Dec. 2, 2011

Math 334 Fall 2011 Homework 11 Solutions

BASIC

Problem 1. Transform the following initial value problem into an initial value problem for a system:

$$
\begin{equation*}
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=g(t), \quad u(0)=u_{0}, u^{\prime}(0)=v_{0} \tag{1}
\end{equation*}
$$

Solution. Let $v=u^{\prime}$. Then $v^{\prime}=u^{\prime \prime}$ and the equation becomes

$$
\begin{equation*}
v^{\prime}+p(t) v+q(t) u=g(t) \tag{2}
\end{equation*}
$$

and the initial value becomes

$$
\begin{equation*}
u(0)=u_{0}, \quad v(0)=v_{0} \tag{3}
\end{equation*}
$$

The system we are looking for is then

$$
\begin{align*}
v^{\prime} & =-q(t) u-p(t) v+g(t) \tag{4}\\
u^{\prime} & =v \tag{5}
\end{align*}
$$

with initial values

$$
\begin{equation*}
u(0)=u_{0}, \quad v(0)=v_{0} \tag{6}
\end{equation*}
$$

INTERMEDIATE

Problem 2. Express the solution of the following initial value problem in terms of a convolution integral:

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=g(t) ; \quad y(0)=2, y^{\prime}(0)=-3 \tag{7}
\end{equation*}
$$

Solution.

First transform the equation:

$$
\begin{align*}
\mathcal{L}\left\{y^{\prime \prime}\right\} & =s^{2} Y-s y(0)-y^{\prime}(0)=s^{2} Y-2 s+3 \tag{8}\\
\mathcal{L}\left\{y^{\prime}\right\} & =s Y-y(0)=s Y-2 \tag{9}
\end{align*}
$$

Denoting $\mathcal{L}\{g\}=G(s)$, we have the transformed equation as

$$
\begin{equation*}
\left(s^{2}+4 s+4\right) Y=G(s)+2 s+5 \tag{10}
\end{equation*}
$$

So

$$
\begin{equation*}
Y=\frac{G(s)}{s^{2}+4 s+4}+\frac{2 s+5}{s^{2}+4 s+4} \tag{11}
\end{equation*}
$$

Now take inverses:

- $\mathcal{L}^{-1}\left\{\frac{G(s)}{s^{2}+4 s+4}\right\}$. We use the convolution theorem:

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{G(s)}{s^{2}+4 s+4}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}}\right\} * \mathcal{L}^{-1}\{G\}=\left(e^{-2 t} t\right) * g=\int_{0}^{t} e^{-2(t-\tau)}(t-\tau) g(\tau) \mathrm{d} \tau \tag{12}
\end{equation*}
$$

- $\quad \mathcal{L}^{-1}\left\{\frac{2 s+5}{s^{2}+4 s+4}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}}+\frac{2}{(s+2)}\right\}=e^{-2 t} t+2 e^{-2 t}$.

So the final answer is

$$
\begin{equation*}
y=\int_{0}^{t} e^{-2(t-\tau)}(t-\tau) g(\tau) \mathrm{d} \tau+e^{-2 t}(t+2) \tag{13}
\end{equation*}
$$

Problem 3. Express the solution of the following initial value problem in terms of a convolution integral:

$$
\begin{equation*}
y^{(4)}-y=g(t) ; \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=0 \tag{14}
\end{equation*}
$$

Solution. Taking transform of the equation we obtain

Therefore

$$
\begin{equation*}
\left(s^{4}-1\right) Y=G(s) \Longrightarrow Y=\frac{G(s)}{s^{4}-1} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{4}-1}\right\} * g \tag{16}
\end{equation*}
$$

We compute

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{1}{s^{4}-1}\right\}=\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}-1}-\frac{1}{s^{2}+1}\right\}=\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{1}{s-1}-\frac{1}{s+1}-\frac{2}{s^{2}+1}\right\}=\frac{1}{4}\left[e^{t}-e^{-t}-2 \sin t\right] . \tag{17}
\end{equation*}
$$

So the answer is

$$
\begin{equation*}
y(t)=\frac{1}{4} \int_{0}^{t}\left[e^{(t-\tau)}-e^{-(t-\tau)}-2 \sin (t-\tau)\right] g(\tau) \mathrm{d} \tau \tag{18}
\end{equation*}
$$

Problem 4. Find all eigenvalues and eigenvectors for
a) $A=\left(\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right)$;
b) $A=\left(\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right)$.

