2
1



= (−1)





−1
2
0



+





−1
0
1



. (35)

Now we turn to the eigenvalue 8. We need to solve




−5 2 4
2 −8 2
4 2 −5









x1

x2

x3



=





0
0
0



. (36)

We use Gaussian elimination:




−5 2 4 0
2 −8 2 0
4 2 −5 0



 � 



−5 2 4 0
1 −4 1 0
4 2 −5 0



 (Simplify the 2nd row)� 



1 −4 1 0
−5 2 4 0
4 2 −5 0



 (Switch 1st and 2nd row)� 



1 −4 1 0
0 −18 9 0
0 18 −9 0



 (first row ×5 add to 2nd; ×(−4) add to 3rd)� 



1 −4 1 0
0 −18 9 0
0 0 0 0



� 



1 −4 1 0
0 −2 1 0
0 0 0 0



.
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So the system for x1, x2, x3 is equivalent to

x1− 4x2 + x3 = 0 (37)

−2x2 + x3 = 0 (38)

Represent x1, x2 by x3:

x1 = x3 (39)

x2 =
1

2
x3. (40)

This gives




x1

x2

x3



=







x3
x3

2

x3






= x3





1
1/2
1



. (41)

So the eigenvectors corresponding to 8 are

a





1
1/2
1



 (42)

where a is an arbitrary number.

Advanced

Problem 5. Prove the basic properties of convolution:

• f∗g = g∗f ;

• f∗(g1 + g2) = f∗g1 + f∗g2;

• (f∗g)∗h = f∗(g∗h);

• f∗0 = 0∗f =0.

Proof.

• f∗g = g∗f . Recall definition:

f∗g =

∫

0

t

f(t− τ) g(τ ) dτ . (43)

Now do the change of variable:

t′ = t− τ� dτ =−dt′ (44)

and the integral becomes

∫

0

t

f(t− τ) g(τ ) dτ =

∫

t

0

f(t′) g(t− t′)(−dt′)=

∫

0

t

g(t− t′) f(t′) dt′ = g∗f. (45)

• We have

f∗(g1 + g2) =

∫

0

t

f(t − τ ) [g1(τ) + g2(τ )] dτ =

∫

0

t

f(t − τ) g1(τ) dτ +

∫

0

t

f(t − τ) g2(τ) dτ =

f∗g1 + f∗g2. (46)

• Use definition:

(f∗g)∗h =

∫

0

t

(f∗g)(t− τ) h(τ) dτ

=

∫

0

t
[
∫

0

t−τ

f(t− τ − s)g(s) ds

]

h(τ ) dτ

=

∫

0

t ∫

0

t−τ

f(t− τ − s) g(s)h(τ) ds dτ. (47)

As we would like to pair g and h together, we have to write f as f(t− t′). So introduce t′ = s + τ in the
inner integral – Thus ds = dt′. Then we have

∫

0

t
[
∫

0

t−τ

f(t− τ − s)g(s) ds

]

h(τ ) dτ =

∫

0

t
[
∫

τ

t

f(t− t′) g(t′− τ ) dt′
]

h(τ) dτ

=

∫

0

t ∫

τ

t

f(t− t′) g(t′− τ ) h(τ ) dt′ dτ. (48)
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Now we switch the order of the integration. The domain of the integration is 0<τ <t′<t. So t′ runs from

0 to t while τ from 0 to t′. Therefore

∫

0

t ∫

τ

t

f(t− t′) g(t′− τ) h(τ) dt′ dτ =

∫

0

t
[

∫

0

t′

f(t− t′) g(t′− τ) h(τ ) dτ

]

dt′

=

∫

0

t

f(t− t′)

[

∫

0

t′

g(t′− τ) h(τ) dτ

]

dt′

=

∫

0

t

f(t− t′) (g∗h)(t′) dt′

= f∗(g∗h). (49)

• This one is trivial:

f∗0 =

∫

0

t

f(t− τ ) 0 dτ = 0. (50)

Note that, all the above can be easily proved by the property L{f∗g} = L{f }L{g}. However, implicit in that

approach is the assumption that L−1{L{f }}= f whose proof is actually not easy. �

Challenge

Problem 6. Derive the formula L−1{e−as F (s)}= f(t− a) u(t− a) using convolution.

Proof. We have

L−1{e−as F (s)} = L−1{e−as}∗L−1{F (s)}

= δ(t− a)∗f(t)

=

∫

0

t

f(t− τ ) δ(τ − a) dt′

= f(t− a) u(t− a).

