Math 334 A1 Homework 4 (Due Nov. 26 5pm)

- No "Advanced" or "Challenge" problems will appear in homeworks.

Basic Problems

Problem 1. (6.1.9) Find the Laplace transform of

$$
\begin{equation*}
f(t)=e^{a t} \cosh b t \tag{1}
\end{equation*}
$$

where $\cosh b t$ is defiend as $\left(e^{b t}+e^{-b t}\right) / 2$.
Solution. We have

$$
\begin{equation*}
f(t)=e^{a t}\left(\frac{e^{b t}+e^{-b t}}{2}\right)=\frac{1}{2} e^{(a+b) t}+\frac{1}{2} e^{(a-b) t} \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathcal{L}(f)(s)=\mathcal{L}\left\{\frac{1}{2} e^{(a+b) t}+\frac{1}{2} e^{(a-b) t}\right\}=\frac{1}{2} \mathcal{L}\left\{e^{(a+b) t}\right\}+\frac{1}{2} \mathcal{L}\left\{e^{(a-b) t}\right\}=\frac{1}{2}\left[\frac{1}{s-a-b}+\frac{1}{s-a+b}\right]=\frac{s-a}{(s-a)^{2}-b^{2}} \tag{3}
\end{equation*}
$$

The domain is such that $s>a+b$ and $s>a-b$ both hold, which can be written as $s>a+|b|$.
Problem 2. (6.2 1) Find the inverse Laplace transform of

$$
\begin{equation*}
F(s)=\frac{3}{s^{2}+4} \tag{4}
\end{equation*}
$$

Solution. Comparing with the transformation table we realize that

$$
\mathcal{L}^{-1}\{F\}=\frac{3}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+2^{2}}\right\}=\frac{3}{2} \sin 2 t
$$

Problem 3. (6.2 5) Find the inverse Laplace transform of

$$
\begin{equation*}
F(s)=\frac{2 s+2}{s^{2}+2 s+5} \tag{5}
\end{equation*}
$$

Solution. Comparing with the transformation table we realize that

$$
\begin{equation*}
\mathcal{L}^{-1}\{F\}=2 \mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+2^{2}}\right\}=2 e^{-t} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2^{2}}\right\}=2 e^{-t} \cos 2 t \tag{6}
\end{equation*}
$$

Problem 4. (6.2 8) Find the inverse Laplace transform of

$$
\begin{equation*}
F(s)=\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)} \tag{7}
\end{equation*}
$$

Solution. We use partial fractions:

$$
\begin{equation*}
F(s)=\frac{A}{s}+\frac{B s+C}{s^{2}+4}=\frac{A\left(s^{2}+4\right)+s(B s+C)}{s\left(s^{2}+4\right)}=\frac{(A+B) s^{2}+C s+4 A}{s\left(s^{2}+4\right)} \tag{8}
\end{equation*}
$$

Thus A, B, C are determined through

$$
\begin{equation*}
A+B=8 ; \quad C=-4 ; \quad 4 A=12 \tag{9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
A=3, \quad B=5, \quad C=-4 \tag{10}
\end{equation*}
$$

So

$$
\begin{align*}
\mathcal{L}^{-1}\{F\} & =\mathcal{L}^{-1}\left\{\frac{3}{s}+\frac{5 s-4}{s^{2}+4}\right\} \tag{11}\\
& =\mathcal{L}^{-1}\left\{\frac{3}{s}\right\}+5 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2^{2}}\right\}-2 \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+2^{2}}\right\} \tag{12}\\
& =3+5 \cos 2 t-2 \sin 2 t \tag{13}
\end{align*}
$$

Problem 5. (6.2 12) Use Laplace transform to solve

$$
\begin{equation*}
y^{\prime \prime}+3 y^{\prime}+2 y=0 ; \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{14}
\end{equation*}
$$

Solution. We follow the standard procedure:

1. Transform the equation:

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}+3 y^{\prime}+2 y\right\}=\mathcal{L}\{0\} \tag{15}
\end{equation*}
$$

