
Math 334 A1 Homework 1 (Due Sep. 24 5pm)

Sep. 17, 2010

• No “Advanced” or “Challenge” problems will appear in homeworks.

Basic Problems

Problem 1. (2.1 13) Solve

y ′− y =2 t e2t, y(0)= 1. (1)

Solution. This is a linear equation in the form

y ′+ P (x) y = Q(x) (2)

with P =− 1 and Q =2 t e2t. We need to multiply both sides by e
∫

P and then integrate.

First compute:

P =− 1� ∫

P =− t� e
∫

P = e−t. (3)

Then check

e−t y ′
− e−t y =

(

e−t y
)

′

. (4)

Now we need to integrate
(

e−t y
)

′

= e−t 2 t e2t = 2 t et� e−t y =

∫

2 t et + C. (5)

To evaluate the integral
∫

2 t et, we need the “integration by parts” formula:
∫

f dg = f g −

∫

g df (6)

with f , g functions. Thus we need to find f , g such that
∫

2 t et =

∫

f dg. (7)

Recall that et = det, we try f = 2 t, g = et.1 We have
∫

2 t det = 2 t et
−

∫

et d(2 t)= 2 t et
− 2

∫

et dt = 2 (t− 1) et. (8)

Thus

e−t y = 2 (t − 1) et + C� y = 2 (t− 1) e2t + C et. (9)

Check

y ′
− y =

(

2 (t− 1) e2t + C et
)

′

−
(

2 (t− 1) e2t + C et
)

= 2 e2t + 4 (t− 1) e2t
− 2 (t− 1) e2t = 2 t e2t. (10)

So our general solution is correct.

Finally use the initial values to determine the constant C:

y(0)= 1� 1= y(0) = 2 (0− 1) e2·0 + C e0 =C − 2� C = 3. (11)

Therefore the solution is

y(t)= 2 (t− 1) e2t + 3 et.

Problem 2. (2.1 15) Solve

t y ′+ 2 y = t2− t + 1, y(1) =
1

2
, t > 0. (12)

Solution. This is a linear equation. To solve it first we need to write it into the form

y ′+ P y = Q. (13)

through dividing both sides by t:

y ′+
2
t

y = t− 1+
1
t
. (14)

Now the integrating factor is

e
∫

P = e
∫

2/t = e2ln t = eln t2

= t2. (15)

We check

t2
(

y ′+
2
t

y

)

=
(

t2 y
)

′

(16)

1. Rule of thumb: Whenever eat is involved and you plan to use integration by parts, try g = eat.
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so the integrating factor is correct.

Now multiply the equation by t2:
(

t2 y
)′

= t3− t2 + t. (17)

Integrate:

t2 y =
1
4

t4−
1
3

t3 +
1
2

t2 + C� y =
1
4

t2−
1
3

t +
1
2

+
C

t2
. (18)

Check that it is indeed correct:

t y ′+ 2 y = t

(

1
4

t2−
1
3

t +
1
2

+
C

t2

)

′

+ 2

(

1
4

t2−
1
3

t +
1
2

+
C

t2

)

= t2− t + 1. (19)

Finally determine C using the initial value:

1
2

= y(1) =
1
4
−

1
3

+
1
2

+ C� C =
1
12

. (20)

The solution is given by

y(t) =
1
4

t2−
1
3

t +
1
2

+
1

12 t2
. (21)

Problem 3. (2.2 5) Solve

y ′=
(

cos2x
) (

cos22 y
)

. (22)

Solution. This equation is separable:

y ′= g(x) p(y) (23)

with g(x)= cos2x, p(y) = cos22 y.

We divide both sides by p(y) = cos22 y:
y ′

cos22 y
= cos2x. (24)

Therefore
∫

1

cos2 2 y
dy =

∫

cos2x dx + C. (25)

We evaluate the two integrals.

•
∫ 1

cos2 2 y
dy. Recall

(tanx)
′=

1

cos2x
� d(tan y) =

1

cos2 y
dy. (26)

To accomodate the 2 y we try

d(tan2 y) =
1

cos2 2 y
d(2 y)=

2

cos22 y
dy. (27)

Thus
∫

1

cos22 y
dy =

1

2
tan2 y. (28)

•
∫

cos2x dx. The standard methods is transforming cos2x to cos2 x using the formula:

cos2 x= 2 cos2x− 1� cos2x =
cos2 x + 1

2
. (29)

Thus
∫

cos2xdx=

∫
(

cos2 x

2
+

1
2

)

=
sin2 x

4
+

x

2
. (30)

Putting things together, the solution (of the new equation – obtained from the original through dividing cos2 2 y) is given

by
1
2
tan2 y =

sin2 x

4
+

x

2
+ C. (31)

(You can choose to apply arctan to both sides, but that will make the formula look bad as when y is a solution, so is y +
k

2
π for any integer k).