The last step follows from the following observation: When t < a, τ − a < 0 and therefore in the integral

δ(t′− a) = 0. �

Problem 7. Recall that we can write any single linear homogeneous equation of order n into a 1st order system

consisting of n equations. Show that the Wronskian of the latter is the same as the Wronskian of the former.

Proof. Let the n-th order equation be

y(n) + p1(t) y(n−1) +
 + pn(t) y = 0. (51)

It can be written into a system of n first order equations

ẋ =P (t) x (52)

through setting

x1 = y, x2 = y ′,	 , xn = y(n−1), x =





x1�
xn



, P (t)=













0 1 0 
 0
0 0 1 



1
−pn(t) −pn−1(t) −pn−2(t) 
 −p1(t)













(53)

The Wronskian for the n-th order equation reads:

det











y1 
 yn

y1
′ yn

′� 
 �
y1
(n−1) 
 yn

(n−1)











(54)
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which becomes the Wronskian for the system after identifying

x
(i) =











yi

yi
′�

yi
(n−1)











. (55)

�

Problem 8. Let W be the Wronskian of n solutions x
(1),	 , x(n) to the system

ẋ1 = p11(t) x1 +
 + p1n(t) xn (56)� � �
ẋn = pn1(t) x1 +
 + pnn(t) xn. (57)

Prove that
dW

dt
= (p11(t) +
 + pnn(t)) W. (58)

Proof. From properties of determinants we have

d

(

det







x1
(1) 
 x1

(n)� 
 �
x

n

(1) 
 x
n

(n)







)

dt
=det













ẋ1
(1) 
 ẋ1

(n)

x2
(1) 
 x2

(n)

xn

(1) 
 xn
(n)













+
 + det







x1
(1) 
 x1

(n)� 
 �
ẋn

(1) 
 ẋn
(n)






(59)

Here we have used the following property: The derivative of a determinant is the sum of n determinants, each

obtained by putting derivative on one single row (or one single column). This can be proved by using the ultimate
definition of determinants:

det (M) =
∑

σ∈All permutations of {1,	 ,n}

(sign of σ) m1σ(1)
mnσ(n). (60)

or through definition of derivative (the limδ→0 one) and use the following property of determinants:

det





� �
a1 + b1 
 an + bn� � 

= det





� �
a1 
 an� � 

+ det





� �
b1 
 bn� � 

 (61)

Now we have

ẋ1
(1) = p11(t)x1

(1) + p12(t)x2
(1) +
 ;
 ; x1

(n) = p11(t) x1
(n) +
 + p1n(t) xn

(n)
. (62)

Substituting into the first determinant and use the property

det





� �
a1 + b1 
 an + bn� � 

= det





� �
a1 
 an� � 

+ det





� �
b1 
 bn� � 

 (63)

we have

det













ẋ1
(1) 
 ẋ1

(n)

x2
(1) 
 x2

(n)

xn

(1) 
 xn
(n)













= det













p11(t) x1
(1) 
 p11(t) xn

(n)

x2
(1) 
 x2

(n)

xn

(1) 
 xn
(n)













+det













p12(t)x2
(1) 
 p12(t)x2

(n)

x(1) 
 x2
(n)


xn
(1) 
 xn

(n)













+Terms similar to the 2nd one. (64)

Now using the following property: If a matrix has one row a multiple of another, then the determinant is 0, we
see that only the first one is not 0.

But the first one is simply

det













p11(t) x1
(1) 
 p11(t) xn

(n)

x2
(1) 
 x2

(n)

xn

(1) 
 xn
(n)













= p11(t) det







x1
(1) 
 x1

(n)� 
 �
xn

(1) 
 xn
(n)






= p11(t)W. (65)
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Dealing with the rest similarly, we reach

dW

dt
= (p11(t) +
 + pnn(t)) W. (66)

Remark. It’s interesting that if we put derivative on each column and write

d

(

det







x1
(1) 
 x1

(n)� 
 �
x

n

(1) 
 x
n

(n)







)

dt
= det

(

ẋ
(1) 	 x

(n)
)

+
 + det
(

x
(1) 
 ẋ

(n)
)

(67)

and then use ẋ
(1)=P (t) x

(1) and so on, we seem to get stuck. The philosophical reason for this difference between

the row-by-row approach and column-by-column approach seems to be that, when doing the row-by-row approach

we are using the fact that x
(1),	 ,x(n) are all solutions in each determinant, while when in the column-by-column

approach, in each determinant in the right hand side, we only take advantage of one x
(i) being a solution. �
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