Math 334 A1 Homework 3 (Due Nov. 5 5pm)

- No "Advanced" or "Challenge" problems will appear in homeworks.

Basic Problems

Problem 1. (4.1 11) Verify that the given functions are solutions of the differential equation, and determine their Wronskian.

$$
\begin{equation*}
y^{\prime \prime \prime}+y^{\prime}=0 ; \quad 1, \cos t, \sin t . \tag{1}
\end{equation*}
$$

Solution. We compute

$$
\begin{gather*}
(1)^{\prime \prime \prime}+(1)^{\prime}=0+0=0 \tag{2}\\
(\cos t)^{\prime \prime \prime}+(\sin t)^{\prime}=-\cos t+\cos t=0 \tag{3}\\
(\sin t)^{\prime \prime \prime}+(\sin t)^{\prime}=-\cos t+\cos t=0 \tag{4}
\end{gather*}
$$

Compute the Wronskian:

$$
W=\operatorname{det}\left(\begin{array}{ccc}
1 & \cos t & \sin t \tag{5}\\
(1)^{\prime} & (\cos t)^{\prime} & (\sin t)^{\prime} \\
(1)^{\prime \prime} & (\cos t)^{\prime \prime} & (\sin t)^{\prime \prime}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
0 & -\cos t & -\sin t
\end{array}\right)=\sin ^{2} t+\cos ^{2} t=1 .
$$

Problem 2. (4.2 1) Express $1+i$ in the form $R(\cos \theta+i \sin \theta)=R e^{i \theta}$.
Solution. We need

$$
\begin{equation*}
R \cos \theta=1, \quad R \sin \theta=1 . \tag{6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
R^{2}=2 \Longrightarrow R=\sqrt{2} \tag{7}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\cos \theta=\frac{1}{\sqrt{2}}, \quad \sin \theta=\frac{1}{\sqrt{2}} \Longrightarrow \theta=\frac{\pi}{4}+2 k \pi \tag{8}
\end{equation*}
$$

where k can be any integer.
Therefore

$$
\begin{equation*}
1+i=R\left(\cos \left(\frac{\pi}{4}+2 k \pi\right)+i \sin \left(\frac{\pi}{4}+2 k \pi\right)\right)=R e^{i\left(\frac{\pi}{4}+2 k \pi\right)} . \tag{9}
\end{equation*}
$$

Problem 3. (4.2 9) Find all four roots of $1^{1 / 4}$.
Solution. To find all roots, we need to write 1 into the form $R e^{i \theta}$. Clearly $R=1, \cos \theta=1, \sin \theta=0$ thus

$$
\begin{equation*}
1=e^{2 k \pi i}, \quad k \text { is any integer. } \tag{10}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
1^{1 / 4}=e^{(2 k \pi i) / 4}=e^{\frac{k \pi}{2} i} . \tag{11}
\end{equation*}
$$

It is clear that k and $k+4$ gives the same root for any k. Therefore the four roots are given by $k=0,1,2,3$. Setting $k=$ 0 we obtain 1 ; Setting $k=1$ we obtain $e^{\frac{\pi}{2} i}=i$; Setting $k=2$ we obtain -1 ; Setting $k=3$ we obtain $-i$. So finally the four roots are

$$
\begin{equation*}
1, i,-1,-i . \tag{12}
\end{equation*}
$$

Problem 4. (5.1 7) Determine the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}} \tag{13}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
a_{n}=\frac{(-1)^{n} n^{2}}{3^{n}} \tag{14}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{3} \frac{(n+1)^{2}}{n^{2}} . \tag{15}
\end{equation*}
$$

Taking the limit n / ∞, we have

$$
\begin{equation*}
L=\lim _{n \longrightarrow \infty} \frac{1}{3} \frac{(n+1)^{2}}{n^{2}}=\frac{1}{3} . \tag{16}
\end{equation*}
$$

Therefore the radius of convergence is

$$
\begin{equation*}
\rho=L^{-1}=3 . \tag{17}
\end{equation*}
$$

Problem 5. (5.1 13) Determine the Taylor series about x_{0} for the given function:

$$
\begin{equation*}
y(x)=\ln x, \quad x_{0}=1 . \tag{18}
\end{equation*}
$$

Solution. Recall that the Taylor series is given by

$$
\begin{equation*}
y(x)=y\left(x_{0}\right)+y^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{y^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \tag{19}
\end{equation*}
$$