Solution.

a) We have

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-2-\lambda & 1 \tag{19}\\
1 & -2-\lambda
\end{array}\right)=\lambda^{2}+4 \lambda+3 .
$$

Solving

$$
\begin{equation*}
\lambda^{2}+4 \lambda+3=0 \Longrightarrow \lambda_{1}=-3, \lambda_{2}=-1 . \tag{20}
\end{equation*}
$$

So eigenvalues are $-3,-1$.

- Eigenvectors corresponding to -3 : We solve

$$
\begin{equation*}
(A-(-3) I) \boldsymbol{x}=0 \tag{21}
\end{equation*}
$$

which becomes

$$
\left(\begin{array}{ll}
1 & 1 \tag{22}\\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \Longrightarrow\binom{x_{1}}{x_{2}}=a\binom{1}{-1} .
$$

- Eigenvectors corresponding to -1 : We solve

$$
\left(\begin{array}{cc}
-1 & 1 \tag{23}\\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \Longrightarrow\binom{x_{1}}{x_{2}}=a\binom{1}{1}
$$

b) We have

$$
\begin{align*}
\operatorname{det}(A-\lambda I)= & \operatorname{det}\left(\begin{array}{ccc}
3-\lambda & 2 & 4 \\
2 & -\lambda & 2 \\
4 & 2 & 3-\lambda
\end{array}\right) \\
= & (3-\lambda)(-\lambda)(3-\lambda)+2 \cdot 2 \cdot 4+2 \cdot 2 \cdot 4 \\
& -4(-\lambda) 4-2 \cdot 2 \cdot(3-\lambda)-2 \cdot 2 \cdot(3-\lambda) \\
= & -\lambda^{3}+6 \lambda^{2}-9 \lambda+16+16+16 \lambda-12+4 \lambda-12+4 \lambda \\
= & -\lambda^{3}+6 \lambda^{2}+15 \lambda+8 . \tag{24}
\end{align*}
$$

Now we solve

$$
\begin{equation*}
-\lambda^{3}+6 \lambda^{2}+15 \lambda+8=0 . \tag{25}
\end{equation*}
$$

Observe: $\lambda_{1}=-1$ is a root. Factorize:

$$
\begin{equation*}
-\lambda^{3}+6 \lambda^{2}+15 \lambda+8=(\lambda+1)\left(-\lambda^{2}+7 \lambda+8\right) . \tag{26}
\end{equation*}
$$

Now solve:

$$
\begin{equation*}
-\lambda^{2}+7 \lambda+8=0 \Longrightarrow \lambda_{2}=8, \lambda_{3}=-1 . \tag{27}
\end{equation*}
$$

So in fact we have two eigenvalues: $\lambda_{1}=\lambda_{2}=-1, \lambda_{3}=8$.
Next we find eigenvectors corresponding to -1 . We need to solve

$$
\left(\begin{array}{lll}
4 & 2 & 4 \tag{28}\\
2 & 1 & 2 \\
4 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Note that the solutions are given by x_{1}, x_{2}, x_{3} satisfying

$$
\begin{equation*}
2 x_{1}+x_{2}+2 x_{3}=0 . \tag{29}
\end{equation*}
$$

In other words the eigenvectors are all vectors satisfying this equation.
To get an explicit formula for eigenvectors, we write

$$
\left(\begin{array}{c}
x_{1} \tag{30}\\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
-2 x_{1}-2 x_{3} \\
x_{3}
\end{array}\right)=x_{1}\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right) .
$$

There are no restriction on x_{1}, x_{2}. Therefore the eigenvectors corresponding to -1 is given by

$$
a\left(\begin{array}{c}
1 \tag{31}\\
-2 \\
0
\end{array}\right)+b\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)
$$

Remark. Keep in mind that for an eigenvalue, its eigenvectors are not "several single vectors", but a collection of infinitely many vectors. As a consequence, there are more than one way to represent them. For example, in the above we have shown that eigenvectors corresponding to -1 can be represented as

$$
a\left(\begin{array}{c}
1 \tag{32}\\
-2 \\
0
\end{array}\right)+b\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)
$$

with a, b arbitrary constants. The same set of vectors can also be writtn as

$$
a\left(\begin{array}{c}
-1 \tag{33}\\
2 \\
0
\end{array}\right)+b\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

