Math 334 A1 Homework 1 (Due Sep. 24 5pm)

SEP. 17, 2010

- No "Advanced" or "Challenge" problems will appear in homeworks.

Basic Problems

Problem 1. (2.1 13) Solve

$$
\begin{equation*}
y^{\prime}-y=2 t e^{2 t}, \quad y(0)=1 \tag{1}
\end{equation*}
$$

Solution. This is a linear equation in the form

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x) \tag{2}
\end{equation*}
$$

with $P=-1$ and $Q=2 t e^{2 t}$. We need to multiply both sides by $e^{\int P}$ and then integrate.
First compute:

$$
\begin{equation*}
P=-1 \Longrightarrow \int P=-t \Longrightarrow e^{\int P}=e^{-t} \tag{3}
\end{equation*}
$$

Then check

$$
\begin{equation*}
e^{-t} y^{\prime}-e^{-t} y=\left(e^{-t} y\right)^{\prime} \tag{4}
\end{equation*}
$$

Now we need to integrate

$$
\begin{equation*}
\left(e^{-t} y\right)^{\prime}=e^{-t} 2 t e^{2 t}=2 t e^{t} \Longrightarrow e^{-t} y=\int 2 t e^{t}+C \tag{5}
\end{equation*}
$$

To evaluate the integral $\int 2 t e^{t}$, we need the "integration by parts" formula:

$$
\begin{equation*}
\int f \mathrm{~d} g=f g-\int g \mathrm{~d} f \tag{6}
\end{equation*}
$$

with f, g functions. Thus we need to find f, g such that

$$
\begin{equation*}
\int 2 t e^{t}=\int f \mathrm{~d} g \tag{7}
\end{equation*}
$$

Recall that $e^{t}=\mathrm{d} e^{t}$, we try $f=2 t, g=e^{t} .{ }^{1}$ We have

$$
\begin{equation*}
\int 2 t \mathrm{~d} e^{t}=2 t e^{t}-\int e^{t} \mathrm{~d}(2 t)=2 t e^{t}-2 \int e^{t} \mathrm{~d} t=2(t-1) e^{t} \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
e^{-t} y=2(t-1) e^{t}+C \Longrightarrow y=2(t-1) e^{2 t}+C e^{t} \tag{9}
\end{equation*}
$$

Check

$$
\begin{equation*}
y^{\prime}-y=\left(2(t-1) e^{2 t}+C e^{t}\right)^{\prime}-\left(2(t-1) e^{2 t}+C e^{t}\right)=2 e^{2 t}+4(t-1) e^{2 t}-2(t-1) e^{2 t}=2 t e^{2 t} \tag{10}
\end{equation*}
$$

So our general solution is correct.
Finally use the initial values to determine the constant C :

$$
\begin{equation*}
y(0)=1 \Longrightarrow 1=y(0)=2(0-1) e^{2 \cdot 0}+C e^{0}=C-2 \Longrightarrow C=3 . \tag{11}
\end{equation*}
$$

Therefore the solution is

$$
y(t)=2(t-1) e^{2 t}+3 e^{t}
$$

Problem 2. (2.1 15) Solve

$$
\begin{equation*}
t y^{\prime}+2 y=t^{2}-t+1, \quad y(1)=\frac{1}{2}, \quad t>0 \tag{12}
\end{equation*}
$$

Solution. This is a linear equation. To solve it first we need to write it into the form

$$
\begin{equation*}
y^{\prime}+P y=Q \tag{13}
\end{equation*}
$$

through dividing both sides by t :

$$
\begin{equation*}
y^{\prime}+\frac{2}{t} y=t-1+\frac{1}{t} \tag{14}
\end{equation*}
$$

Now the integrating factor is

$$
\begin{equation*}
e^{\int P}=e^{\int 2 / t}=e^{2 \ln t}=e^{\ln t^{2}}=t^{2} . \tag{15}
\end{equation*}
$$

We check

$$
\begin{equation*}
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=\left(t^{2} y\right)^{\prime} \tag{16}
\end{equation*}
$$