The left hand side is (we will use Y to denote $\mathcal{L}\{y\}$)

$$
\begin{align*}
\mathcal{L}\left\{y^{\prime \prime}+3 y^{\prime}+2 y\right\} & =\mathcal{L}\left\{y^{\prime \prime}\right\}+3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\} \\
& =s^{2} Y-s y(0)-y^{\prime}(0)+3 s Y-3 y(0)+2 Y \\
& =\left(s^{2}+3 s+2\right) Y-s-3 \tag{16}
\end{align*}
$$

The transformed equation is

$$
\begin{equation*}
\left(s^{2}+3 s+2\right) Y-s-3=0 \tag{17}
\end{equation*}
$$

2. Solve Y.

$$
\begin{equation*}
Y=\frac{s+3}{s^{2}+3 s+2} \tag{18}
\end{equation*}
$$

3. Take inverse transform. First factorize the denominator: $s^{2}+3 s+2=(s+1)(s+2)$, no complex roots, no repeated root. Thus the partial fraction representation should be

This gives

$$
\begin{equation*}
\frac{s+3}{s^{2}+3 s+2}=\frac{A}{s+1}+\frac{B}{s+2}=\frac{(A+B) s+B+2 A}{(s+1)(s+2)} . \tag{19}
\end{equation*}
$$

So

$$
\begin{equation*}
A+B=1, \quad B+2 A=3 \Longrightarrow A=2, B=-1 \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\frac{s+3}{s^{2}+3 s+2}=\frac{2}{s+1}-\frac{1}{s+2} . \tag{21}
\end{equation*}
$$

Taking the inverse transform, we reach

$$
\begin{equation*}
y=\mathcal{L}^{-1}\{Y\}=2 \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}=2 e^{-t}-e^{-2 t} \tag{22}
\end{equation*}
$$

Problem 6. (6.2 17) Use Laplace transform to solve

$$
\begin{equation*}
y^{(4)}-4 y^{\prime \prime \prime}+6 y^{\prime \prime}-4 y^{\prime}+y=0 ; \quad y(0)=0, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=0, \quad y^{\prime \prime \prime}(0)=1 \tag{23}
\end{equation*}
$$

Solution.

1. Transform the equation:

$$
\begin{align*}
\mathcal{L}\left\{y^{(4)}-4 y^{\prime \prime \prime}+6 y^{\prime \prime}-4 y^{\prime}+y\right\}= & s^{4} Y-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0) \\
& -4\left[s^{3} Y-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right] \\
& +6\left[s^{2} Y-s y(0)-y^{\prime}(0)\right]-4[s Y-y(0)]+Y \\
= & \left(s^{4}-4 s^{3}+6 s^{2}-4 s+1\right) Y-s^{2}-1-4[-s]-6 \\
= & \left(s^{4}-4 s^{3}+6 s^{2}-4 s+1\right) Y-s^{2}+4 s-7 \tag{24}
\end{align*}
$$

So the transformed equation is

$$
\begin{equation*}
\left(s^{4}-4 s^{3}+6 s^{2}-4 s+1\right) Y-s^{2}+4 s-7=0 \tag{25}
\end{equation*}
$$

2. Solve Y.

$$
\begin{equation*}
Y=\frac{s^{2}-4 s+7}{s^{4}-4 s^{3}+6 s^{2}-4 s+1} \tag{26}
\end{equation*}
$$

3. Compute the inverse transform. To do this we need to first factorize the denominator. It is easy to see that 1 is a root, thus we write

$$
\begin{equation*}
s^{4}-4 s^{3}+6 s^{2}-4 s+1=(s-1)\left(s^{3}-3 s^{2}+3 s-1\right) \tag{27}
\end{equation*}
$$

Then clearly $s=1$ is also a root of $s^{3}-3 s^{2}+3 s-1$, so we have

$$
\begin{equation*}
s^{3}-3 s^{2}+3 s-1=(s-1)\left(s^{2}-2 s+1\right)=(s-1)^{3} . \tag{28}
\end{equation*}
$$

Thus

$$
\begin{equation*}
s^{4}-4 s^{3}+6 s^{2}-4 s+1=(s-1)^{4} \tag{29}
\end{equation*}
$$