To see that they indeed represent the same set of vectors, we check:

1. The former includes the latter: That is any vector in the form of the latter can be represented by the former.

$$
\left(\begin{array}{c}
-1 \tag{34}\\
2 \\
0
\end{array}\right)=(-1)\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=(-1)\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right) .
$$

2. The latter includes the former:

$$
\left(\begin{array}{c}
1 \tag{35}\\
-2 \\
0
\end{array}\right)=(-1)\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)=(-1)\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right)+\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
$$

Now we turn to the eigenvalue 8. We need to solve

$$
\left(\begin{array}{ccc}
-5 & 2 & 4 \tag{36}\\
2 & -8 & 2 \\
4 & 2 & -5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We use Gaussian elimination:

$$
\begin{aligned}
\left(\begin{array}{cccc}
-5 & 2 & 4 & 0 \\
2 & -8 & 2 & 0 \\
4 & 2 & -5 & 0
\end{array}\right) & \Longrightarrow\left(\begin{array}{cccc}
-5 & 2 & 4 & 0 \\
1 & -4 & 1 & 0 \\
4 & 2 & -5 & 0
\end{array}\right) \quad \text { (Simplify the 2nd row) } \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & -4 & 1 & 0 \\
-5 & 2 & 4 & 0 \\
4 & 2 & -5 & 0
\end{array}\right) \quad \text { (Switch } 1 \text { st and 2nd row) } \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & -4 & 1 & 0 \\
0 & -18 & 9 & 0 \\
0 & 18 & -9 & 0
\end{array}\right) \quad \text { (first row } \times 5 \text { add to } 2 \text { nd; } \times(-4) \text { add to } 3 \text { rd) } \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & -4 & 1 & 0 \\
0 & -18 & 9 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & -4 & 1 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

So the system for x_{1}, x_{2}, x_{3} is equivalent to

$$
\begin{array}{r}
x_{1}-4 x_{2}+x_{3}=0 \\
-2 x_{2}+x_{3}=0 \tag{38}
\end{array}
$$

Represent x_{1}, x_{2} by x_{3} :

$$
\begin{align*}
x_{1} & =x_{3} \tag{39}\\
x_{2} & =\frac{1}{2} x_{3} . \tag{40}
\end{align*}
$$

This gives

$$
\left(\begin{array}{l}
x_{1} \tag{41}\\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{3} \\
\frac{x_{3}}{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right) .
$$

So the eigenvectors corresponding to 8 are

$$
a\left(\begin{array}{c}
1 \tag{42}\\
1 / 2 \\
1
\end{array}\right)
$$

where a is an arbitrary number.

Advanced

Problem 5. Prove the basic properties of convolution:

- $f * g=g * f$;
- $f *\left(g_{1}+g_{2}\right)=f * g_{1}+f * g_{2}$;
- $(f * g) * h=f *(g * h)$;
- $f * 0=0 * f=0$.

Proof.

- $f * g=g * f$. Recall definition:

Now do the change of variable:

$$
\begin{equation*}
f * g=\int_{0}^{t} f(t-\tau) g(\tau) \mathrm{d} \tau \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
t^{\prime}=t-\tau \Longrightarrow \mathrm{d} \tau=-\mathrm{d} t^{\prime} \tag{44}
\end{equation*}
$$

and the integral becomes

$$
\begin{equation*}
\int_{0}^{t} f(t-\tau) g(\tau) \mathrm{d} \tau=\int_{t}^{0} f\left(t^{\prime}\right) g\left(t-t^{\prime}\right)\left(-\mathrm{d} t^{\prime}\right)=\int_{0}^{t} g\left(t-t^{\prime}\right) f\left(t^{\prime}\right) \mathrm{d} t^{\prime}=g * f \tag{45}
\end{equation*}
$$