[^0]so the integrating factor is correct.
Now multiply the equation by t^{2} :
\[

$$
\begin{equation*}
\left(t^{2} y\right)^{\prime}=t^{3}-t^{2}+t \tag{17}
\end{equation*}
$$

\]

Integrate:

$$
\begin{equation*}
t^{2} y=\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+C \Longrightarrow y=\frac{1}{4} t^{2}-\frac{1}{3} t+\frac{1}{2}+\frac{C}{t^{2}} \tag{18}
\end{equation*}
$$

Check that it is indeed correct:

$$
\begin{equation*}
t y^{\prime}+2 y=t\left(\frac{1}{4} t^{2}-\frac{1}{3} t+\frac{1}{2}+\frac{C}{t^{2}}\right)^{\prime}+2\left(\frac{1}{4} t^{2}-\frac{1}{3} t+\frac{1}{2}+\frac{C}{t^{2}}\right)=t^{2}-t+1 \tag{19}
\end{equation*}
$$

Finally determine C using the initial value:

$$
\begin{equation*}
\frac{1}{2}=y(1)=\frac{1}{4}-\frac{1}{3}+\frac{1}{2}+C \Longrightarrow C=\frac{1}{12} . \tag{20}
\end{equation*}
$$

The solution is given by

$$
\begin{equation*}
y(t)=\frac{1}{4} t^{2}-\frac{1}{3} t+\frac{1}{2}+\frac{1}{12 t^{2}} \tag{21}
\end{equation*}
$$

Problem 3. (2.2 5) Solve

$$
\begin{equation*}
y^{\prime}=\left(\cos ^{2} x\right)\left(\cos ^{2} 2 y\right) \tag{22}
\end{equation*}
$$

Solution. This equation is separable:

$$
\begin{equation*}
y^{\prime}=g(x) p(y) \tag{23}
\end{equation*}
$$

with $g(x)=\cos ^{2} x, p(y)=\cos ^{2} 2 y$.
We divide both sides by $p(y)=\cos ^{2} 2 y$:

$$
\begin{equation*}
\frac{y^{\prime}}{\cos ^{2} 2 y}=\cos ^{2} x \tag{24}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int \frac{1}{\cos ^{2} 2 y} \mathrm{~d} y=\int \cos ^{2} x \mathrm{~d} x+C \tag{25}
\end{equation*}
$$

We evaluate the two integrals.

- $\int \frac{1}{\cos ^{2} 2 y} \mathrm{~d} y$. Recall

$$
\begin{equation*}
(\tan x)^{\prime}=\frac{1}{\cos ^{2} x} \Longrightarrow \mathrm{~d}(\tan y)=\frac{1}{\cos ^{2} y} \mathrm{~d} y \tag{26}
\end{equation*}
$$

To accomodate the $2 y$ we try

$$
\begin{equation*}
\mathrm{d}(\tan 2 y)=\frac{1}{\cos ^{2} 2 y} \mathrm{~d}(2 y)=\frac{2}{\cos ^{2} 2 y} \mathrm{~d} y \tag{27}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int \frac{1}{\cos ^{2} 2 y} \mathrm{~d} y=\frac{1}{2} \tan 2 y \tag{28}
\end{equation*}
$$

- $\quad \int \cos ^{2} x \mathrm{~d} x$. The standard methods is transforming $\cos ^{2} x$ to $\cos 2 x$ using the formula:

$$
\begin{equation*}
\cos 2 x=2 \cos ^{2} x-1 \Longrightarrow \cos ^{2} x=\frac{\cos 2 x+1}{2} \tag{29}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int \cos ^{2} x \mathrm{~d} x=\int\left(\frac{\cos 2 x}{2}+\frac{1}{2}\right)=\frac{\sin 2 x}{4}+\frac{x}{2} \tag{30}
\end{equation*}
$$

Putting things together, the solution (of the new equation - obtained from the original through dividing $\cos ^{2} 2 y$) is given by

$$
\begin{equation*}
\frac{1}{2} \tan 2 y=\frac{\sin 2 x}{4}+\frac{x}{2}+C \tag{31}
\end{equation*}
$$

(You can choose to apply arctan to both sides, but that will make the formula look bad as when y is a solution, so is $y+$ $\frac{k}{2} \pi$ for any integer k).

