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Abstract. An operator T : X → Y between Banach spaces is said to be finitely
strictly singular if for every ε > 0 there exists n such that every subspace E ⊆ X

with dimE > n contains a vector x such that ‖Tx‖ < ε‖x‖. We show that, for
1 6 p < q < ∞, the formal inclusion operator from Jp to Jq is finitely strictly singular.
As a consequence, we obtain that the strictly singular operator with no invariant
subspaces constructed by C. Read is actually finitely strictly singular. These results
are deduced from the following fact: if k 6 n then every k-dimensional subspace of R

n

contains a vector x with ‖x‖ℓ∞ = 1 such that xmi
= (−1)i for some m1 < · · · < mk.

1. Introduction

Recall that an operator T : X → Y between Banach spaces is said to be strictly

singular if for every ε > 0 and every infinite dimensional subspace E ⊆ X there is

a vector x in the unit sphere of E such that ‖Tx‖ < ε. Furthermore, T is said to be

finitely strictly singular if for every ε > 0 there exists n ∈ N such that for every

subspace E ⊆ X with dimE > n there exists a vector x in the unit sphere of E such

that ‖Tx‖ < ε. Finitely strictly singular operators are also known in literature as

superstrictly singular . Note that

compact ⇒ finitely strictly singular ⇒ strictly singular,

and that each of these three properties defines a closed subspace in L(X,Y ). Actually,

each property defines an operator ideal. We refer the reader to [2, 7, 9, 10, 11, 14] for

more information about strictly and finitely strictly singular operators. All the Banach

spaces in this paper are assumed to be over real scalars.

We say that a subspace E ⊆ X is invariant under an operator T : X → X if

{0} 6= E 6= X and T (E) ⊆ E. Every compact operator has invariant subspaces by [1].

On the other hand, Read constructed in [12] an example of a strictly singular operator

without nontrivial closed invariant subspaces (this answered a question of Pe lczyński).

Read’s operator acts on an infinite direct sum which involves James spaces. Recall
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that James’ p-space Jp is a sequence space consisting of all sequences x = (xn)∞n=1 in

c0 satisfying ‖x‖Jp
<∞ where

‖x‖Jp
=

(

sup
{

n−1
∑

i=1

|xki+1
− xki

|p : 1 6 k1 < · · · < kn, n ∈ N

})
1

p

is the norm in Jp. For more information on James’ spaces we refer the reader to [3, 6,

7, 8, 13].

It was an open question whether every finitely strictly singular operator has invariant

subspaces. Some partial results in this direction were obtained in [2, 11]. We answer

this question in the negative by showing that the operator in [12] is, in fact, finitely

strictly singular. As an intermediate result, we prove that the formal inclusion operator

from Jp to Jq with 1 6 p < q <∞ is finitely strictly singular. The latter statement in

a certain sense refines the result of Milman [9] that the formal inclusion operator from

ℓp to ℓq with 1 6 p < q <∞ is finitely strictly singular.

Milman’s proof is based on the fact that every k-dimensional subspace E of R
n

contains a vector “with a flat”, namely, a vector x with sup-norm one with (at least)

k coordinates equal in modulus to 1. For such a vector, one has ‖x‖ℓq
≪ ‖x‖ℓp

. The

proofs of our results are based on the following refinement of this observation. We

will show that x can be chosen so that these k coordinates have alternating signs. For

such a “highly oscillating” vector x one has ‖x‖Jq
≪ ‖x‖Jp

. More precisely, a finite or

infinite sequence of real numbers in [−1, 1] will be called a zigzag of order k if it has

a subsequence of the form (−1, 1,−1, 1, . . . ) of length k. Our results will be based on

the following theorem; two different proofs of it will be presented in Sections 2 and 3.

Theorem 1. For every k 6 n, every k-dimensional subspace of R
n contains a zigzag

of order k.

Corollary 2. Let k ∈ N, then every k-dimensional subspace of c0 contains a zigzag of

order k.