Finally we need to add back all the zeroes of p(y)= cos22 y.

cos22 y = 0� cos2 y = 0� 2 y =

(

k +
1

2

)

π� y =
2 k + 1

4
π (32)

for all integers k.2

Putting everything together, the solution to the original problem is

1

2
tan2 y =

sin2 x

4
+

x

2
+ C; y =

2 k + 1

4
π for all integers k. (33)

Problem 4. (2.4 25) Let y = y1(t) be a solution of

y ′+ p(t) y = 0, (34)

2. The book unnecessarily put ± before the ratio.
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and let y = y2(t) be a solution of

y ′+ p(t) y = g(t). (35)

Show that y = y1(t)+ y2(t) is also a solution of

y ′+ p(t) y = g(t). (36)

Solution. y1 is a solution of the homogeneous equation means

y1
′ + p(t) y1 = 0. (37)

y2 is a solution of the nonhomogeneous equation means

y2
′ + p(t) y2 = g(t). (38)

Now we check

[y1 + y2]
′ + p(t) [y1 + y2] = y1

′ + y2
′ + p y1 + p y2 =

(

y1
′ + p y1

)

+
(

y2
′ + p y2

)

= 0+ g(t)= g(t). (39)

So y1 + y2 is also a solution to the nonhomogeneous equation.

Problem 5. (2.6 3) Is the following equation exact? If it is, solve it.

(

3 x2
− 2 x y + 2

)

dx +
(

6 y2
− x2 + 3

)

dy = 0. (40)

Solution. This equation is already in the form M dx+ N dy = 0. Compute

∂M

∂y
=− 2 x,

∂N

∂x
=− 2 x� ∂M

∂y
=

∂N

∂x
. (41)

The equation is exact. We solve it by finding an u(x, y) such that

∂u

∂x
= M = 3 x2

− 2 x y + 2,
∂u

∂y
= N = 6 y2

− x2 + 3. (42)

Using the first condition:

u(x, y) =

∫

∂u

∂x
dx + g(y)= x3

− x2 y + 2 x + g(y). (43)

Then we use the second condition:

6 y2
− x2 + 3= N =

∂u

∂y
=

∂

∂y

(

x3
− x2 y + 2 x + g(y)

)

=− x2 + g ′(y)� g′(y)= 6 y2 + 3 (44)

consequently

g(y)= 2 y3 + 3 y. (45)

So

u(x, y) =x3
− x2 y + 2 x + 2 y3 + 3 y. (46)

The general solution is given by

x3
− x2 y + 2 x + 2 y3 + 3 y = C. (47)

Problem 6. (2.6 15) Find the value b for which the equation is exact, and then solve it using that value of b.

(

x y2 + b x2 y
)

dx + (x + y) x2 dy = 0. (48)

Solution. We compute
∂M

∂y
=2 x y + b x2;

∂N

∂x
= 3 x2 + 2 x y. (49)

Thus
∂M

∂y
=

∂N

∂x
� b = 3. (50)

The equation is exact if and only if b = 3.

For b =1, we need u such that

∂u

∂x
= x y2 + 3 x2 y;

∂u

∂y
= (x + y) x2 = x3 + x2 y. (51)

Using the first:

u(x, y) =
1
2

x2 y2 + x3 y + g(y). (52)

Using the second:

x3 + x2 y =
∂

∂y

(

1
2

x2 y2 + x3 y + g(y)

)

= x2 y + x3 + g′(y)� g ′(y)= 0 (53)

So we can take g(y)= 0.

The final answer is
1
2

x2 y2 + x3 y = C. (54)
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Intermediate Problems

Problem 7. (2.6 25) Find an integrating factor and solve the equation.

(

3 x2 y + 2 x y + y3
)

dx +
(

x2 + y2
)

dy = 0. (55)

Solution. Compute
∂M

∂y
= 3 x2 + 2 x + 3 y2;

∂N

∂x
= 2 x (56)

They are not equal, so the equation is not exact.

We need to find the integrating factor µ(x, y) such that

∂

∂y
(µ M)=

∂

∂x
(µ N)�M

∂µ

∂y
−N

∂µ

∂x
=

(

∂N

∂x
−

∂M

∂y

)

µ. (57)

This is just
(

3 x2 y + 2 x y + y3
) ∂µ

∂y
−

(

x2 + y2
) ∂µ

∂x
=− 3

(

x2 + y2
)

µ. (58)

Let’s guess.

• µ = µ(x). This leads to

−
(

x2 + y2
)

µ′=− 3
(

x2 + y2
)

µ� µ′

µ
=3 (59)

Therefore we can take

µ = e3x. (60)

Multiply the equation by this µ we reach

[

e3x
(

3 x2 y + 2 x y + y3
)]

dx +
[

e3x
(

x2 + y2
)]

dy = 0. (61)

We can check
∂

∂y

(

e3x
(

3 x2 y + 2 x y + y3
))

=
∂

∂x

(

e3x
(

x2 + y2
))

(62)

now.

