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Math 334 Fall 2011 Homework 11 Solutions

Basic

Problem 1. Transform the following initial value problem into an initial value problem for a system:

u′′ + p(t)u′ + q(t) u = g(t), u(0) = u0, u
′(0) = v0. (1)

Solution. Let v = u′. Then v ′ = u′′ and the equation becomes

v ′ + p(t) v + q(t) u = g(t) (2)

and the initial value becomes

u(0)= u0, v(0) = v0. (3)

The system we are looking for is then

v ′ = −q(t) u− p(t) v + g(t) (4)

u′ = v (5)

with initial values

u(0)= u0, v(0) = v0. (6)

Intermediate

Problem 2. Express the solution of the following initial value problem in terms of a convolution integral:

y ′′ +4 y ′ + 4 y = g(t); y(0) = 2, y ′(0)=−3. (7)

Solution.

First transform the equation:

L{y ′′} = s2 Y − s y(0)− y ′(0)= s2 Y − 2 s + 3; (8)

L{y ′} = s Y − y(0) = s Y − 2 (9)

Denoting L{g}= G(s), we have the transformed equation as

(s2 +4 s +4) Y = G(s)+ 2 s+ 5. (10)

So

Y =
G(s)

s2 + 4 s + 4
+

2 s + 5

s2 + 4 s+ 4
. (11)

Now take inverses:

• L−1
{

G(s)

s2 + 4 s + 4

}

. We use the convolution theorem:

L−1

{

G(s)

s2 + 4 s + 4

}

=L−1

{

1

(s + 2)2

}

∗L−1{G}=(e−2t t)∗g =

∫

0

t

e−2(t−τ) (t− τ ) g(τ) dτ . (12)

• L−1
{

2 s + 5

s2 + 4 s + 4

}

=L−1
{

1

(s + 2)2
+

2

(s + 2)

}

= e−2t t + 2 e−2t.

So the final answer is

y =

∫

0

t

e−2(t−τ) (t− τ) g(τ ) dτ + e−2t (t +2). (13)

Problem 3. Express the solution of the following initial value problem in terms of a convolution integral:

y(4)− y = g(t); y(0) = y ′(0) = y ′′(0)= y ′′′(0)= 0. (14)

Solution. Taking transform of the equation we obtain

(s4− 1) Y = G(s)� Y =
G(s)
s4− 1

. (15)

Therefore

y(t) =L−1

{

1
s4− 1

}

∗g. (16)

1



We compute

L−1

{

1

s4− 1

}

=
1

2
L−1

{

1

s2− 1
−

1

s2 + 1

}

=
1

4
L−1

{

1

s− 1
−

1

s + 1
−

2

s2 + 1

}

=
1

4
[et − e−t − 2 sin t]. (17)

So the answer is

y(t)=
1

4

∫

0

t

[e(t−τ)− e−(t−τ)− 2 sin (t− τ )] g(τ ) dτ . (18)

Problem 4. Find all eigenvalues and eigenvectors for

a) A =
(

−2 1
1 −2

)

;

b) A =





3 2 4
2 0 2
4 2 3



.

Solution.

a) We have

det (A−λ I) = det

(

−2−λ 1
1 −2−λ

)

= λ2 + 4 λ+ 3. (19)

Solving

λ2 + 4 λ + 3= 0� λ1 =−3, λ2 =−1. (20)

So eigenvalues are −3,−1.

• Eigenvectors corresponding to −3: We solve

(A− (−3) I) x =0 (21)

which becomes
(

1 1
1 1

)(

x1

x2

)

=0� (

x1

x2

)

= a

(

1
−1

)

. (22)

• Eigenvectors corresponding to −1: We solve
(

−1 1
1 −1

)(

x1

x2

)

=0� (

x1

x2

)

= a

(

1
1

)

. (23)

b) We have

det (A−λ I) = det





3−λ 2 4
2 −λ 2
4 2 3−λ





= (3−λ) (−λ) (3−λ) +2 · 2 · 4+ 2 · 2 · 4

−4 (−λ) 4− 2 · 2 · (3−λ)− 2 · 2 · (3−λ)

= −λ3 + 6 λ2− 9λ + 16+ 16+ 16 λ− 12+ 4 λ− 12+4 λ

= −λ3 + 6 λ2 + 15 λ+ 8. (24)

Now we solve

−λ3 +6 λ2 + 15 λ +8 = 0. (25)

Observe: λ1 =−1 is a root. Factorize:

−λ3 + 6 λ2 + 15 λ + 8= (λ + 1) (−λ2 + 7 λ + 8). (26)

Now solve:

−λ2 + 7 λ + 8= 0� λ2 = 8, λ3 =−1. (27)

So in fact we have two eigenvalues: λ1 = λ2 =−1, λ3 = 8.
Next we find eigenvectors corresponding to −1. We need to solve





4 2 4
2 1 2
4 2 4









x1

x2

x3



=





0
0
0



. (28)

Note that the solutions are given by x1, x2, x3 satisfying

2 x1 +x2 +2 x3 = 0. (29)
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In other words the eigenvectors are all vectors satisfying this equation.