Proof. Let F be a subspace of c0 with dimF = k. For every n ∈ N, define Pn : c0 → R
n

via Pn : (xi)
∞
i=1 7→ (xi)

n
i=1. Let n1 be such that dimPn1

(F ) = k. There exists n2 such

that every vector in F attains its norm on the first n2 coordinates. Indeed, define

g : F \ {0} → N via g(x) = max
{

i : |xi| = ‖x‖∞
}

. Then g is upper semi-continuous,

hence bounded on the unit sphere of F , so that we put n2 = max
{

g(x) : x ∈ F, ‖x‖ =

1
}

.
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Put n = max{n1, n2}. Since Pn(F ) is a k-dimensional subspace of R
n, by Theorem 1

there exists x ∈ F such that Pnx is a zigzag of order k. It follows from our definition

of n that x is a zigzag of order k in F . �

Suppose that 1 6 p < q. Since ‖x‖Jp
is defined as the supremum of ℓp-norms of

certain sequences, ‖·‖ℓq
6 ‖·‖ℓp

implies ‖·‖Jq
6 ‖·‖Jp

. It follows that Jp ⊆ Jq and the

formal inclusion operator ip,q : Jp → Jq has norm 1. We show next that it is finitely

strictly singular. The proof is analogous to that of Proposition 3.3 in [14]. The main

difference, though, is that we use Corollary 2 instead of the simpler lemma from [9, 14].

Theorem 3. If 1 ≤ p < q < ∞ then the formal inclusion operator ip,q : Jp → Jq is

finitely strictly singular.

Proof. Given any x ∈ Jp, then |xi − xj|
q 6

(

2‖x‖∞
)q−p

|xi − xj|
p for every i, j ∈ N,

so that ‖x‖Jq
6

(

2‖x‖∞
)1− p

q ‖x‖
p

q

Jp
. Fix an arbitrary ε > 0. Let k ∈ N be such

that (k − 1)
1

p
− 1

q > 1
ε
. Suppose that E is a subspace of Jp with dimE = k. By

Corollary 2, there is a zigzag z ∈ E of order k. By the definition of norm in Jp, we

have ‖z‖Jp
> 2(k − 1)

1

p .

Put y = z
‖z‖Jp

. Then y ∈ E with ‖y‖Jp
= 1. Obviously, ‖y‖∞ 6 1

2
(k − 1)−

1

p , so that

‖ip,q(y)‖Jq
= ‖y‖Jq

6 (k − 1)
1

q
− 1

p‖y‖
p

q

Jp
< ε.

Hence, ip,q is finitely strictly singular. �

We will now use Theorem 3 to show that the strictly singular operator T constructed

by Read in [12] is finitely strictly singular. Let us briefly outline those properties of T

that will be relevant for our investigation. The underlying space X for this operator is

defined as the ℓ2-direct sum of ℓ2 and Y , X = (ℓ2⊕Y )ℓ2 , where Y itself is the ℓ2-direct

sum of an infinite sequence of Jp-spaces Y =
(
⊕∞

i=1 Jpi

)

ℓ2
, with (pi) a certain strictly

increasing sequence in (2,+∞). The operator T is a compact perturbation of 0 ⊕W1,

where W1 : Y → Y acts as a weighted right shift, that is,

W1(x1, x2, x3, . . . ) = (0, β1x1, β2x2, β3x3, . . . ), xi ∈ Jpi

with βi → 0. Note that one should rather write βiipi,pi+1
xi instead of βixi. Clearly, it

suffices to show that W1 is finitely strictly singular.

For n ∈ N, define Vn : Y → Y via

Vn(x1, x2, x3, . . . ) = (0, β1x1, . . . , βnxn, 0, 0 . . . ), xi ∈ Jpi
.
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It follows from βi → 0 that ‖Vn −W1‖ → 0. Since finitely strictly singular operators

from Y to Y form a closed subspace of L(Y ), it suffices to show that Vn is finitely

strictly singular for every n. Given n ∈ N, one can write

Vn =
n

∑

i=1

βiji+1ipi,pi+1
Pi,

where Pi : Y → Jpi
is the canonical projection and ji : Jpi

→ Y is the canonical inclu-

sion. Thus, Vn is finitely strictly singular because finitely strictly singular operators

form an operator ideal. This yields the following result.

Theorem 4. Read’s operator T is finitely strictly singular.

