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1. A Quick Tour via An Example.

1.1. Introduction.
Right after the invention of calculus, differential equations replaced algebraic equations (which in turn

replaced counting) as the major tool in mathematically modeling everything. A single differential equation
(also called “scalar differential equation”) is a mathematical model of the time-evolution/spatial variation
of one single substance (can be population of a single species, amount of a single chemical, etc.); On the
other hand, a system of differential equations models the time-evolution of more than one quantities. One
example is Newton’s second law:

d2

dt2
x =m a (1)

which looks like a single equation but is actually a system because both x and a has more than one com-
ponents. Traditionally, systems of ordinary differential equations arise from study of mechanics. Modern
examples also abound, especially from biology, sociology, economics, etc.

The general form of a system involving n unknown functions is

ẋ1 = f1(x1,	 , xn) (2)

ẋ2 = f2(x1,	 , xn) (3)�
ẋn = fn(x1,	 , xn) (4)

where the evolution of n quantities are described. Such a system is usually referred to as an n × n first
order system.

Remark 1. When n =2 or 3, x, y (respectively x, y, z) are often used instead of x1,	 , xn.

When all f1, 	 , fn are linear in their variables x1, 	 , xn, the system is called linear, otherwise it’s
called nonlinear. So an n×n first order linear system has the general form

ẋ1 = a11(t)x1 +
 + a1n(t)xn + g1(t) (5)�
ẋn = an1(t)x1 +
 + ann(t)xn + gn(t). (6)



If furthermore all aij(t) are constants, that is

ẋ1 = a11x1 +
 + a1n xn + g1(t) (7)�
ẋn = an1 x1 +
 + ann xn + gn(t). (8)

The system is said to have “constant coefficients”. As usual, when g1(t) ≡ 
 ≡ gn(t) = 0, the above linear
systems are called “homogeneous”.

Remark 2. In almost all practical cases, the first order system will be nonlinear. There is no systematic
way to solve all general nonlinear system. In fact, even for n × n first order linear system, no simple for-
mula exists (of course unless n = 1, which can be solved through application of appropriate integrating fac-
tors). Only linear systems with constant coefficients enjoy good formulas for solutions.

Nevertheless, as we will see soon, one important way to understand the general nonlinear system is to
derive from it one or more related linear, constant-coefficient systems. Once a good understanding is
reached for these constant-coefficient systems, the behaviors of the solutions to the original nonlinear
problem often can be obtained.

Note. As this is a quick introduction, we will avoid using matrix theory. As a consequence, we will not
be able to deal efficiently with systems bigger than 2 × 2. We will focus on one particular 2 × 2 system,
introduced below.

1.2. The predator-prey model.
Consider two species of animals. Let x(t), y(t) denote their population. The changes in population size

with time can then be modeled by the 2× 2 system

ẋ = f(x, y) x (9)

ẏ = g(x, y) y. (10)

where f(x, y) and g(x, y) are the “rates of change”.
Now let’s consider the simplest possible case. First imagine that there is no y. Then the most naïve

evolution model for x is

ẋ = a x (11)

where a is a constant.
Next consider adding the effect of y. The simplest model for the effect of y on x is b x y where b is a

constante rate, and x y models the “interaction” between two species.
With these considerations we reach the following 2× 2 system:

ẋ = a x+ b x y =(a + b y)x (12)

ẏ = c y + d x y =(c + d x) y. (13)

As we will see, different natural phenomena correspond to different signs of a, b, c, d.

Example 3. (Competitive Hunters) In this scenario both x, y are predators hunting on some common
preys. Thus they compete with each other.

To model this case, we notice:

• If only one species is present, its population will grow. This means a > 0, c > 0.

• The effect of one species on the other is negative. This means b < 0, d < 0.

Example 4. (Predator-Prey) In this scenario x is the population of the prey while y is the population
of the predator. We notice:

• If there is no predator, the population of the prey should grow. Therefore a > 0;

• If there is no prey, the population of the predator should decrease. Therefore c < 0;

• The effect of the predator on the prey is negative: b < 0;



• The effect of the prey on the predator is positive: d > 0.