- We have
$f *\left(g_{1}+g_{2}\right)=\int_{0}^{t} f(t-\tau)\left[g_{1}(\tau)+g_{2}(\tau)\right] \mathrm{d} \tau=\int_{0}^{t} f(t-\tau) g_{1}(\tau) \mathrm{d} \tau+\int_{0}^{t} f(t-\tau) g_{2}(\tau) \mathrm{d} \tau=$ $f * g_{1}+f * g_{2}$.
- Use definition:

$$
\begin{align*}
(f * g) * h & =\int_{0}^{t}(f * g)(t-\tau) h(\tau) \mathrm{d} \tau \\
& =\int_{0}^{t}\left[\int_{0}^{t-\tau} f(t-\tau-s) g(s) \mathrm{d} s\right] h(\tau) \mathrm{d} \tau \\
& =\int_{0}^{t} \int_{0}^{t-\tau} f(t-\tau-s) g(s) h(\tau) \mathrm{d} s \mathrm{~d} \tau \tag{47}
\end{align*}
$$

As we would like to pair g and h together, we have to write f as $f\left(t-t^{\prime}\right)$. So introduce $t^{\prime}=s+\tau$ in the inner integral - Thus $\mathrm{d} s=\mathrm{d} t^{\prime}$. Then we have

$$
\begin{align*}
\int_{0}^{t}\left[\int_{0}^{t-\tau} f(t-\tau-s) g(s) \mathrm{d} s\right] h(\tau) \mathrm{d} \tau & =\int_{0}^{t}\left[\int_{\tau}^{t} f\left(t-t^{\prime}\right) g\left(t^{\prime}-\tau\right) \mathrm{d} t^{\prime}\right] h(\tau) \mathrm{d} \tau \\
& =\int_{0}^{t} \int_{\tau}^{t} f\left(t-t^{\prime}\right) g\left(t^{\prime}-\tau\right) h(\tau) \mathrm{d} t^{\prime} \mathrm{d} \tau \tag{48}
\end{align*}
$$

Now we switch the order of the integration. The domain of the integration is $0<\tau<t^{\prime}<t$. So t^{\prime} runs from 0 to t while τ from 0 to t^{\prime}. Therefore

$$
\begin{align*}
\int_{0}^{t} \int_{\tau}^{t} f\left(t-t^{\prime}\right) g\left(t^{\prime}-\tau\right) h(\tau) \mathrm{d} t^{\prime} \mathrm{d} \tau & =\int_{0}^{t}\left[\int_{0}^{t^{\prime}} f\left(t-t^{\prime}\right) g\left(t^{\prime}-\tau\right) h(\tau) \mathrm{d} \tau\right] \mathrm{d} t^{\prime} \\
& =\int_{0}^{t} f\left(t-t^{\prime}\right)\left[\int_{0}^{t^{\prime}} g\left(t^{\prime}-\tau\right) h(\tau) \mathrm{d} \tau\right] \mathrm{d} t^{\prime} \\
& =\int_{0}^{t} f\left(t-t^{\prime}\right)(g * h)\left(t^{\prime}\right) \mathrm{d} t^{\prime} \\
& =f *(g * h) \tag{49}
\end{align*}
$$

- This one is trivial:

$$
\begin{equation*}
f * 0=\int_{0}^{t} f(t-\tau) 0 \mathrm{~d} \tau=0 \tag{50}
\end{equation*}
$$

Note that, all the above can be easily proved by the property $\mathcal{L}\{f * g\}=\mathcal{L}\{f\} \mathcal{L}\{g\}$. However, implicit in that approach is the assumption that $\mathcal{L}^{-1}\{\mathcal{L}\{f\}\}=f$ whose proof is actually not easy.

Challenge

Problem 6. Derive the formula $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)$ using convolution.
Proof. We have

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\} & =\mathcal{L}^{-1}\left\{e^{-a s}\right\} * \mathcal{L}^{-1}\{F(s)\} \\
& =\delta(t-a) * f(t) \\
& =\int_{0}^{t} f(t-\tau) \delta(\tau-a) \mathrm{d} t^{\prime} \\
& =f(t-a) u(t-a)
\end{aligned}
$$

The last step follows from the following observation: When $t<a, \tau-a<0$ and therefore in the integral $\delta\left(t^{\prime}-a\right)=0$.

Problem 7. Recall that we can write any single linear homogeneous equation of order n into a 1 st order system consisting of n equations. Show that the Wronskian of the latter is the same as the Wronskian of the former.