Now $y=\ln x$ and $x_{0}=1$. We compute for $n \geqslant 1$

$$
\begin{equation*}
y^{(n)}\left(x_{0}\right)=\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}(\ln x)\right|_{x=x_{0}}=\left.(-1)^{n+1}(n-1)!x^{-n}\right|_{x=x_{0}=1}=(-1)^{n+1}(n-1)! \tag{20}
\end{equation*}
$$

Note that $y\left(x_{0}\right)=\ln 1=0$.
So the desired Taylor series is

$$
\begin{equation*}
\ln x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n} \tag{21}
\end{equation*}
$$

Problem 6. (5.1 21) Rewrite the given expression as a sum whose generic term involves x^{n} :

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \tag{22}
\end{equation*}
$$

Solution. WE need to shift $n-2 \longrightarrow n$. This means the sum now starts from 0 , and n becomes $n+2$. So the sum becomes

Problem 7. (5.2 3) Consider

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime \prime}-x y^{\prime}-y=0, \quad x_{0}=1 \tag{24}
\end{equation*}
$$

a) Find the first four terms in each of two solutions y_{1} and y_{2} (unless the series terminates sooner).
b) By evaluating the Wronskian $W\left(y_{1}, y_{2}\right)\left(x_{0}\right)$, show that y_{1} and y_{2} form a fundamental set of solutions (that is y_{1}, y_{2} are linearly independent.)

Solution.

a) Write

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{n}(x-1)^{n} \tag{25}
\end{equation*}
$$

Substitute into the equation, we have

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime \prime}-[(x-1)+1]\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime}-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0 \tag{26}
\end{equation*}
$$

First compute the first term:

Shifting index, we reach

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2} \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n} \tag{28}
\end{equation*}
$$

Now compute the second term

$$
\begin{align*}
-[(x-1)+1]\left(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\right)^{\prime} & =-(x-1) \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \tag{29}\\
& =-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1}(x-1)^{n} \tag{30}
\end{align*}
$$

Now the equation becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1}(x-1)^{n}-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0 \tag{31}
\end{equation*}
$$

Note that in the above, three sums start from 0 while one starts from 1 . Thus we need to write the $n=0$ term separately:

$$
\begin{equation*}
2 a_{2}-a_{1}-a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-n a_{n}-(n+1) a_{n+1}-a_{n}\right]=0 \tag{32}
\end{equation*}
$$

The recurrence relations are

$$
\begin{align*}
2 a_{2}-a_{1}-a_{0} & =0 \tag{33}\\
(n+2)(n+1) a_{n+2}-(n+1) a_{n}-(n+1) a_{n+1} & =0 \quad n \geqslant 1 \tag{34}
\end{align*}
$$

The second relation can be simplified to

$$
\begin{equation*}
(n+2) a_{n+2}=a_{n}+a_{n+1} . \quad n \geqslant 1 \tag{35}
\end{equation*}
$$

Solving them one by one, we have

$$
\begin{array}{ll}
(n=0) & a_{2}=\frac{1}{2} a_{0}+\frac{1}{2} a_{1} \\
(n=1) & a_{3}=\frac{1}{3}\left(a_{1}+a_{2}\right)=\frac{1}{6} a_{0}+\frac{1}{2} a_{1} \\
(n=2) & a_{4}=\frac{1}{4}\left(a_{2}+a_{3}\right)=\frac{1}{4}\left(\frac{2}{3} a_{0}+a_{1}\right)=\frac{1}{6} a_{0}+\frac{1}{4} a_{1} \tag{38}
\end{array}
$$

The general solution is

$$
\begin{equation*}
y(x)=a_{0}+a_{1}(x-1)+\left(\frac{1}{2} a_{0}+\frac{1}{2} a_{1}\right)(x-1)^{2}+\left(\frac{1}{6} a_{0}+\frac{1}{2} a_{1}\right)(x-1)^{3}+\left(\frac{1}{6} a_{0}+\frac{1}{4} a_{1}\right)(x-1)^{4}+\cdots \tag{39}
\end{equation*}
$$