We will study the predator-prey model in more detail in the following. For our own convenience, we use a
different set of letters to denote various rates:

ẋ = (b− p y)x (14)

ẏ = (r x− d) y. (15)

Note that all four constants b, p, r, d are positive.
This is a classical 2 × 2 first order nonlinear system known as Lotka-Volterra system. It is said that

Lotka (or Volterra, can’t remember)’s son-in-law is the manager of a pond and their after-dinner chats
lead to the above model.

1.3. Dynamics in one dimension.
The Lotka-Volterra system can be integrated1. However as we are trying to understand the general

method, we pretend that it cannot.

For systems of nonlinear equations, usually we will not be able to solve them quantitatively, in partic-
ular we won’t be able to get explicit formulas. As a consequence, “solving” a system is broken into two
parts:

• (taks for human) Understand the rough dynamics of the solutions. In particular, if we plot the
curves (x(t), y(t)) in the plane2, what would these curves look like? Note that the following impor-
tant information is lost: How do x, y depend on t.

• (task for human+computer) Find to high precision the quantitative relations between x, y, and t.

We won’t have time to discuss the second task. For the first task, the general approach is so-called “lin-
earization”.3

To quickly see how the above method works, let’s re-consider the scalar case. For example,

ẋ = (x− 1) (3− x). (17)

By now of course we know that this equation is “separable” and can therefore be solved explicitly. We also
know that the rough behavior of solutions can be obtained through the following steps (without solving
the equations):

1. Find constant solutions: ẋ = 0� x = 1, x = 3. These constant solutions divide the t-x plane into
three parts;

2. Discuss the sign of ẋ in each part and obtain the asymptotic behavior of solutions.

The “linearization” method is in spirit similar to the second approach, but with an important difference:
We will make the t-dependence implicit. More specifically, we will just look at the x-axis, and treat the
equation as describing the movement of a particle: a solution x(t) means at time t the particle is at the
position x(t).

Now we first find out those positions where the particle is stationary – once it gets there, it will stay
there. Clearly this is characterized by ẋ = 0, or

(x− 1) (3− x)= 0. (18)

Thus we identified the equilibrium points (constant solutions): x= 1 and x =3.

1. Note that
dy

dx
=

ẏ

ẋ
=

(r x− d) y

(b− p y) x
(16)

which, although looks ugly, is actually separable.

2. So-called “phase plane”.

3. Note that for this particular problem at our hand, after we have written it into the
dy

dx
=
 form, we can plot the solu-

tion in the phase plane using methods discussed earlier, thus by-passing linearization. But the point here is, linearization still
works for bigger systems.



Next we linearize around them. The idea is as follows. We have known that if the particle starts at
x = 1 or 3, it will stay there forever. Now what if the particle starts not exactly at 1 or 3, but very close
to them? Can we say anything without solving the full nonlinear equation?

• Close to x= 1. Set x = 1+ X where X is small. Substituting into the equation we have

Ẋ = X (2−X)= 2X −X2
≈ 2X. (19)

Thus we see that if X > 0, X gets more positive; If X < 0, X gets more negative. Therefore parti-
cles start close to x = 1 are moving away from it. In mathematical language, the equilibrium x = 1
is “unstable” – although a particle can stay at x = 1 forever, once it is pushed a little bit away, it
will run away.

• Close to x= 3. Set x = 3+ X where X is small. Substituting into the equation we have

Ẋ = (X +2) (−X)=− 2 X −X2
≈− 2X. (20)

We see that the behavior is the opposite, particles starting from close to x = 3 get even closer at
later time. x =3 is called a “stable” equilibrium.

Now we get the following rough picture of the dynamics:

1 3

From this picture one naturally guess that the dynamics should be:

• Particles start at x =1 and x= 3 stay put;

• Particles start to the left of x= 1 moves toward −∞;

• Particles start to the right of x = 1 (except for those starts at x= 3) moves toward x= 3.

