Math 3342010 Midterm 1

NAME

ID \#

Signature

- Only pen/pencil/eraser are allowed. Scratch papers will be provided.
- Please write clearly, with intermediate steps to show sufficient work even if you can solve the problem in "one go". Otherwise you may not receive full credit.
- Please box, underline, or highlight the most important parts of your answers.

Problem	Points	Score
1	25	
2	25	
3	15	
4	20	
5	15	
6		
Total (extra)	$100+5$	

Problem 1. (25 pts) Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(-1)=2, \quad y^{\prime}(-1)=1 \tag{1}
\end{equation*}
$$

Solution. This is problem 3.4 14.

- (5 pts) Characteristic equation:

$$
\begin{equation*}
r^{2}+4 r+4=0 \tag{2}
\end{equation*}
$$

- (5 pts) Solutions:

$$
\begin{equation*}
r_{1}=r_{2}=-2 \tag{3}
\end{equation*}
$$

- (4 pts) General solution

$$
\begin{equation*}
y=C_{1} e^{-2 t}+C_{2} t e^{-2 t} \tag{4}
\end{equation*}
$$

- (6 pts) Find C_{1}, C_{2} using initial conditions:
- (2 pts) $y(-1)=2$ gives

$$
\begin{equation*}
C_{1} e^{2}-C_{2} e^{2}=2 \tag{5}
\end{equation*}
$$

- (2 pts) Compute

$$
\begin{equation*}
y^{\prime}=-2 C_{1} e^{-2 t}-2 C_{2} t e^{-2 t}+C_{2} e^{-2 t} \tag{6}
\end{equation*}
$$

- $(2 \mathrm{pts}) y^{\prime}(-1)=1$ gives

$$
\begin{equation*}
-2 C_{1} e^{2}+3 C_{2} e^{2}=1 \tag{7}
\end{equation*}
$$

- (2 pts) Solve the equations. Multiply the first by 2 and add to the 2 nd , we get $C_{2}=5 e^{-2}$. then $C_{1}=7 e^{-2}$.
- (3 pts) Solution is given by

$$
\begin{equation*}
y=7 e^{-2(t+1)}+5 t e^{-2(t+1)} \tag{8}
\end{equation*}
$$

Problem 2 (25 pts) Find the general solution

$$
\begin{equation*}
y^{\prime}+3 y=t+e^{-2 t} \tag{9}
\end{equation*}
$$

Solution. This is Problem 2.11.
It is a linear first order equation.

- $\quad(5 \mathrm{pts}) . p(t)=3$, so $e^{\int p}=e^{3 t}$.
- (2 pts). We have

$$
\begin{equation*}
\left(e^{3 t} y\right)^{\prime}=e^{3 t} t+e^{t} \tag{10}
\end{equation*}
$$

- (3 pts). This gives

$$
\begin{equation*}
e^{3 t} y=\int e^{3 t} t \mathrm{~d} t+\int e^{t} \mathrm{~d} t+C \tag{11}
\end{equation*}
$$

- (2 pts) Calculate

$$
\begin{equation*}
\int e^{t} \mathrm{~d} t=e^{t} \tag{12}
\end{equation*}
$$

- (9 pts) Calculate $\int e^{3 t} t$.

$$
\begin{align*}
\int e^{3 t} t \mathrm{~d} t & =\int t \mathrm{~d}\left(\frac{1}{3} e^{3 t}\right) \quad(3 \mathrm{pts}) \tag{13}\\
& =\frac{t}{3} e^{3 t}-\int \frac{1}{3} e^{3 t} \mathrm{~d} t \tag{14}\\
& =\frac{t}{3} e^{3 t}-\frac{1}{9} e^{3 t} . \quad(3 \mathrm{pts}) \tag{15}
\end{align*}
$$

- (2 pts) We reach

$$
\begin{equation*}
e^{3 t} y=\frac{1}{3} t e^{3 t}-\frac{1}{9} e^{3 t}+e^{t}+C \tag{16}
\end{equation*}
$$

- (2 pts) The solution then is

$$
\begin{equation*}
y=\frac{1}{3} t-\frac{1}{9}+e^{-2 t}+C e^{-3 t} \tag{17}
\end{equation*}
$$