Collecting all the a_{0} 's and the a_{1} 's together we have
$y(x)=a_{0}\left[1+\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}+\frac{1}{6}(x-1)^{4}+\cdots\right]+a_{1}\left[x-1+\frac{1}{2}(x-1)^{2}+\frac{1}{2}(x-1)^{3}+\frac{1}{4}(x-\right.$
$\left.1)^{4}+\cdots\right]$.
So

$$
\begin{align*}
& y_{1}(x)=1+\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}+\frac{1}{6}(x-1)^{4}+\cdots \tag{41}\\
& y_{2}(x)=x-1+\frac{1}{2}(x-1)^{2}+\frac{1}{2}(x-1)^{3}+\frac{1}{4}(x-1)^{4}+\cdots \tag{42}
\end{align*}
$$

b) The Wronskian at x_{0} is

$$
\operatorname{det}\left(\begin{array}{ll}
y_{1}(1) & y_{2}(1) \tag{43}\\
y_{1}^{\prime}(1) & y_{2}^{\prime}(1)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=1 \neq 0
$$

So y_{1}, y_{2} are linearly independent.
Problem 8. (5.2 15) Find the first five nonzero terms in the solution of the problem

$$
\begin{equation*}
y^{\prime \prime}-x y^{\prime}-y=0, \quad y(0)=2, \quad y^{\prime}(0)=1 \tag{44}
\end{equation*}
$$

Solution. Write

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{45}
\end{equation*}
$$

Substitute into the equation

$$
\begin{align*}
0 & =\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}-x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime}-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{46}\\
& =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} a_{n} x^{n} \tag{47}\\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n} \tag{48}\\
& =2 a_{2}-a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n+1) a_{n}\right] x^{n} \tag{49}
\end{align*}
$$

Thus the recurrence relations are

$$
\begin{align*}
2 a_{2}-a_{0} & =0 \tag{50}\\
(n+2) a_{n+2}-a_{n} & =0 \tag{51}
\end{align*}
$$

Now the initial conditions give

$$
\begin{equation*}
y(0)=2 \Longrightarrow a_{0}=2 ; \quad y^{\prime}(0)=1 \Longrightarrow a_{1}=1 . \tag{52}
\end{equation*}
$$

We compute

$$
\begin{array}{ll}
(n=0) & a_{2}=\frac{a_{0}}{2}=1 \\
(n=1) & a_{3}=\frac{a_{1}}{3}=\frac{1}{3} \\
(n=2) & a_{4}=\frac{a_{2}}{4}=\frac{1}{4} \tag{55}
\end{array}
$$

We already have five nonzero terms:

$$
\begin{equation*}
y(x)=2+x+x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\cdots \tag{56}
\end{equation*}
$$

Problem 9. (5.3 7) Determine a lower bound for the radius of convergence of series solutions about each given point x_{0} for the differential equation

$$
\begin{equation*}
\left(1+x^{3}\right) y^{\prime \prime}+4 x y^{\prime}+4 y=0 ; \quad x_{0}=0, x_{0}=2 \tag{57}
\end{equation*}
$$

Solution. Write the equation into standard form

$$
\begin{equation*}
y^{\prime \prime}+\frac{4 x}{1+x^{3}} y^{\prime}+\frac{4}{1+x^{3}} y=0 \tag{58}
\end{equation*}
$$

We see that the singular points are solutions to

$$
\begin{equation*}
x^{3}+1=0 \tag{59}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
x^{3}=-1 \tag{60}
\end{equation*}
$$

To find all such x, we need to write $-1=R e^{i \theta}$. Clearly $R=1$. To determine θ we solve

$$
\begin{equation*}
\cos \theta=-1, \quad \sin \theta=0 \tag{61}
\end{equation*}
$$

which gives $\theta=\pi+2 k \pi$. Thus the solutions are given by

$$
\begin{equation*}
x=e^{i \frac{2 k+1}{3} \pi} \tag{62}
\end{equation*}
$$

Notice that k and $k+3$ gives the same x. Therefore the three roots are given by setting $k=0,1,2$.

$$
\begin{equation*}
k=0 \Longrightarrow x=e^{i \frac{\pi}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i ; k=1 \Longrightarrow x=-1 ; k=2 \Longrightarrow x=\frac{1}{2}-\frac{\sqrt{3}}{2} i \tag{63}
\end{equation*}
$$

Now we discuss

- $x_{0}=0$. The distance from 4 to the three roots are:

$$
\begin{gather*}
\left|0-\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right|=1 \tag{64}\\
|0-(-1)|=1 \tag{65}\\
\left|0-\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right|=1 \tag{66}
\end{gather*}
$$

The smallest distance is 1 . So the radius of convergence is at least 1 .