Fortunately, existence and uniqueness theory guarantees that the above guess is indeed true.

1.4. Linearization of the predator-prey model.
Now back to the Lotka-Volterra Model:

ẋ = (b− p y)x (21)

ẏ = (r x− d) y. (22)

Let’s “linearize” it.

1. First we have to identify equilibrium points. Setting ẋ = ẏ = 0 we reach

(b− p y)x = 0 (23)

(r x− d) y = 0 (24)

There are two solutions: (0, 0), (d/r, b/p).

2. Linearize around equilibria.

• Around (0, 0). We write x = 0 + X, y = 0 + Y where X, Y are very small. Substituting into
the equations, we have

Ẋ = (b− p Y )X = b X − pX Y ≈ bX. (25)

Ẏ = (rX − d)Y = r X Y − d Y ≈− d Y . (26)

• Around (d/r, b/p). We write x = d/r + X, y = b/p + Y where X, Y are very small. Substi-
tuting into the equations, we have

Ẋ = (− p Y ) (d/r + X)=−
d p

r
Y − p X Y ≈−

d p

r
Y ; (27)

Ẏ = (r X) (b/p + Y )=
b r

p
X + rX Y ≈

b r

p
X. (28)



3. Analyze the dynamics around equilibria. First note that, for the model to make sense, we need all
parameters to be positive.

• Around (0, 0), we need to solve the system

Ẋ = b X ; Ẏ =− d Y . (29)

It is easy as the system is de-coupled. The solution is

X =X0 ebt, Y = Y0 e−dt. (30)

We can also see the rough dynamics without solving the equations: If we start along Y axis,
we will move toward the origin; If we start along X axis, we move away.

• Around (d/r, b/p) the situation is more complicated. We have

Ẋ =−
d p

r
Y ; Ẏ =

b r

p
X. (31)

Not de-coupled anymore. But we still can solve it by writing it into one single second order

equation. Another way is to plot the behavior of
(

Ẋ , Ẏ
)

in each quadrant.

4. Assemble things together. Here the situation is much more complicated than the 1D case. Consult
books on dynamical systems if interested.

2. Solving First Order Linear Systems With Constant Coefficients.

From the above example we see that it is crucial to be able to solve general 2 × 2 constant-coefficient
systems.

ẋ = a x+ b y (32)

ẏ = c x+ d y. (33)

with general initial values

x(0) =x0; y(0)= y0. (34)

2.1. What do the solutions look like?.

But how should we solve it? Let’s work through an example.

Example 5. Solve the 2× 2 system

ẋ = 3x +2 y (35)

ẏ = x+ 4 y. (36)

with x(0)= 3, y(0)= 2.

Recall what we have learned so far:

• For first order scalar equations: Separation of variables; Integrating factors; Transformations;

• For constant-coefficient equations: Apply formulas; Laplace transform;

• For variable-coefficient equations: Series method.

It turns out that many of these can actually be applied here.

Transform to scalar equation.

We write x =− 4 y + ẏ and substitute into the first equation:

(− 4 y + y ′)
′ =3 (− 4 y + y ′)+ 2 y� y ′′

− 7 y ′+ 10 y =0. (37)

Series method.



Write x =
∑

n=0
∞

an tn, y =
∑

n=0
∞

bn tn. Substitute into the equations, we have

∑

n=0

∞

(n + 1) an+1 tn =
∑

n=1

∞

n an tn−1 =
∑

n=0

∞

(3 an + 2 bn) tn (38)

∑

n=0

∞

(n +1) bn+1 tn =
∑

n=1

∞

n bn tn−1 =
∑

n=0

∞

(an +4 bn) tn. (39)

We obtain the recurrence relation

an+1 =
3 an + 2 bn

n+ 1
; bn+1 =

an +4 bn

n + 1
. (40)

It’s not clear how to solve an, bn.4

Laplace transform.
Transforming the equation, we obtain

s X = 3 X + 2Y + 3 (41)

s Y = X +4 Y +2 (42)

This leads to

(s− 3)X − 2 Y = 3 (43)

−X + (s− 4) Y = 2 (44)

Solving for X, Y using Cramer’s rule we obtain

X =
det

(

3 − 2
2 s − 4

)

det
(

s − 3 − 2
− 1 s − 4

)=
3 s

s2− 7 s + 10
; Y =

det
(

s − 3 3
− 1 2

)

det
(

s − 3 − 2
− 1 s − 4

)=
2 s− 3

s2− 7 s + 10
. (45)

Taking inverse Laplace transform, we get the solution.