Finally we need to add back all the zeroes of $p(y)=\cos ^{2} 2 y$.

$$
\begin{equation*}
\cos ^{2} 2 y=0 \Longleftrightarrow \cos 2 y=0 \Longleftrightarrow 2 y=\left(k+\frac{1}{2}\right) \pi \Longleftrightarrow y=\frac{2 k+1}{4} \pi \tag{32}
\end{equation*}
$$

for all integers $k .{ }^{2}$
Putting everything together, the solution to the original problem is

$$
\begin{equation*}
\frac{1}{2} \tan 2 y=\frac{\sin 2 x}{4}+\frac{x}{2}+C ; \quad y=\frac{2 k+1}{4} \pi \text { for all integers } k . \tag{33}
\end{equation*}
$$

Problem 4. (2.4 25) Let $y=y_{1}(t)$ be a solution of

$$
\begin{equation*}
y^{\prime}+p(t) y=0 \tag{34}
\end{equation*}
$$

2. The book unnecessarily put \pm before the ratio.
and let $y=y_{2}(t)$ be a solution of

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{35}
\end{equation*}
$$

Show that $y=y_{1}(t)+y_{2}(t)$ is also a solution of

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{36}
\end{equation*}
$$

Solution. y_{1} is a solution of the homogeneous equation means

$$
\begin{equation*}
y_{1}^{\prime}+p(t) y_{1}=0 . \tag{37}
\end{equation*}
$$

y_{2} is a solution of the nonhomogeneous equation means

$$
\begin{equation*}
y_{2}^{\prime}+p(t) y_{2}=g(t) \tag{38}
\end{equation*}
$$

Now we check

$$
\begin{equation*}
\left[y_{1}+y_{2}\right]^{\prime}+p(t)\left[y_{1}+y_{2}\right]=y_{1}^{\prime}+y_{2}^{\prime}+p y_{1}+p y_{2}=\left(y_{1}^{\prime}+p y_{1}\right)+\left(y_{2}^{\prime}+p y_{2}\right)=0+g(t)=g(t) \tag{39}
\end{equation*}
$$

So $y_{1}+y_{2}$ is also a solution to the nonhomogeneous equation.
Problem 5. (2.6 3) Is the following equation exact? If it is, solve it.

$$
\begin{equation*}
\left(3 x^{2}-2 x y+2\right) \mathrm{d} x+\left(6 y^{2}-x^{2}+3\right) \mathrm{d} y=0 . \tag{40}
\end{equation*}
$$

Solution. This equation is already in the form $M \mathrm{~d} x+N \mathrm{~d} y=0$. Compute

$$
\begin{equation*}
\frac{\partial M}{\partial y}=-2 x, \quad \frac{\partial N}{\partial x}=-2 x \Longrightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{41}
\end{equation*}
$$

The equation is exact. We solve it by finding an $u(x, y)$ such that

$$
\begin{equation*}
\frac{\partial u}{\partial x}=M=3 x^{2}-2 x y+2, \quad \frac{\partial u}{\partial y}=N=6 y^{2}-x^{2}+3 . \tag{42}
\end{equation*}
$$

Using the first condition:

$$
\begin{equation*}
u(x, y)=\int \frac{\partial u}{\partial x} \mathrm{~d} x+g(y)=x^{3}-x^{2} y+2 x+g(y) \tag{43}
\end{equation*}
$$

Then we use the second condition:

$$
6 y^{2}-x^{2}+3=N=\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(x^{3}-x^{2} y+2 x+g(y)\right)=-x^{2}+g^{\prime}(y) \Longrightarrow g^{\prime}(y)=6 y^{2}+3
$$

consequently

$$
\begin{equation*}
g(y)=2 y^{3}+3 y . \tag{45}
\end{equation*}
$$

So

$$
\begin{equation*}
u(x, y)=x^{3}-x^{2} y+2 x+2 y^{3}+3 y \tag{46}
\end{equation*}
$$