- $x_{0}=2$. The distances are

$$
\begin{align*}
& \left|2-\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right|=\left|\frac{3}{2}-\frac{\sqrt{3}}{2} i\right|=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{3} \tag{67}\\
& |2-(-1)|=3 \tag{68}\\
& \left|2-\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right|=\sqrt{3} \tag{69}
\end{align*}
$$

The smallest distance is $\sqrt{3}$. So the radius of convergence is $\sqrt{3}$.
Problem 10. (5.3 12) Find the first four nonzero terms in each of two power series solutions about the origin for

$$
\begin{equation*}
e^{x} y^{\prime \prime}+x y=0 \tag{70}
\end{equation*}
$$

Determine the lower bound of radius of convergence.
Solution. We write
and expand

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{72}
\end{equation*}
$$

Substituting into the equation we have

$$
\begin{align*}
0 & =\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}+x \sum_{n=0}^{\infty} a_{n} x^{n} \tag{73}\\
& =\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right)\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\cdots\right)+a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots \tag{74}
\end{align*}
$$

Note that in the above, we expand everything up to x^{3}, hoping that the recurrence relations would give us the desired four non-zero terms in both y_{1} and y_{2}. If it turns out that this is not the case, we need to expand to higher order.

To make the calculation simpler, we notice that finally the solution is written as

$$
\begin{equation*}
y=a_{0} y_{1}+a_{1} y_{2} \tag{75}
\end{equation*}
$$

Thus y_{1} is obtained by setting $a_{0}=1, a_{1}=0$ while y_{2} is obtained by setting $a_{0}=0, a_{1}=1$.

- Finding y_{1}. Setting $a_{0}=1, a_{1}=0$ we have

$$
\begin{equation*}
\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right)\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\cdots\right)+x+a_{2} x^{3}+\cdots=0 \tag{76}
\end{equation*}
$$

Carrying out the multiplication, we have

$$
\begin{equation*}
2 a_{2}+\left(2 a_{2}+6 a_{3}+1\right) x+\left(a_{2}+6 a_{3}+12 a_{4}\right) x^{2}+\left(\frac{a_{2}}{3}+3 a_{3}+12 a_{4}+20 a_{5}+a_{2}\right) x^{3}+\cdots=0 \tag{77}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
2 a_{2} & =0 \tag{78}\\
2 a_{2}+6 a_{3}+1 & =0 \tag{79}\\
a_{2}+6 a_{3}+12 a_{4} & =0 \tag{80}\\
\frac{a_{2}}{3}+3 a_{3}+12 a_{4}+20 a_{5}+a_{2} & =0 \tag{81}
\end{align*}
$$

These give

$$
\begin{equation*}
a_{2}=0, \quad a_{3}=-\frac{1}{6}, \quad a_{4}=\frac{1}{12}, \quad a_{5}=-\frac{1}{40} \tag{82}
\end{equation*}
$$

Thus

$$
\begin{equation*}
y_{1}(x)=1-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{40} x^{5}+\cdots \tag{83}
\end{equation*}
$$

We are lucky that we have exactly four nonzero terms.

- Finding y_{2}. Setting $a_{0}=1, a_{1}=1$ we have

$$
\begin{equation*}
\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right)\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\cdots\right)+x^{2}+a_{2} x^{3}+\cdots=0 \tag{84}
\end{equation*}
$$

Carrying out the multiplication, we have

$$
\begin{equation*}
2 a_{2}+\left(2 a_{2}+6 a_{3}\right) x+\left(a_{2}+6 a_{3}+12 a_{4}+1\right) x^{2}+\left(\frac{a_{2}}{3}+3 a_{3}+12 a_{4}+20 a_{5}+a_{2}\right) x^{3}+\cdots=0 \tag{85}
\end{equation*}
$$