Now we find u such that
∂u

∂x
= e3x

(

3 x2 y +2 x y + y3
)

;
∂u

∂y
= e3x

(

x2 + y2
)

. (63)

It is clear that performing
∫ ∂u

∂y
dy is much easier than doing

∫ ∂u

∂x
dx. So we start from the second condition:

u =

∫

∂u

∂y
dy + g(x)=

∫

[

e3x x2 + e3x y2
]

dy + g(x)= e3x x2 y +
1
3

e3x y3 + g(x). (64)

Next using the first condition:

e3x
(

3 x2 y + 2 x y + y3
)

=
∂u

∂x
= 3 e3x x2 y + 2 e3x x y + e3x y3 + g ′(x) (65)

which leads to

g′(x)= 0 (66)

and we can take g = 0.

Thus

u(x, y)= e3x x2 y +
1
3

e3x y3 (67)

and the solution to
[

e3x
(

3 x2 y + 2 x y + y3
)]

dx+
[

e3x
(

x2 + y2
)]

dy = 0 (68)

is given by

e3x x2 y +
1
3

e3x y3 = C. (69)

As the multiplier µ(x, y) = e3x does not contain y, there is no y = y(x) such that µ(x, y(x)) = 0 and therefore multiplying

by µ does not change the solutions. So the solution to the original equation is also

e3x x2 y +
1
3

e3x y3 = C. (70)

Problem 8. (2.6 27) Find an integrating factor and solve

dx + (x/y − sin y) dy = 0. (71)

Solution. Compute
∂M

∂y
=0,

∂N

∂x
=

1

y
. (72)

We need µ such that
∂

∂y
(µ M)=

∂

∂x
(µ N)�M

∂µ

∂y
−N

∂µ

∂x
=

(

∂N

∂x
−

∂M

∂y

)

µ. (73)
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The equation for µ is then
∂µ

∂y
− (x/y − sin y)

∂µ

∂x
=

1
y

µ. (74)

This time it is clear that µ = µ(y) would work:

µ′=
1
y

µ (75)

and we can take

µ = y. (76)

Multiplying both sides of the equation by µ = y we have

y dx+ (x− y sin y) dy = 0. (77)

We can check that it is exact now. We find u such that

∂u

∂x
= y;

∂u

∂y
= x − y sin y. (78)

Clearly
∫ ∂u

∂x
dx is easier to do. So we use the first condition and write

u(x, y)=

∫

∂u

∂x
dx + g(y) = x y + g(y). (79)

Now the second condition gives

x − y sin y =
∂u

∂y
=x + g ′(y)� g ′(y)=− y sin y. (80)

To find g(y) we need integration by parts again:
∫

f dg = f g −

∫

g df. (81)

This time we take g = sin y.3 4

g(y) = −

∫

y sin y dy

=

∫

y dcos y

= y cos y −

∫

cos y dy

= y cos y − sin y. (83)

Therefore

u(x, y) = x y + y cos y − sin y. (84)

The solution to the new equation (the one obtained by multiplying µ = y) is

x y + y cos y − sin y = C. (85)

Now we need to check those functions y(x) such that µ(x, y(x)) = 0. These are the solutions that are “brought in” by the

multiplier and may not solve the original equation.5 The only such function is the constant function y = 0. But the orig-

inal equation involves x/y and thus y = 0 cannot be a solution.6

3. Another rule of thumb, whenever sin or cos is involved, put them behind d in
∫

f dg.

4. What happens when both sin/cos and exp are there? Then either way is OK. One of the greatest discovery in Mathe-
matics is that sin/cos are just exp going complex.

Example: Evaluate
∫

et sin t dt. The trick is to integrate by parts twice:
∫

et sin t dt =

∫

sin t det

= et sin t −

∫

et dsin t

= et sin t −

∫

et cos t dt

= et sin t −

∫

cos t det

= et sin t − et cos t +

∫

et dcos t

= et sin t − et cos t−

∫

et sin t dt. (82)

Now move the last term on the right hand side to the left... It is worth trying to start from
∫

et sin t dt =−
∫

et dcos t...

5. To understand how multiplying an equation can change solutions, consider the following simple examples. Consider
y′ = x. y = 0 is not a solution. But if we multiply both sides by y, the equation becomes y y ′ = x y whose solutions are the
same as that of the previous equation except that y = 0 “sneaks in”; On the other hand, if the equation we want to solve is
y y ′= x y, and we multiply both sides by 1/y, then the solution y = 0 is lost.
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So the final answer should be

x y + y cos y − sin y = C, exclude y = 0. (86)

6. Even if one argues that y = 0� dy = 0 and the x/y term disappears, we are still left with dx = 0 which is not true.
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