MATH 334 FALL 2011 HOMEWORK 1 SOLUTIONS

Basic

Problem 1. Go to http://www.math.rutgers.edu/~sontag/JODE/JOdeApplet.html, plot the slope fields of the following equations, and then imagine what the integral curves should look like.

a)
$$y' = 3x - 5y$$
;

b)
$$\dot{x} = (x - 2t)(x + t);$$

c)
$$\frac{dy}{dx} = \ln|x - y|$$
 (type "ln(abs(x-y))")

Problem 2. Check solutions.

a)
$$y = C_1 e^{-2x} + C_2 e^x + \sin 3x$$
 solves

$$y'' + y' - 2y = -11\sin 3x + 3\cos 3x. \tag{1}$$

b)
$$y = x^3$$
 solves

$$x^2y'' - xy' - 3y = 0. (2)$$

Problem 3. Solve the following differential equations.

a)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^x \sin x;$$

b)
$$\dot{y} = t \sin t$$
;

c)
$$3y^2y' = x^2$$
.

Solution.

a) Evaluate

$$\int e^x \sin x \, dx = \int \sin x \, de^x$$

$$= e^x \sin x - \int e^x \, d\sin x$$

$$= e^x \sin x - \int \cos x \, e^x \, dx$$

$$= e^x \sin x - \int \cos x \, de^x$$

$$= e^x \sin x - e^x \cos x + \int e^x \, d\cos x$$

$$= e^x \sin x - e^x \cos x - \int e^x \sin x \, dx.$$
(3)

We have obtained:

$$\int e^x \sin x \, \mathrm{d}x = e^x \sin x - e^x \cos x - \int e^x \sin x \, \mathrm{d}x \tag{4}$$

which means

$$\int e^x \sin x \, \mathrm{d}x = \frac{1}{2} \left(e^x \sin x - e^x \cos x \right) \tag{5}$$

and the solution is given by

$$y = \frac{1}{2} (e^x \sin x - e^x \cos x) + C.$$
 (6)

b) Evaluate

$$\int t \sin t \, dt = \int t \, d(-\cos t)$$

$$= -t \cos t + \int \cos t \, dt$$

$$= -t \cos t + \sin t.$$
(7)

So the solution is given by

$$y = -t\cos t + \sin t + C. \tag{8}$$

c) Notice that the $3y^2y'=(y^3)'$. So the equation becomes

$$(y^3)' = x^2 \Longrightarrow y^3 = \frac{1}{3}x^3 + C.$$
 (9)

The formula is implicit.

Intermediate

Problem 4. Find the values of α such that $e^{\alpha x}$ solves

$$y'' + 2y' + 4y = 0. (10)$$

Solution. Substitute $y = e^{\alpha x}$. We have

$$y' = \alpha e^{\alpha x}, \qquad y'' = \alpha^2 e^{\alpha x}. \tag{11}$$

So the equation becomes

$$(\alpha^2 + 2\alpha + 4)e^{\alpha x} = 0 \tag{12}$$

which leads to

$$\alpha^2 + 2\alpha + 4 = 0. (13)$$

The solutions are

$$\frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times 4}}{2} = -1 \pm \sqrt{3} i. \tag{14}$$

Problem 5. Find the values of r such that x^r solves

$$x^2y'' + 6xy' + 4y = 0. (15)$$

Solution. Substitute $y = x^r$ we get

$$x^{2} r (r-1) x^{r-2} + 6 x r x^{r-1} + 4 x^{r} = 0$$
(16)

which simplifies to

$$[r(r-1) + 6r + 4] x^{r} = 0 (17)$$

so

$$r^2 + 5r + 4 = 0 \Longrightarrow r_1 = -4, r_2 = -1.$$
 (18)

Advanced

Challenge

Answers

Problem 3:

a)
$$y = \frac{1}{2} (e^x \sin x - e^x \cos x) + C$$
.

b)
$$y = -t\cos t + \sin t + C$$
.

c)
$$y^3 = \frac{1}{3}x^3 + C$$
.

Problem 5: $-1 \pm \sqrt{3} i$.

Problem 6. -4, -1.