The recurrence relations are

$$
\begin{align*}
2 a_{2} & =0 \tag{86}\\
2 a_{2}+6 a_{3} & =0 \tag{87}\\
a_{2}+6 a_{3}+12 a_{4}+1 & =0 \tag{88}\\
\frac{a_{2}}{3}+3 a_{3}+12 a_{4}+20 a_{5}+a_{2} & =0 \tag{89}
\end{align*}
$$

which give

$$
\begin{equation*}
a_{2}=0 ; \quad a_{3}=0 ; \quad a_{4}=-\frac{1}{12} ; \quad a_{5}=\frac{1}{20} . \tag{90}
\end{equation*}
$$

Thus

$$
\begin{equation*}
y_{2}=x-\frac{1}{12} x^{4}+\frac{1}{20} x^{5}+\cdots \tag{91}
\end{equation*}
$$

We only have 3 nonzero terms!

- Finding the 4 th term.

To find the 4 th term, we need to expand everything to higher power. Let's try expanding to x^{4} :

$$
\begin{equation*}
\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24} \cdots\right)\left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+30 a_{6} x^{4} \ldots\right)+x^{2}+a_{2} x^{3}+a_{3} x^{4} \ldots=0 \tag{92}
\end{equation*}
$$

This gives a new recurrence relation via setting coefficients of x^{4} to be 0 :

$$
\begin{equation*}
\frac{a_{2}}{12}+a_{3}+6 a_{4}+20 a_{5}+30 a_{6}+a_{3}=0 \tag{93}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
a_{6}=-\frac{1}{60} \tag{94}
\end{equation*}
$$

The updated y_{2} is now

$$
\begin{equation*}
y_{2}(x)=x-\frac{1}{12} x^{4}+\frac{1}{20} x^{5}-\frac{1}{60} x^{6}+\cdots \tag{95}
\end{equation*}
$$

Now we have 4 nonzero terms.
To determine the lower bound of the radius of convergence, we need to find all z such that $e^{z}=0$, as the standard form of our equation is

$$
\begin{equation*}
y^{\prime \prime}+\frac{x}{e^{x}} y=0 \tag{96}
\end{equation*}
$$

Write $z=\alpha+i \beta$. We have

$$
\begin{equation*}
e^{z}=e^{\alpha}[\cos \beta+i \sin \beta] \tag{97}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|e^{z}\right|=e^{\alpha} \neq 0 \tag{98}
\end{equation*}
$$

for any real number α. Therefore e^{z} is never zero and the equation does not have any singular point. Consequently the radius of convergence is ∞.

Problem 11. (5.4 1) Find the general solution

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0 \tag{99}
\end{equation*}
$$

Solution. This is Euler equation. Set $y=x^{r}$ we reach

$$
\begin{equation*}
r(r-1)+4 r+2=0 \Longrightarrow r_{1,2}=-2,-1 \tag{100}
\end{equation*}
$$

So the general solution is

$$
\begin{equation*}
y=C_{1} x^{-2}+C_{2} x^{-1} \tag{101}
\end{equation*}
$$

Problem 12. (5.4 19) Find all singular points of

$$
\begin{equation*}
x^{2}(1-x) y^{\prime \prime}+(x-2) y^{\prime}-3 x y=0 \tag{102}
\end{equation*}
$$

and determine whether each one is regular or irregular.
Solution. Write the equation into standard form:

$$
\begin{equation*}
y^{\prime \prime}+\frac{x-2}{x^{2}(1-x)} y^{\prime}-\frac{3}{x(1-x)} y=0 \tag{103}
\end{equation*}
$$

We see that there are two singular points $x=0, x=1$.

- At $x=0$, we have

$$
\begin{equation*}
x p=\frac{x-2}{x(1-x)}, \quad x^{2} q=-\frac{3 x}{1-x} . \tag{104}
\end{equation*}
$$

We see that $x p$ is not analytic (still has singularity at 0). So $x=0$ is an irregular singuar point.

- At $x=1$, we have

$$
\begin{equation*}
(x-1) p=\frac{x-2}{x^{2}}, \quad(x-1)^{2} q=\frac{3(1-x)}{x} \tag{105}
\end{equation*}
$$

both are analytic at $x=1$. So $x=1$ is a regular singular point.