Remark 6. If our goal is to find the solution to this particular problem, the first method works best; If
our goal is to develop a general theory which will finally include the variable coefficient case, the series
method approach is in fact more revealing.

2.2. What can happen in the general case.
Now consider the general case:

ẋ = a x+ b y (46)

ẏ = c x+ d y. (47)

with general initial values

x(0) =x0; y(0)= y0. (48)

Taking Laplace transform we have

s X = a X + b Y + x0 (49)

s Y = c X + d Y + y0 (50)

which gives

(s− a)X − b Y = x0 (51)

− c X + (s− d)Y = y0 (52)

and consequently

X =
det

(

x0 − b

y0 s − d

)

det
(

s − a − b

− c s − d

); Y =
det

(

x0 − b

y0 s − d

)

det
(

s − a − b

− c s − d

). (53)

4. Unless you know what a “matrix exponential” is.



From this it is clear that there are three cases, depending on the form of the roots of det
(

s − a − b

− c s − d

)

= 0.

1. Two distinct real roots r1, r2. In this case the solution will involve er1t and er2t.

2. One double root r. In this case the solution will involve ert and t ert.

3. A pair of complex roots α± β i. In this case the solution will involve eαt cos β t and eαt sin β t

We will not solve for the solutions here, since we will see that our understanding so far can lead to a
simple way of solving such systems.

2.3. Two distinct real roots r1, r2.
In this case the solution took the form

x = ξ1 er1t + ξ2 er2t, y = η1 er1t + η2 er2t (54)

or more compactly in the vector form
(

x

y

)

=

(

ξ1

η1

)

er1t +

(

ξ2

η2

)

er2t. (55)

Substituting into the equation, and obtain

ξ1 r1 er1t + ξ2 r2 er2t = a ξ1 er1t + a ξ2 er2t + b η1 er1t + b η2 er2t (56)

η1 r1 er1t + η2 r2 er2t = c ξ1 er1t + c ξ2 er2t + d η1 er1t + d η2 er2t (57)

which leads to

(r1− a) ξ1− b η1 = 0 (58)

− c ξ1 + (r1− d) η1 = 0 (59)

and

(r2− a) ξ2− b η2 = 0 (60)

− c ξ2 + (r2− d) η2 = 0 (61)

Naïvely one may conclude that ξ1 = η1 = 1, but remember that r1 is such that det
(

r1− a − b

− c r1− d

)

= 0, which

makes the two equations into one – as long as ξ1, η1 satisfy one equation, they also satisfy the other.

Remark 7. Those who know linear algebra should have already recognized that r1 is an “eigenvalue” of
the matrix

(

a b

c d

)

and
(

ξ1

η1

)

is the corresponding “eigenvector”.

Remark 8. Note that two arbitrary constants are involved. See example below.

Example 9. Solve

ẋ = 3 x− 2 y (62)

ẏ = 2 x− 2 y. (63)

Solution. First compute

det

(

r − 3 2
− 2 r + 2

)

= r2
− r − 2� r1,2 = 2,− 1. (64)

Thus we know that
(

x

y

)

=

(

ξ1

η1

)

e2t +

(

ξ2

η2

)

e−t. (65)

• Compute ξ1, η1. We need to solve

(2− 3) ξ1 +2 η1 = 0 (66)

− 2 ξ1 +(2+ 2) η1 = 0 (67)



which gives
(

ξ1

η1

)

=C1

(

2
1

)

. (68)

• Compute ξ2, η2. We need to solve

(− 1− 3) ξ2 + 2 η2 = 0 (69)

− 2 ξ2 + (− 1 +2) η2 = 0 (70)

which leads to
(

ξ2

η2

)

=C2

(

1
2

)

. (71)

So the general solution is
(

x

y

)

= C1

(

2
1

)

e2t +C2

(

1
2

)

e−t. (72)

2.4. More complicated cases.

Repeated roots r1 = r2 = r.