Proof. Let the n-th order equation be

$$
\begin{equation*}
y^{(n)}+p_{1}(t) y^{(n-1)}+\cdots+p_{n}(t) y=0 . \tag{51}
\end{equation*}
$$

It can be written into a system of n first order equations

$$
\begin{equation*}
\dot{\boldsymbol{x}}=P(t) \boldsymbol{x} \tag{52}
\end{equation*}
$$

through setting

$$
x_{1}=y, \quad x_{2}=y^{\prime}, \ldots, \quad x_{n}=y^{(n-1)}, \boldsymbol{x}=\left(\begin{array}{c}
x_{1} \tag{53}\\
\vdots \\
x_{n}
\end{array}\right), P(t)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & \\
& & & \ddots & 1 \\
-p_{n}(t) & -p_{n-1}(t) & -p_{n-2}(t) & \cdots & -p_{1}(t)
\end{array}\right)
$$

The Wronskian for the n-th order equation reads:

$$
\operatorname{det}\left(\begin{array}{ccc}
y_{1} & \cdots & y_{n} \tag{54}\\
y_{1}^{\prime} & & y_{n}^{\prime} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right)
$$

which becomes the Wronskian for the system after identifying

$$
\boldsymbol{x}^{(i)}=\left(\begin{array}{c}
y_{i} \tag{55}\\
y_{i}^{\prime} \\
\vdots \\
y_{i}^{(n-1)}
\end{array}\right)
$$

Problem 8. Let W be the Wronskian of n solutions $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ to the system

$$
\begin{align*}
\dot{x}_{1} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n} \tag{56}\\
\vdots & \vdots \\
\dot{x}_{n} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n} \tag{57}
\end{align*}
$$

Prove that

$$
\begin{equation*}
\frac{\mathrm{d} W}{\mathrm{~d} t}=\left(p_{11}(t)+\cdots+p_{n n}(t)\right) W \tag{58}
\end{equation*}
$$

Proof. From properties of determinants we have

$$
\frac{\mathrm{d}\left(\operatorname{det}\left(\begin{array}{ccc}
x_{1}^{(1)} & \cdots & x_{1}^{(n)} \tag{59}\\
\vdots & \ddots & \vdots \\
x_{n}^{(1)} & \cdots & x_{n}^{(n)}
\end{array}\right)\right)}{\mathrm{d} t}=\operatorname{det}\left(\begin{array}{ccc}
\dot{x}_{1}^{(1)} & \cdots & \dot{x}_{1}^{(n)} \\
x_{2}^{(1)} & \cdots & x_{2}^{(n)} \\
& \ddots & \\
x_{n}^{(1)} & \cdots & x_{n}^{(n)}
\end{array}\right)+\cdots+\operatorname{det}\left(\begin{array}{ccc}
x_{1}^{(1)} & \cdots & x_{1}^{(n)} \\
\vdots & \ddots & \vdots \\
\dot{x}_{n}^{(1)} & \cdots & \dot{x}_{n}^{(n)}
\end{array}\right)
$$

Here we have used the following property: The derivative of a determinant is the sum of n determinants, each obtained by putting derivative on one single row (or one single column). This can be proved by using the ultimate definition of determinants:

$$
\begin{equation*}
\operatorname{det}(M)=\sum_{\sigma \in \text { All permutations of }\{1, \ldots, n\}}(\operatorname{sign} \text { of } \sigma) m_{1 \sigma(1) \cdots} m_{n \sigma(n)} . \tag{60}
\end{equation*}
$$

or through definition of derivative (the $\lim _{\delta \rightarrow 0}$ one) and use the following property of determinants:

Now we have

$$
\operatorname{det}\left(\begin{array}{ccc}
\vdots & & \vdots \tag{61}\\
a_{1}+b_{1} & \cdots & a_{n}+b_{n} \\
\vdots & & \vdots
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
\vdots & & \vdots \\
a_{1} & \cdots & a_{n} \\
\vdots & & \vdots
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
\vdots & & \vdots \\
b_{1} & \cdots & b_{n} \\
\vdots & & \vdots
\end{array}\right)
$$

$$
\begin{equation*}
\dot{x}_{1}^{(1)}=p_{11}(t) x_{1}^{(1)}+p_{12}(t) x_{2}^{(1)}+\cdots ; \cdots ; x_{1}^{(n)}=p_{11}(t) x_{1}^{(n)}+\cdots+p_{1 n}(t) x_{n}^{(n)} . \tag{62}
\end{equation*}
$$