Solution 2. As the equation is linear, we can solve it by solving

$$
\begin{equation*}
y^{\prime}+3 y=0 \Longrightarrow \tilde{y} ; \quad y^{\prime}+3 y=t \Longrightarrow y_{p 1} ; \quad y^{\prime}+3 y=e^{-2 t} \Longrightarrow y_{p 2} \tag{18}
\end{equation*}
$$

and have

$$
\begin{equation*}
y=\tilde{y}+y_{p 1}+y_{p 2} \tag{19}
\end{equation*}
$$

- $\quad(9 \mathrm{pts})$ Solve $y^{\prime}+3 y=0$.
- (2 pts) Realize the need to solve $y^{\prime}+3 y=0$.
- (5 pts) Find the correct integrating factor $e^{3 t}$.
- (2 pts) Write down the general solution

$$
\begin{equation*}
\tilde{y}=C e^{-3 t} \tag{20}
\end{equation*}
$$

- $\quad(7 \mathrm{pts})$ Solve $y^{\prime}+3 y=t$.
- (2 pts) Realize the need to solve $y^{\prime}+3 y=t$.
- (2 pts) Guess $y=A t+B$.
- (2 pts) Finding out $A=1 / 3, B=-1 / 9$.
- (1 pt) Write down

$$
\begin{equation*}
y_{p 1}=\frac{t}{3}-\frac{1}{9} . \tag{21}
\end{equation*}
$$

- (7 pts$)$ Solve $y^{\prime}+3 y=e^{-2 t}$.
- (2 pts) Realize the need to solve $y^{\prime}+3 y=e^{-2 t}$.
- (2 pts) Guess $y=A e^{-2 t}$.
- $\quad(2 \mathrm{pts})$ Finding out $A=1$.
- (1 pt) Write down

$$
\begin{equation*}
y_{p 2}=e^{-2 t} \tag{22}
\end{equation*}
$$

- (2 pts) Write down the solution

$$
\begin{equation*}
y=C e^{-3 t}+\frac{t}{3}-\frac{1}{9}+e^{-2 t} \tag{23}
\end{equation*}
$$

Problem 3. (15 pts) Find the general solution for

$$
\begin{equation*}
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0 . \quad t>0 \tag{24}
\end{equation*}
$$

Solution. This is 3.336 .

- (2 pts) This is Euler equation.
- (5 pts) Guess $y=t^{r}$ to get the characteristic equation

$$
\begin{equation*}
r(r-1)+4 r+2=0 . \tag{25}
\end{equation*}
$$

- (4 pts) Solve

$$
\begin{equation*}
r_{1}=-1, \quad r_{2}=-2 \tag{26}
\end{equation*}
$$

- (4 pts) Write down

$$
\begin{equation*}
y=C_{1} t^{-1}+C_{2} t^{-2} \tag{27}
\end{equation*}
$$

Solution 2.

- (3 pts) Guess one solution t^{-1} or t^{-2}.
- (8 pts) Carry out reduction of order correctly. Note that you need to write the equation into

$$
\begin{equation*}
y^{\prime \prime}+\frac{4}{t} y^{\prime}+\frac{2}{t^{2}} y=0 \tag{28}
\end{equation*}
$$

before using the formula

$$
\begin{equation*}
y_{2}=y_{1} \int \frac{e^{-\int p}}{y_{1}^{2}} \tag{29}
\end{equation*}
$$

- (4 pts) Write down the solution.

Problem 4 (20 pts) Find the general solution:

$$
\begin{equation*}
y \mathrm{~d} x+\left(2 x y-e^{-2 y}\right) \mathrm{d} y=0 \tag{30}
\end{equation*}
$$

Solution. This is 2.628 .

- (2 pts) $M=y, N=2 x y-e^{-2 y}$.
- (2 pts) Check

$$
\begin{equation*}
\frac{\partial M}{\partial y}=1, \quad \frac{\partial N}{\partial x}=2 y \tag{31}
\end{equation*}
$$

$1 \neq 2 y$ so not exact!