Intermediate Problems

Problem 13. (4.1 8) Determine whether the given set of functions is linearly dependent or linearly independent. If they are linearly dependent, find a linear relation among them.

$$
\begin{equation*}
f_{1}(t)=2 t-3, \quad f_{2}(t)=2 t^{2}+1, \quad f_{3}(t)=3 t^{2}+t \tag{106}
\end{equation*}
$$

(Note: As f_{1}, f_{2}, f_{3} are not solutions to some 3 rd order equation, Wronskian $\neq 0$ implies linear independence, but Wronskian $=0$ does not imply linear dependence. Finding a "linear relation" means finding constants C_{1}, C_{2}, C_{3} such that

$$
\begin{equation*}
C_{1} f_{1}+C_{2} f_{2}+C_{3} f_{3}=0 \tag{107}
\end{equation*}
$$

)
Solution. We compute the Wronskian - if it $\neq 0$, the functions are linearly independent; If it $=0$, we have to use other methods to determine.

$$
W=\operatorname{det}\left(\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \tag{108}\\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
2 t-3 & 2 t^{2}+1 & 3 t^{2}+t \\
2 & 4 t & 6 t+1 \\
0 & 4 & 6
\end{array}\right)=0
$$

Unfortunately this does not guarantee linear dependence of f_{1}, f_{2}, f_{3}. However, this indicates that we should try to show linear dependence.

As an alternative method, we try to directly find C_{1}, C_{2}, C_{3} such that

$$
\begin{equation*}
C_{1}(2 t-3)+C_{2}\left(2 t^{2}+1\right)+C_{3}\left(3 t^{2}+t\right)=0 \tag{109}
\end{equation*}
$$

As the left hand side is a polynomial - special case of power series - the above is equivalent to that coefficients for $1, t$, t^{2} all vanish. We rewrite the above equation to

$$
\begin{equation*}
\left(-3 C_{1}+C_{2}\right)+\left(2 C_{1}+C_{3}\right) t+\left(2 C_{2}+3 C_{3}\right) t^{2}=0 \tag{110}
\end{equation*}
$$

This gives

$$
\begin{array}{r}
-3 C_{1}+C_{2}=0 \\
2 C_{1}+C_{3}=0 \\
2 C_{2}+3 C_{3}=0 \tag{113}
\end{array}
$$

Solving this system, we have

$$
\begin{equation*}
C_{2}=3 C_{1}, \quad C_{3}=-2 C_{1}, \quad C_{1} \text { arbitrary } \tag{114}
\end{equation*}
$$

So f_{1}, f_{2}, f_{3} are linearly dependent, a linear relation is given by

$$
\begin{equation*}
f_{1}+3 f_{2}-2 f_{3}=0 \tag{115}
\end{equation*}
$$

Problem 14. (4.2 11) Find the general solution of

$$
\begin{equation*}
y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0 \tag{116}
\end{equation*}
$$

Solution. This is linear equation with constant coefficients. The characteristic equation is

$$
\begin{equation*}
r^{3}-r^{2}-r+1=0 \tag{117}
\end{equation*}
$$

Clearly $r=1$ is a solution. Write

$$
\begin{equation*}
r^{3}-r^{2}-r+1=(r-1)\left(r^{2}-1\right)=(r-1)^{2}(r+1) \tag{118}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
r_{1,2}=1 ; \quad r_{3}=-1 \tag{119}
\end{equation*}
$$

So the solution is given by

$$
\begin{equation*}
y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} e^{-t} \tag{120}
\end{equation*}
$$

Problem 15. (4.2 16) Find the general solution of

$$
\begin{equation*}
y^{(4)}-5 y^{\prime \prime}+4 y=0 \tag{121}
\end{equation*}
$$

Solution. The characteristic equation is

$$
\begin{equation*}
r^{4}-5 r^{2}+4=0 \tag{122}
\end{equation*}
$$

Notice that if we set $R=r^{2}$, we have

$$
\begin{equation*}
R^{2}-5 R+4=0 \Longrightarrow R=4,1 \tag{123}
\end{equation*}
$$

So the four roots are

$$
\begin{equation*}
r_{1,2,3,4}= \pm 2, \pm 1 \tag{124}
\end{equation*}
$$

They are all different, so the general solution is given by

$$
\begin{equation*}
y(x)=C_{1} e^{2 t}+C_{2} e^{-2 t}+C_{3} e^{t}+C_{4} e^{-t} \tag{125}
\end{equation*}
$$