To get an explicit formula for eigenvectors, we write




x1

x2

x3



=





x1

−2 x1− 2 x3

x3



=x1





1
−2
0



+ x3





0
−2
1



. (30)

There are no restriction on x1, x2. Therefore the eigenvectors corresponding to −1 is given by

a





1
−2
0



+ b





0
−2
1



. (31)

Remark. Keep in mind that for an eigenvalue, its eigenvectors are not “several single vectors”, but a

collection of infinitely many vectors. As a consequence, there are more than one way to represent them.
For example, in the above we have shown that eigenvectors corresponding to −1 can be represented as

a





1
−2
0



+ b





0
−2
1



. (32)

with a, b arbitrary constants. The same set of vectors can also be writtn as

a





−1
2
0



+ b





−1
0
1



. (33)

To see that they indeed represent the same set of vectors, we check:

1. The former includes the latter: That is any vector in the form of the latter can be represented by
the former.





−1
2
0



= (−1)





1
−2
0



,





−1
0
1



= (−1)





1
−2
0



+





0
−2
1



. (34)

2. The latter includes the former:




1
−2
0



= (−1)





−1
2
0



,





0
−2
1



= (−1)





−1
2
0



+





−1
0
1



. (35)

Now we turn to the eigenvalue 8. We need to solve




−5 2 4
2 −8 2
4 2 −5









x1

x2

x3



=





0
0
0



. (36)

We use Gaussian elimination:




−5 2 4 0
2 −8 2 0
4 2 −5 0



 � 



−5 2 4 0
1 −4 1 0
4 2 −5 0



 (Simplify the 2nd row)� 



1 −4 1 0
−5 2 4 0
4 2 −5 0



 (Switch 1st and 2nd row)� 



1 −4 1 0
0 −18 9 0
0 18 −9 0



 (first row ×5 add to 2nd; ×(−4) add to 3rd)� 



1 −4 1 0
0 −18 9 0
0 0 0 0



� 



1 −4 1 0
0 −2 1 0
0 0 0 0



.
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So the system for x1, x2, x3 is equivalent to

x1− 4x2 + x3 = 0 (37)

−2x2 + x3 = 0 (38)

Represent x1, x2 by x3:

x1 = x3 (39)

x2 =
1

2
x3. (40)

This gives




x1

x2

x3



=







x3
x3

2

x3






= x3





1
1/2
1



. (41)

So the eigenvectors corresponding to 8 are

a





1
1/2
1



 (42)

where a is an arbitrary number.

Advanced

Problem 5. Prove the basic properties of convolution:

• f∗g = g∗f ;

• f∗(g1 + g2) = f∗g1 + f∗g2;

• (f∗g)∗h = f∗(g∗h);

• f∗0 = 0∗f =0.

Proof.

• f∗g = g∗f . Recall definition:

f∗g =

∫

0

t

f(t− τ) g(τ ) dτ . (43)

Now do the change of variable:

t′ = t− τ� dτ =−dt′ (44)

and the integral becomes

∫

0

t

f(t− τ) g(τ ) dτ =

∫

t

0

f(t′) g(t− t′)(−dt′)=

∫

0

t

g(t− t′) f(t′) dt′ = g∗f. (45)

• We have

f∗(g1 + g2) =

∫

0

t

f(t − τ ) [g1(τ) + g2(τ )] dτ =

∫

0

t

f(t − τ) g1(τ) dτ +

∫

0

t

f(t − τ) g2(τ) dτ =

f∗g1 + f∗g2. (46)

• Use definition:

(f∗g)∗h =

∫

0

t

(f∗g)(t− τ) h(τ) dτ

=

∫

0

t
[
∫

0

t−τ

f(t− τ − s)g(s) ds

]

h(τ ) dτ

=

∫

0

t ∫

0

t−τ

f(t− τ − s) g(s)h(τ) ds dτ. (47)

As we would like to pair g and h together, we have to write f as f(t− t′). So introduce t′ = s + τ in the
inner integral – Thus ds = dt′. Then we have

∫

0

t
[
∫

0

t−τ

f(t− τ − s)g(s) ds

]

h(τ ) dτ =

∫

0

t
[
∫

τ

t

f(t− t′) g(t′− τ ) dt′
]

h(τ) dτ

=

∫

0

t ∫

τ

t

f(t− t′) g(t′− τ ) h(τ ) dt′ dτ. (48)
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Now we switch the order of the integration. The domain of the integration is 0<τ <t′<t. So t′ runs from

0 to t while τ from 0 to t′. Therefore

∫

0

t ∫

τ

t

f(t− t′) g(t′− τ) h(τ) dt′ dτ =

∫

0

t
[

∫

0

t′

f(t− t′) g(t′− τ) h(τ ) dτ

]

dt′

=

∫

0

t

f(t− t′)

[

∫

0

t′

g(t′− τ) h(τ) dτ

]

dt′

=

∫

0

t

f(t− t′) (g∗h)(t′) dt′

= f∗(g∗h). (49)

• This one is trivial:

f∗0 =

∫

0

t

f(t− τ ) 0 dτ = 0. (50)

Note that, all the above can be easily proved by the property L{f∗g} = L{f }L{g}. However, implicit in that

approach is the assumption that L−1{L{f }}= f whose proof is actually not easy. �

Challenge

Problem 6. Derive the formula L−1{e−as F (s)}= f(t− a) u(t− a) using convolution.