In the remaining two sections, we present two different proofs of Theorem 1, one

based on combinatorial properties of polytopes and the other based on the geometry

of the set of all zigzags and algebraic topology.

2. Proof of Theorem 1 via combinatorial properties of polytopes

By a polytope in R
k we mean a convex set which is the convex hull of a finite set. A

set is a polytope iff it is bounded and can be constructed as the intersection of finitely

many closed half-spaces. A facet of P is a face of (affine) dimension k − 1. We refer

the reader to [5, 15] for more details on properties of polytopes.

A polytope P is centrally symmetric iff it can be represented as the absolutely

convex hull of its vertices, that is, P = conv{±ū1, . . . ,±ūn} where ±ū1, . . . ,±ūn are

the vertices of P . Clearly, P is centrally symmetric iff it can be represented as the

intersection of finitely many centrally symmetric “bands”. More precisely, there are

vectors ā1, . . . , ām ∈ R
k such that ū ∈ P iff −1 6 〈ū, āi〉 6 1 for all i = 1, . . . ,m, and

the facets of P are described by
{

u ∈ P : 〈ū, āi〉 = 1
}

or
{

u ∈ P : 〈ū,−āi〉 = 1
}

as

i = 1, . . . ,m.

A simplex in R
k is the convex hull of k + 1 points with non-empty interior. A

polytope P in R
k is simplicial if all its faces are simplexes (equivalently, if all the

facets of P are simplexes). Every polytope can be perturbed into a simplicial polytope

by an iterated “pulling” procedure, see e.g., [5, Section 5.2] for details. We will outline

a slight modification of the procedure such that it preserves the property of being

centrally symmetric. Suppose that P is a centrally symmetric polytope with vertices,

say ±ū1, . . . ,±ūn. Pull ū1 “away from” the origin, but not too far, so that it does

not reach any affine hyperplane spanned by the facets of P not containing ū1; denote

the resulting point ū′1. Let Q = conv{ū′1,−ū1,±ū2, . . . ,±ūn}. By [5, 5.2.2, 5.2.3] this
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P Q R

ū1

−ū1 −ū1

ū′
1

−ū′
1

ū′
1

Figure 1. Pulling out the first pair of vertices.

procedure does not affect the facets of P not containing ū1, while all the facets of Q

containing ū′1 become pyramids having apex at ū′1. Note that no facet of P contains

both ū1 and −ū1. Hence, if we put R = conv{±ū′1,±ū2, . . . ,±ūn}, then, by symmetry,

all the facets of R containing −ū′1 become pyramids with apex at −ū′1, while the rest

of the facets (in particular, the facets containing ū′1) are not affected.

Now iterate this procedure with every other pair of opposite vertices. Let P ′ be the

resulting polytope, P ′ = conv{±ū′1, . . . ,±ū
′
n}. Clearly, P ′ is centrally symmetric and

simplicial as in [5, 5.2.4]. It also follows from the construction that if F is a facet of P ′

then all the vertices of P corresponding to the vertices of F belong to the same facet

of P .

We will call a polytope P marked if the following assumptions are satisfied:

(i) P is simplicial, centrally symmetric, and has a non-empty interior.

(ii) Every vertex is assigned a natural number, called its index , such that two

vertices have the same index iff they are opposite to each other.

(iii) All the vertices of P are painted in two colors, say, black and white, so that

opposite vertices have opposite colors.

See Figure 2 for examples of marked polytopes. A face of a marked polytope is said

to be happy if, when one lists its vertices in the order of increasing indices, the colors

of the vertices alternate. For example, the front top facet of the marked polytope in

the right hand side of Figure 2 is happy. See Figure 3 for more examples of happy

faces.

We will reduce Theorem 1 to the claim that every marked polytope has a happy

facet, which we will prove afterwards. Suppose that k 6 n and E is a subspace of R
n

with dimE = k. Let {b̄1, . . . , b̄k} be a basis of E. We need to find a linear combination
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1 1

2

2

3

3

Figure 2. Examples of marked polytopes in R
2 and R

3.