The general solution is given by

$$
\begin{equation*}
x^{3}-x^{2} y+2 x+2 y^{3}+3 y=C . \tag{47}
\end{equation*}
$$

Problem 6. (2.6 15) Find the value b for which the equation is exact, and then solve it using that value of b.

$$
\begin{equation*}
\left(x y^{2}+b x^{2} y\right) \mathrm{d} x+(x+y) x^{2} \mathrm{~d} y=0 . \tag{48}
\end{equation*}
$$

Solution. We compute

$$
\begin{equation*}
\frac{\partial M}{\partial y}=2 x y+b x^{2} ; \quad \frac{\partial N}{\partial x}=3 x^{2}+2 x y \tag{49}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \Longleftrightarrow b=3 . \tag{50}
\end{equation*}
$$

The equation is exact if and only if $b=3$.
For $b=1$, we need u such that

$$
\begin{equation*}
\frac{\partial u}{\partial x}=x y^{2}+3 x^{2} y ; \quad \frac{\partial u}{\partial y}=(x+y) x^{2}=x^{3}+x^{2} y \tag{51}
\end{equation*}
$$

Using the first:

$$
\begin{equation*}
u(x, y)=\frac{1}{2} x^{2} y^{2}+x^{3} y+g(y) \tag{52}
\end{equation*}
$$

Using the second:

$$
\begin{equation*}
x^{3}+x^{2} y=\frac{\partial}{\partial y}\left(\frac{1}{2} x^{2} y^{2}+x^{3} y+g(y)\right)=x^{2} y+x^{3}+g^{\prime}(y) \Longrightarrow g^{\prime}(y)=0 \tag{53}
\end{equation*}
$$

So we can take $g(y)=0$.
The final answer is

$$
\begin{equation*}
\frac{1}{2} x^{2} y^{2}+x^{3} y=C \tag{54}
\end{equation*}
$$

Intermediate Problems

Problem 7. (2.6 25) Find an integrating factor and solve the equation.

$$
\begin{equation*}
\left(3 x^{2} y+2 x y+y^{3}\right) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y=0 \tag{55}
\end{equation*}
$$

Solution. Compute

$$
\begin{equation*}
\frac{\partial M}{\partial y}=3 x^{2}+2 x+3 y^{2} ; \quad \frac{\partial N}{\partial x}=2 x \tag{56}
\end{equation*}
$$

They are not equal, so the equation is not exact.
We need to find the integrating factor $\mu(x, y)$ such that

This is just

$$
\begin{equation*}
\frac{\partial}{\partial y}(\mu M)=\frac{\partial}{\partial x}(\mu N) \Longleftrightarrow M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu \tag{57}
\end{equation*}
$$

Let's guess.

$$
\begin{equation*}
\left(3 x^{2} y+2 x y+y^{3}\right) \frac{\partial \mu}{\partial y}-\left(x^{2}+y^{2}\right) \frac{\partial \mu}{\partial x}=-3\left(x^{2}+y^{2}\right) \mu \tag{58}
\end{equation*}
$$

- $\mu=\mu(x)$. This leads to

$$
\begin{equation*}
-\left(x^{2}+y^{2}\right) \mu^{\prime}=-3\left(x^{2}+y^{2}\right) \mu \Longrightarrow \frac{\mu^{\prime}}{\mu}=3 \tag{59}
\end{equation*}
$$

Therefore we can take

$$
\begin{equation*}
\mu=e^{3 x} \tag{60}
\end{equation*}
$$

Multiply the equation by this μ we reach

$$
\begin{equation*}
\left[e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right)\right] \mathrm{d} x+\left[e^{3 x}\left(x^{2}+y^{2}\right)\right] \mathrm{d} y=0 \tag{61}
\end{equation*}
$$