Substituting into the first determinant and use the property

$$
\operatorname{det}\left(\begin{array}{ccc}
\vdots & & \vdots \tag{63}\\
a_{1}+b_{1} & \cdots & a_{n}+b_{n} \\
\vdots & & \vdots
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
\vdots & & \vdots \\
a_{1} & \cdots & a_{n} \\
\vdots & & \vdots
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
\vdots & & \vdots \\
b_{1} & \cdots & b_{n} \\
\vdots & & \vdots
\end{array}\right)
$$

we have

$$
\operatorname{det}\left(\begin{array}{ccc}
\dot{x}_{1}^{(1)} & \cdots & \dot{x}_{1}^{(n)} \tag{64}\\
x_{2}^{(1)} & \cdots & x_{2}^{(n)} \\
& \ddots & \\
x_{n}^{(1)} & \cdots & x_{n}^{(n)}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
p_{11}(t) x_{1}^{(1)} & \cdots & p_{11}(t) x_{n}^{(n)} \\
x_{2}^{(1)} & \cdots & x_{2}^{(n)} \\
& \ddots & \\
x_{n}^{(1)} & \cdots & x_{n}^{(n)}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
p_{12}(t) x_{2}^{(1)} & \cdots & p_{12}(t) x_{2}^{(n)} \\
x^{(1)} & \cdots & x_{2}^{(n)} \\
& \ddots & \\
x_{n}^{(1)} & \cdots & x_{n}^{(n)}
\end{array}\right)
$$

+ Terms similar to the 2nd one.
Now using the following property: If a matrix has one row a multiple of another, then the determinant is 0 , we see that only the first one is not 0 .

But the first one is simply

$$
\operatorname{det}\left(\begin{array}{ccc}
p_{11}(t) x_{1}^{(1)} & \ldots & p_{11}(t) x_{n}^{(n)} \tag{65}\\
x_{2}^{(1)} & \ldots & x_{2}^{(n)} \\
x_{n}^{(1)} & \ddots & x_{n}^{(n)}
\end{array}\right)=p_{11}(t) \operatorname{det}\left(\begin{array}{ccc}
x_{1}^{(1)} & \ldots & x_{1}^{(n)} \\
\vdots & \ddots & \vdots \\
x_{n}^{(1)} & \cdots & x_{n}^{(n)}
\end{array}\right)=p_{11}(t) W .
$$

Dealing with the rest similarly, we reach

$$
\begin{equation*}
\frac{\mathrm{d} W}{\mathrm{~d} t}=\left(p_{11}(t)+\cdots+p_{n n}(t)\right) W \tag{66}
\end{equation*}
$$

Remark. It's interesting that if we put derivative on each column and write

$$
\frac{\mathrm{d}\left(\operatorname{det}\left(\begin{array}{ccc}
x_{1}^{(1)} & \cdots & x_{1}^{(n)} \tag{67}\\
\vdots & \ddots & \vdots \\
x_{n}^{(1)} & \cdots & x_{n}^{(n)}
\end{array}\right)\right.}{\mathrm{d} t}=\operatorname{det}\left(\begin{array}{llll}
\dot{\boldsymbol{x}}^{(1)} & \ldots & \boldsymbol{x}^{(n)}
\end{array}\right)+\cdots+\operatorname{det}\left(\begin{array}{lll}
\boldsymbol{x}^{(1)} & \ldots & \dot{\boldsymbol{x}}^{(n)}
\end{array}\right)
$$

and then use $\dot{\boldsymbol{x}}^{(1)}=P(t) \boldsymbol{x}^{(1)}$ and so on, we seem to get stuck. The philosophical reason for this difference between the row-by-row approach and column-by-column approach seems to be that, when doing the row-by-row approach we are using the fact that $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ are all solutions in each determinant, while when in the column-by-column approach, in each determinant in the right hand side, we only take advantage of one $\boldsymbol{x}^{(i)}$ being a solution.