We need to find A, B, C, D such that

$$
\begin{equation*}
\frac{s^{2}-4 s+7}{s^{4}-4 s^{3}+6 s^{2}-4 s+1}=\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{(s-1)^{3}}+\frac{D}{(s-1)^{4}}=\frac{A(s-1)^{3}+B(s-1)^{2}+C(s-1)+D}{(s-1)^{4}} \tag{30}
\end{equation*}
$$

For this problem, it is easy to see that

$$
\begin{equation*}
s^{2}-4 s+7=(s-1)^{2}-2(s-1)+4 \tag{31}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
A=0, B=1, C=-2, D=4 \tag{32}
\end{equation*}
$$

We compute

$$
\begin{align*}
y=\mathcal{L}^{-1}\{Y\} & =\mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}-\frac{2}{(s-1)^{3}}+\frac{4}{(s-1)^{4}}\right\} \\
& =e^{t}\left[\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s^{3}}\right\}+4 \mathcal{L}^{-1}\left\{\frac{1}{s^{4}}\right\}\right] \\
& =e^{t}\left[t-t^{2}+\frac{2}{3} t^{3}\right] . \tag{33}
\end{align*}
$$

Intermediate Problems

Problem 7. (5.5 8) Consider

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+3 x y^{\prime}+\left(2 x^{2}-1\right) y=0 \tag{34}
\end{equation*}
$$

a) Show that the equation has a regular singular point at $x=0$;
b) Determine the indicial equation, the recurrence relation, and the roots of the indicial equation;
c) Find the series solution $(x>0)$ corresponding to the larger root;
d) If the roots are unequal and do not differ by an integer, find the series solution corresponding to the smaller root also.

Solution.

a) Write the equation into standard form

$$
\begin{equation*}
y^{\prime \prime}+\frac{3}{2} \frac{1}{x} y^{\prime}+\frac{2 x^{2}-1}{2 x^{2}} y=0 \tag{35}
\end{equation*}
$$

It is clear that $x=0$ is a singular point. To check whether it is regular singular, we compute

$$
\begin{equation*}
x p=\frac{3}{2} ; \quad x^{2} q=\frac{2 x^{2}-1}{2} \tag{36}
\end{equation*}
$$

Both are analytic at 0 as both are polynomials. Therefore $x=0$ is a regular singular point.
b) To determine the indicial equation, we need to find out p_{0}, q_{0} which are the constant terms in the expansion of $x p$ and $x^{2} q$. A simple way to do this is set $x=0$:

$$
\begin{equation*}
p_{0}=\left.(x p)\right|_{x=0}=\frac{3}{2}, \quad q_{0}=\left.\left(x^{2} q\right)\right|_{x=0}=-\frac{1}{2} . \tag{37}
\end{equation*}
$$

The indicial equation is

$$
\begin{equation*}
r(r-1)+p_{0} r+q_{0}=r^{2}+\frac{1}{2} r-\frac{1}{2}=0 \Longrightarrow r_{1}=\frac{1}{2}, r_{2}=-1 \tag{38}
\end{equation*}
$$

To find the recurrence relation we substitute (of course the following is not necessary for anyone who can remember the general formula for recurrence relations)

$$
\begin{equation*}
y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{39}
\end{equation*}
$$

into the equation. We get ${ }^{1}$

$$
\begin{equation*}
x^{2} \sum_{n=0}^{\infty} 2(n+r)(n+r-1) a_{n} x^{n+r-2}+3 x \sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}+2 x^{2} \sum_{n=0}^{\infty} a_{n} x^{n+r}-\sum_{n=0}^{\infty} a_{n} x^{n+r}=0 \tag{40}
\end{equation*}
$$

Simplify a bit, we have

$$
\begin{align*}
0= & \sum_{n=0}^{\infty} 2(n+r)(n+r-1) a_{n} x^{n+r}+\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r}-\sum_{n=0}^{\infty} a_{n} x^{n+r} \\
& +2 \sum_{n=0}^{\infty} a_{n} x^{n+r+2} \\
= & \sum_{n=0}^{\infty}\left[2(n+r)\left(n+r+\frac{1}{2}\right)-1\right] a_{n} x^{n+r}+2 \sum_{n=2}^{\infty} a_{n-2} x^{n+r} \\
= & (2 r(r+1 / 2)-1) a_{0}+[2(1+r)(1+r+1 / 2)-1] a_{1} \\
& +\sum_{n=0}^{\infty}\left\{\left[2(n+r)\left(n+r+\frac{1}{2}\right)-1\right] a_{n}+2 a_{n-2}\right\} x^{n+r} \tag{41}
\end{align*}
$$