We can check

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right)\right)=\frac{\partial}{\partial x}\left(e^{3 x}\left(x^{2}+y^{2}\right)\right) \tag{62}
\end{equation*}
$$

now.
Now we find u such that

$$
\begin{equation*}
\frac{\partial u}{\partial x}=e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) ; \quad \frac{\partial u}{\partial y}=e^{3 x}\left(x^{2}+y^{2}\right) \tag{63}
\end{equation*}
$$

It is clear that performing $\int \frac{\partial u}{\partial y} \mathrm{~d} y$ is much easier than doing $\int \frac{\partial u}{\partial x} \mathrm{~d} x$. So we start from the second condition:

$$
\begin{equation*}
u=\int \frac{\partial u}{\partial y} \mathrm{~d} y+g(x)=\int\left[e^{3 x} x^{2}+e^{3 x} y^{2}\right] \mathrm{d} y+g(x)=e^{3 x} x^{2} y+\frac{1}{3} e^{3 x} y^{3}+g(x) \tag{64}
\end{equation*}
$$

Next using the first condition:

$$
\begin{equation*}
e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right)=\frac{\partial u}{\partial x}=3 e^{3 x} x^{2} y+2 e^{3 x} x y+e^{3 x} y^{3}+g^{\prime}(x) \tag{65}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
g^{\prime}(x)=0 \tag{66}
\end{equation*}
$$

and we can take $g=0$.
Thus

$$
\begin{equation*}
u(x, y)=e^{3 x} x^{2} y+\frac{1}{3} e^{3 x} y^{3} \tag{67}
\end{equation*}
$$

and the solution to

$$
\begin{equation*}
\left[e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right)\right] \mathrm{d} x+\left[e^{3 x}\left(x^{2}+y^{2}\right)\right] \mathrm{d} y=0 \tag{68}
\end{equation*}
$$

is given by

$$
\begin{equation*}
e^{3 x} x^{2} y+\frac{1}{3} e^{3 x} y^{3}=C \tag{69}
\end{equation*}
$$

As the multiplier $\mu(x, y)=e^{3 x}$ does not contain y, there is no $y=y(x)$ such that $\mu(x, y(x))=0$ and therefore multiplying by μ does not change the solutions. So the solution to the original equation is also

$$
\begin{equation*}
e^{3 x} x^{2} y+\frac{1}{3} e^{3 x} y^{3}=C \tag{70}
\end{equation*}
$$

Problem 8. (2.6 27) Find an integrating factor and solve

$$
\begin{equation*}
\mathrm{d} x+(x / y-\sin y) \mathrm{d} y=0 \tag{71}
\end{equation*}
$$

Solution. Compute

$$
\begin{equation*}
\frac{\partial M}{\partial y}=0, \quad \frac{\partial N}{\partial x}=\frac{1}{y} \tag{72}
\end{equation*}
$$

We need μ such that

$$
\begin{equation*}
\frac{\partial}{\partial y}(\mu M)=\frac{\partial}{\partial x}(\mu N) \Longleftrightarrow M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mu \tag{73}
\end{equation*}
$$

The equation for μ is then

$$
\begin{equation*}
\frac{\partial \mu}{\partial y}-(x / y-\sin y) \frac{\partial \mu}{\partial x}=\frac{1}{y} \mu . \tag{74}
\end{equation*}
$$

This time it is clear that $\mu=\mu(y)$ would work:

$$
\begin{equation*}
\mu^{\prime}=\frac{1}{y} \mu \tag{75}
\end{equation*}
$$

and we can take

$$
\begin{equation*}
\mu=y \tag{76}
\end{equation*}
$$

Multiplying both sides of the equation by $\mu=y$ we have

$$
\begin{equation*}
y \mathrm{~d} x+(x-y \sin y) \mathrm{d} y=0 \tag{77}
\end{equation*}
$$

We can check that it is exact now. We find u such that

$$
\begin{equation*}
\frac{\partial u}{\partial x}=y ; \quad \frac{\partial u}{\partial y}=x-y \sin y \tag{78}
\end{equation*}
$$