Proof. We have

L−1{e−as F (s)} = L−1{e−as}∗L−1{F (s)}

= δ(t− a)∗f(t)

=

∫

0

t

f(t− τ ) δ(τ − a) dt′

= f(t− a) u(t− a).

The last step follows from the following observation: When t < a, τ − a < 0 and therefore in the integral

δ(t′− a) = 0. �

Problem 7. Recall that we can write any single linear homogeneous equation of order n into a 1st order system

consisting of n equations. Show that the Wronskian of the latter is the same as the Wronskian of the former.

Proof. Let the n-th order equation be

y(n) + p1(t) y(n−1) +
 + pn(t) y = 0. (51)

It can be written into a system of n first order equations

ẋ =P (t) x (52)

through setting

x1 = y, x2 = y ′,	 , xn = y(n−1), x =





x1�
xn



, P (t)=













0 1 0 
 0
0 0 1 


1
−pn(t) −pn−1(t) −pn−2(t) 
 −p1(t)













(53)

The Wronskian for the n-th order equation reads:

det











y1 
 yn

y1
′ yn

′�  �
y1
(n−1) 
 yn

(n−1)











(54)
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which becomes the Wronskian for the system after identifying

x
(i) =











yi

yi
′�

yi
(n−1)











. (55)

�

Problem 8. Let W be the Wronskian of n solutions x
(1),	 , x(n) to the system

ẋ1 = p11(t) x1 +
 + p1n(t) xn (56)� � �
ẋn = pn1(t) x1 +
 + pnn(t) xn. (57)

Prove that
dW

dt
= (p11(t) +
 + pnn(t)) W. (58)

Proof. From properties of determinants we have

d

(

det







x1
(1) 
 x1

(n)�  �
x

n

(1) 
 x
n

(n)







)

dt
=det













ẋ1
(1) 
 ẋ1

(n)

x2
(1) 
 x2

(n)
xn

(1) 
 xn
(n)













+
 + det







x1
(1) 
 x1

(n)�  �
ẋn

(1) 
 ẋn
(n)






(59)

Here we have used the following property: The derivative of a determinant is the sum of n determinants, each

obtained by putting derivative on one single row (or one single column). This can be proved by using the ultimate
definition of determinants:

det (M) =
∑

σ∈All permutations of {1,	 ,n}

(sign of σ) m1σ(1)
mnσ(n). (60)

or through definition of derivative (the limδ→0 one) and use the following property of determinants:

det





� �
a1 + b1 
 an + bn� � 

= det





� �
a1 
 an� � 

+ det





� �
b1 
 bn� � 

 (61)

Now we have

ẋ1
(1) = p11(t)x1

(1) + p12(t)x2
(1) +
 ;
 ; x1

(n) = p11(t) x1
(n) +
 + p1n(t) xn

(n)
. (62)

Substituting into the first determinant and use the property

det





� �
a1 + b1 
 an + bn� � 

= det





� �
a1 
 an� � 

+ det





� �
b1 
 bn� � 

 (63)

we have

det













ẋ1
(1) 
 ẋ1

(n)

x2
(1) 
 x2

(n)
xn

(1) 
 xn
(n)













= det













p11(t) x1
(1) 
 p11(t) xn

(n)

x2
(1) 
 x2

(n)
xn

(1) 
 xn
(n)













+det













p12(t)x2
(1) 
 p12(t)x2

(n)

x(1) 
 x2
(n)

xn
(1) 
 xn

(n)













+Terms similar to the 2nd one. (64)

Now using the following property: If a matrix has one row a multiple of another, then the determinant is 0, we
see that only the first one is not 0.

But the first one is simply

det













p11(t) x1
(1) 
 p11(t) xn

(n)

x2
(1) 
 x2

(n)
xn

(1) 
 xn
(n)













= p11(t) det







x1
(1) 
 x1

(n)�  �
xn

(1) 
 xn
(n)






= p11(t)W. (65)
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Dealing with the rest similarly, we reach

dW

dt
= (p11(t) +
 + pnn(t)) W. (66)

Remark. It’s interesting that if we put derivative on each column and write

d

(

det







x1
(1) 
 x1

(n)�  �
x

n

(1) 
 x
n

(n)







)

dt
= det

(

ẋ
(1) 	 x

(n)
)

+
 + det
(

x
(1) 
 ẋ

(n)
)

(67)

and then use ẋ
(1)=P (t) x

(1) and so on, we seem to get stuck. The philosophical reason for this difference between

the row-by-row approach and column-by-column approach seems to be that, when doing the row-by-row approach

we are using the fact that x
(1),	 ,x(n) are all solutions in each determinant, while when in the column-by-column

approach, in each determinant in the right hand side, we only take advantage of one x
(i) being a solution. �
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