In this case
(

x

y

)

=

(

ξ1

η1

)

ert +

(

ξ2

η2

)

t ert. (73)

Substituting into the equations, we reach

r ξ1 ert + ξ2 ert + r ξ2 t ert = a ξ1 ert + a ξ2 t ert + b η1 ert + b η2 t ert (74)

r η1 ert + η2 ert + r η2 t ert = c ξ1 ert + c ξ2 t ert + d η1 ert + d η2 t ert (75)

As ert and t ert are linearly independent, we must have

r ξ1 + ξ2 = a ξ1 + b η1 (76)

r η1 + η2 = c ξ1 + d η1 (77)

and

r ξ2 = a ξ2 + b η2 (78)

r η2 = c ξ2 + d η2. (79)

Therefore ξ1,2 and η1,2 are determined as follows.

• First determine ξ2, η2:

(r − a) ξ2− b η2 = 0 (80)

− c ξ2 + (r − d) η2 = 0. (81)

• Then determine ξ1, η1:

(r − a) ξ1− b η1 = − ξ2 (82)

− c ξ1 + (r − d) η1 = − η2. (83)

Example 10. Solve

ẋ = 3x− 4 y (84)

ẏ = x− y. (85)

Solution. First compute

det

(

r − 3 4
− 1 r + 1

)

= r2
− 2 r + 1� r1,2 =1. (86)



The solution is therefore
(

x

y

)

=

(

ξ1

η1

)

et +

(

ξ2

η2

)

t et. (87)

• Solve ξ2, η2.

(1− 3) ξ2 + 4 η2 = 0 (88)

− ξ2 + (1 + 1) η2 = 0. (89)

This gives
(

ξ2

η2

)

=C2

(

2
1

)

. (90)

• Solve ξ1, η1.

− 2 ξ1 +4 η1 = (1− 3) ξ1 + 4 η1 = − 2C2 (91)

− ξ1 + 2 η1 =− ξ1 + (1 + 1) η1 = −C2. (92)

This leads to

ξ1 = 2 η1 + C2 (93)

which gives
(

ξ1

η1

)

=

(

2 C1 + C2

C1

)

. (94)

Putting things together, we have
(

x

y

)

=

(

2 C1 + C2

C1

)

et + C2

(

2
1

)

t et = C1

(

2
1

)

et + C2

[(

2
1

)

t et +

(

1
0

)

et

]

. (95)

A “degenerate” case (Thanks to Mr. Dahua Zeng for pointing this out).
In this “double root” case, sometimes weird things happen.

Example 11. Solve

ẋ = 3 x (96)

ẏ = 3 y (97)

Solution. The system is de-coupled so it is easy to get

(

x

y

)

=

(

C1 e3t

C2 e3t

)

. (98)

But we pretend we cannot do this and proceed in the “standard” way (it is now clear that something is
different – there is no t e3t term!). We compute

det

(

s− 3 0
0 s− 3

)

= (s− 3)
2� r =3 double root. (99)

Write
(

x

y

)

=

(

ξ1

η1

)

e3t +

(

ξ2

η2

)

t e3t. (100)

First solve ξ2, η2:

(3− 3) ξ2− 0 η2 = 0; 0 ξ2 + (3− 3) η2 =0. (101)

We see that any ξ2, η2 are solutions!
On the other hand, when we try to compute ξ1, η1, we face

0 ξ1 + 0 η1 = − ξ2 (102)

0 ξ1 + 0 η1 = − η2 (103)

It is clear that no solutions exist unless ξ2 = η2 = 0!