- (2 pts). Need μ such that

$$
\begin{equation*}
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} \tag{32}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu \tag{33}
\end{equation*}
$$

- (1 pt) This is

$$
\begin{equation*}
y \frac{\partial \mu}{\partial y}-\left(2 x y-e^{-2 y}\right) \frac{\partial \mu}{\partial x}=(2 y-1) \mu . \tag{34}
\end{equation*}
$$

- (1 pts). Guess $\mu(x)$, not working. Guess $\mu(y)$.
- We have

$$
\begin{align*}
y \mu^{\prime} & =(2 y-1) \mu \tag{35}\\
\frac{\mu^{\prime}}{\mu} & =2-\frac{1}{y} \quad(1 \mathrm{pt}) \tag{36}\\
(\ln \mu)^{\prime} & =2 y-\ln y \tag{37}\\
\mu & =e^{2 y} / y \tag{38}
\end{align*}
$$

- (2 pts) Multiply the equation

$$
\begin{equation*}
e^{2 y} \mathrm{~d} x+\left(2 x e^{2 y}-1 / y\right) \mathrm{d} y=0 \tag{39}
\end{equation*}
$$

- (2 pts)

$$
\begin{equation*}
\frac{\partial u}{\partial x}=e^{2 y} \Longrightarrow u(x, y)=x e^{2 y}+g(y) \tag{40}
\end{equation*}
$$

- (2 pts)

$$
\begin{equation*}
\frac{\partial u}{\partial y}=2 x e^{2 y}+g^{\prime}(y)=2 x e^{2 y}-1 / y \Longrightarrow g^{\prime}(y)=-1 / y \Longrightarrow g=-\ln |y| \tag{41}
\end{equation*}
$$

- (1 pt) The solution is

$$
\begin{equation*}
x e^{2 y}-\ln |y|=C \tag{42}
\end{equation*}
$$

- (1 pt) Finally check $y=0$ as our multiplier is $e^{2 y} / y$. Rigorously speaking $y=0$ is a solution. But it's OK for this exam if you conclude $-1 \mathrm{~d} y=0$ is not satisfied by $y=0$.

Problem 5 (15 pts) Can $y=\sin \left(t^{2}\right)$ be a solution on an interval containing $t=0$ of an equation $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t) y=0$ with continuous coefficients? Explain your answer.

Solution. This is 3.216 .

- (1 pt) Plug $y=\sin \left(t^{2}\right)$ into the equation.
- Compute

$$
\begin{align*}
\left(\sin t^{2}\right)^{\prime} & =2 t \cos t^{2} \quad(2 \mathrm{pts}) \tag{43}\\
\left(\sin t^{2}\right)^{\prime \prime} & =2 \cos t^{2}-4 t^{2} \sin t^{2} \quad(2 \mathrm{pts}) \tag{44}
\end{align*}
$$

- (3 pts) Thus

$$
\begin{equation*}
2 \cos t^{2}-4 t^{2} \sin t^{2}+2 p(t) t \cos t^{2}+q(t) \sin t^{2}=0 \tag{45}
\end{equation*}
$$

- (5 pts) As p, q are continuous on an interval containing $0, p(0), q(0)$ are finite. Taking $t=0$ in the above we get

$$
\begin{equation*}
2-0+0+0=0 \tag{46}
\end{equation*}
$$

A contradiction!

- (2 pts) So the answer is No.

Problem 6 ($5 \mathbf{p t s}$) Assume that p and q are continuous and that the functions y_{1}, y_{2} are solutions of the differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on an open interval I. Prove that if y_{1} and y_{2} have maxima or minima at the same point in I, then they cannot be linearly independent over I.

Solution. This is 3.239 .

- (2 pts) Let x_{0} be the point. Then as y_{1} reaches maximum/minimum there, $y_{1}^{\prime}\left(x_{0}\right)=0$; Similarly $y_{2}^{\prime}\left(x_{0}\right)=0$.
- (2 pts) Compute the Wronskian:

$$
\begin{equation*}
W\left(y_{1}, y_{2}\right)\left(x_{0}\right)=y_{1}\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y_{1}^{\prime}\left(x_{0}\right) y_{2}\left(x_{0}\right)=0 \tag{47}
\end{equation*}
$$

- (1 pt$)$ Therefore y_{1}, y_{2} cannot be linearly independent.