Clearly $\int \frac{\partial u}{\partial x} \mathrm{~d} x$ is easier to do. So we use the first condition and write

Now the second condition gives

$$
\begin{equation*}
u(x, y)=\int \frac{\partial u}{\partial x} \mathrm{~d} x+g(y)=x y+g(y) \tag{79}
\end{equation*}
$$

$$
\begin{equation*}
x-y \sin y=\frac{\partial u}{\partial y}=x+g^{\prime}(y) \Longrightarrow g^{\prime}(y)=-y \sin y \tag{80}
\end{equation*}
$$

To find $g(y)$ we need integration by parts again:

$$
\begin{equation*}
\int f \mathrm{~d} g=f g-\int g \mathrm{~d} f \tag{81}
\end{equation*}
$$

This time we take $g=\sin y .{ }^{34}$

$$
\begin{align*}
g(y) & =-\int y \sin y \mathrm{~d} y \\
& =\int y \mathrm{~d} \cos y \\
& =y \cos y-\int \cos y \mathrm{~d} y \\
& =y \cos y-\sin y \tag{83}
\end{align*}
$$

Therefore

$$
\begin{equation*}
u(x, y)=x y+y \cos y-\sin y \tag{84}
\end{equation*}
$$

The solution to the new equation (the one obtained by multiplying $\mu=y$) is

$$
\begin{equation*}
x y+y \cos y-\sin y=C . \tag{85}
\end{equation*}
$$

Now we need to check those functions $y(x)$ such that $\mu(x, y(x))=0$. These are the solutions that are "brought in" by the multiplier and may not solve the original equation. ${ }^{5}$ The only such function is the constant function $y=0$. But the original equation involves x / y and thus $y=0$ cannot be a solution. ${ }^{6}$
3. Another rule of thumb, whenever sin or cos is involved, put them behind d in $\int f \mathrm{~d} g$.
4. What happens when both \sin / \cos and exp are there? Then either way is OK. One of the greatest discovery in Mathematics is that $\sin /$ cos are just exp going complex.

Example: Evaluate $\int e^{t} \sin t \mathrm{~d} t$. The trick is to integrate by parts twice:

$$
\begin{align*}
\int e^{t} \sin t \mathrm{~d} t & =\int \sin t \mathrm{~d} e^{t} \\
& =e^{t} \sin t-\int e^{t} \mathrm{~d} \sin t \\
& =e^{t} \sin t-\int e^{t} \cos t \mathrm{~d} t \\
& =e^{t} \sin t-\int \cos t \mathrm{~d} e^{t} \\
& =e^{t} \sin t-e^{t} \cos t+\int e^{t} \mathrm{~d} \cos t \\
& =e^{t} \sin t-e^{t} \cos t-\int e^{t} \sin t \mathrm{~d} t \tag{82}
\end{align*}
$$

Now move the last term on the right hand side to the left... It is worth trying to start from $\int e^{t} \sin t \mathrm{~d} t=-\int e^{t} \mathrm{~d} \cos t \ldots$
5. To understand how multiplying an equation can change solutions, consider the following simple examples. Consider $y^{\prime}=x . y=0$ is not a solution. But if we multiply both sides by y, the equation becomes $y y^{\prime}=x y$ whose solutions are the same as that of the previous equation except that $y=0$ "sneaks in"; On the other hand, if the equation we want to solve is $y y^{\prime}=x y$, and we multiply both sides by $1 / y$, then the solution $y=0$ is lost.

So the final answer should be

$$
\begin{equation*}
x y+y \cos y-\sin y=C, \quad \text { exclude } y=0 \tag{86}
\end{equation*}
$$

6. Even if one argues that $y=0 \Longrightarrow \mathrm{~d} y=0$ and the x / y term disappears, we are still left with $\mathrm{d} x=0$ which is not true.

[^0]: 1. Rule of thumb: Whenever $e^{a t}$ is involved and you plan to use integration by parts, try $g=e^{a t}$.