Remark 12. In our 2× 2 case, the above is actually the only situation where such things can happen5, so
it doesn’t cause any practical problem, as the system is de-coupled and x, y can be solved separately.
However, for the general n × n case, things are not so simple. As a consequence, attempting to give gen-
eral formulas in the n×n case without using the language of matrices is a pure waste of time.
Everything will become crystal clear as soon as one is familiar with matrices and in particular the so-
called “Jordan canonical form”.

Complex roots α ± β i.
In this case we have

(

x

y

)

=

(

ξ1

η1

)

eαt cosβ t +

(

ξ2

η2

)

eαt sinβ t. (110)

But the formulas get complicated. A better approach is to write
(

x

y

)

=

(

ξ1

η1

)

er1t +

(

ξ2

η2

)

er2t (111)

with r1,2 = α ± i β, following the formulas in the distinct roots case, and finally obtain real solutions
through separating real and imaginary parts.

Example 13. Solve

ẋ = 3x− 2 y (112)

ẏ = 4x− y. (113)

Solution. First solve the equation

det

(

r − 3 2
− 4 r +1

)

= 0 (114)

which is just

r2
− 2 r +5 = 0� r1,2 = 1± 2 i. (115)

Now we try to write the solution in the form
(

ξ1

η1

)

e(1+2i)t +

(

ξ2

η2

)

e(1−2i)t. (116)

• Solve ξ1, η1. They are solutions of

[(1+ 2 i)− 3] ξ1 + 2 η1 = 0 (117)

− 4 ξ1 + [(1 + 2 i)+ 1] η1 = 0 (118)

which simplifies to

− (1− i) ξ1 + η1 = 0 (119)

− 2 ξ1 +(1+ i) η1 = 0. (120)

5. More specifically, if a 2× 2 system is such that the standard procedure does not work, then it looks like

ẋ = a x (104)

ẏ = a y. (105)

To see this, just notice that for a general system

ẋ = a x + b y (106)

ẏ = c x + d y (107)

If det
(

s −a − b

− c s − d

)

has repeated roots and the ξ2, η2 equation

(s− a) ξ2− b η2 = 0 (108)

− c ξ2 + (s− d) η2 = 0 (109)

is satisfied by any ξ2, η2, then the coefficients s− a,− b,− c, s − d must all be 0 and a = d.



Using the first equation we get η1 = (1− i) ξ1. Therefore

(

ξ1

η1

)

=C1

(

1
1− i

)

(121)

where C is an arbitrary constant.

• Solve ξ2, η2. They are solutions of

[(1− 2 i)− 3] ξ2 + 2 η2 = 0 (122)

− 4 ξ2 + [(1− 2 i)+ 1] η2 = 0 (123)

which simplifies to

− (1 + i) ξ2 + η2 = 0 (124)

− 2 ξ2 + (1− i) η2 = 0 (125)

yielding
(

ξ2

η2

)

= C2

(

1
1+ i

)

. (126)

Now the solution is given by
(

x

y

)

= C1

(

1
1− i

)

e(1+2i)t + C2

(

1
1 + i

)

e(1−2i)t

= et

(

C1 (cos 2 t + i sin2 t)+ C2 (cos 2 t− i sin 2 t)
C1 (1− i) (cos 2 t + i sin 2 t)+ C2 (1+ i) (cos 2 t− i sin 2 t)

)

= et

(

(C1 +C2) cos 2 t+ i (C1−C2) sin 2 t

(C1 + C2) (cos 2 t + sin 2 t)+ i (C2−C1) (cos 2 t− sin 2 t)

)

= et (C1 +C2)

(

cos 2 t

cos 2 t + sin 2 t

)

+ i et (C1−C2)

(

sin 2 t

sin 2 t− cos 2 t

)

. (127)

As C1, C2 are arbitrary constants, C1
′ = C1 + C2, C2

′ = C1 − C2 are also arbitrary constants. Therefore the
real solution is given by

(

x

y

)

= C1
′ et

(

cos 2 t

cos 2 t + sin 2 t

)

+ C2
′ et

(

sin 2 t

sin 2 t− cos 2 t

)

. (128)