[^0]This gives

- Indicial equation $(n=0)$:

$$
\begin{equation*}
2 r(r+1 / 2)-1=0 \tag{42}
\end{equation*}
$$

- $\quad n=1$:

$$
\begin{equation*}
a_{1}=0 \tag{43}
\end{equation*}
$$

- Recurrence relation for $n \geqslant 2$:

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-2}}{2(n+r)\left(n+r+\frac{1}{2}\right)-1} \tag{44}
\end{equation*}
$$

Careful calculation gives

$$
\begin{equation*}
2(n+r)(n+r+1 / 2)-1=2(n+r)^{2}+(n+r)-1=(n+r+1)(2 n+2 r-1) \tag{45}
\end{equation*}
$$

So a better formula for the recurrence relation is

$$
\begin{equation*}
a_{n}=-\frac{2}{(n+r+1)(2 n+2 r-1)} a_{n} \tag{46}
\end{equation*}
$$

- Note that following this recurrence relation, we have $a_{1}=a_{3}=a_{5}=\ldots=0$.
c) The larger root is $1 / 2$. Setting $r=1 / 2$ we have

$$
\begin{equation*}
a_{n}=-\frac{1}{(n+3 / 2) n} a_{n-2} \tag{47}
\end{equation*}
$$

which leads to (setting $a_{0}=1$)

$$
\begin{equation*}
a_{2}=-\frac{1}{7}, \quad a_{4}=\frac{1}{2!7 \cdot 11}, \quad a_{2 m}=\frac{(-1)^{m}}{m!7 \cdot 11 \cdots \cdot(4 m+3)} \tag{48}
\end{equation*}
$$

The first solution is given by

$$
y_{1}=x^{1 / 2}\left[1-\frac{x^{2}}{7}+\frac{x^{4}}{2!7 \cdot 11}+\cdots+\frac{(-1)^{m}}{m!7 \cdot 11 \cdots \cdot(4 m+3)} x^{2 m}+\cdots\right]=x^{1 / 2}\left[1+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m!7 \cdot 11 \cdots \cdot(4 m+3)} x^{2 m}\right]
$$

d) As $1 / 2-(-1)=3 / 2$ is not an integer, setting $r=-1$ gives us the 2 nd solution

$$
\begin{equation*}
y_{2}=x^{-1}\left[1+\sum_{m=1}^{\infty} \frac{(-1)^{m} x^{2 m}}{(m!) 5 \cdot 9 \cdot \cdots \cdot(4 m-3)}\right] \tag{49}
\end{equation*}
$$

Problem 8. (6.1 22) Determine whether

$$
\begin{equation*}
\int_{0}^{\infty} t e^{-t} \mathrm{~d} t \tag{50}
\end{equation*}
$$

converges or diverges.

Solution.

- Method 1. Integration by parts, we have

$$
\begin{equation*}
\int_{0}^{\infty} t e^{-t} \mathrm{~d} t=-\int_{0}^{\infty} t \mathrm{~d} e^{-t}=-\left.t e^{-t}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-t} \mathrm{~d} t=1 \tag{51}
\end{equation*}
$$

so the integral converges.

- Method 2. Break the integral into

$$
\begin{equation*}
\int_{0}^{\infty} t e^{-t} \mathrm{~d} t=\int_{0}^{T} t e^{-t} \mathrm{~d} t+\int_{T}^{\infty} t e^{-t} \mathrm{~d} t \tag{52}
\end{equation*}
$$

The first integral clearly converges no matter what T is. Now choose T large enough so that $t e^{-t}<e^{-t / 2}$ for all $t>T$ we see that the second integral also converges.

[^0]: 1. For problems of the form $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$ with P, Q, R simple polynomials, usually it's simpler to substitute the expansion into this equation than into the one in standard form $y^{\prime \prime}+(Q / P) y^{\prime}+(R / P) y=0$. Of course, no "substitution" is needed for those who can remember the general formula.