1 7

5

2

5

8

7

Figure 3. Examples of happy simplexes in R
2 and R

3.

of these vectors x̄ := a1b̄1 + · · · + akb̄k such that x̄ is a zigzag. Let B be the n × k

matrix with columns b̄1, . . . , b̄k, and let ū1, . . . , ūn be the rows of B. If ā = (a1, . . . , ak),

then xi = 〈ūi, ā〉 as i = 1, . . . , n. Thus, it suffices to find ā ∈ R
k such that the vector

(

〈ūi, ā〉
)n

i=1
is a zigzag of order k.

Let P be the centrally symmetric convex polytope spanned by ū1, . . . , ūn, i.e., P =

conv{±ū1, . . . ,±ūn}. Then some of the ±ūi’s will be the vertices of P , while the others

might end up inside P . Suppose that ±ūm1
, . . . ,±ūmr

are the vertices of P , so that

P = conv{±ūm1
, . . . ,±ūmr

}. Following the “pulling” procedure that was described be-

fore, construct a simplicial centrally symmetric polytope P ′ = conv{±ū′m1
, . . . ,±ū′mr

}.

Every vertex of P ′ is either ū′mi
or −ū′mi

for some i. Paint the vertex white in the

former case and black in the latter case; assign index i to this vertex. This way we

make P ′ into a marked polytope.

We claim that happy facets of P ′ correspond to zigzags. Indeed, suppose that P ′ has

a happy facet. Then this facet (or the facet opposite to it) is spanned by some −ū′mi1
,

ū′mi2
, −ū′mi3

, ū′mi4
, etc, for some 1 6 i1 < · · · < ik 6 r. It follows that −ūmi1

, ūmi2
,

−ūmi3
, ūmi4

, etc, are all contained in the same facet of P . Hence, they are contained in

an affine hyperplane, say L, such that P “sits” between L and −L. Let ā be the vector

defining L, that is, L =
{

ū : 〈ū, ā〉 = 1
}

. Since P is between L and −L, we have
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−1 6 〈ū, ā〉 6 1 for every ū in P . In particular, −1 6 xi = 〈ūi, ā〉 6 1 for i = 1, . . . , n.

On the other hand, it follows from −ūmi1
, ūmi2

,−ūmi3
, ūmi4

, · · · ∈ L that xmi1
= −1,

xmi2
= 1, xmi3

= −1, xmi4
= 1, etc. Hence, x̄ is a zigzag of order k.

Thus, to complete the proof, it suffices to show that every marked polytope has a

happy facet. Throughout the rest of this section, P will be a marked polytope in R
k;

Fj stands for the set of all j-dimensional faces of P for j = 0, . . . , k− 1. In particular,

Fk−1 is the set of all facets of P , while F0 is the set of all vertices of P .

By [5, 3.1.6], every (k−2)-dimensional face E of P is contained in exactly two facets,

say F and G; in this case E = F ∩ G. Suppose that R ⊆ Fk−1. For E ∈ Fk−2, we

say that E is a boundary face of R if E = F ∩ G for some facets F and G such that

F ∈ R and G /∈ R. The set of all boundary faces of R will be referred to as the face

boundary of R and denoted ∂̃R. Clearly, ∂̃R ⊂ Fk−2. If F is a single facet, we put

∂̃F = ∂̃{F}. Clearly, ∂̃F is the set of all the facets of F .

For a face F of P we define its color code to be the list of the colors of its vertices

in the order of increasing indices. For example, the color codes of the simplexes in

Figure 3 are (wbw) and (bwbw). Here b and w correspond to “black” and “white”

respectively. A face in P will be said to be a b-face if its color code starts with b and

a w-face otherwise.

Lemma 5. Suppose that F is a facet of P . The following are equivalent:

(i) F is happy;

(ii) ∂̃F contains exactly one happy b-face;

(iii) ∂̃F has an odd number of happy b-faces;

Proof. Note that since F is a simplex, every face of F can be obtained by dropping

one vertex of F and taking the convex hull of the remaining vertices. Hence, the color

code of the face is obtained by dropping one symbol from the color code of F .

(i)⇒(ii) Suppose that F is happy, then its color code is either (bwbw. . . ) or (wbwb. . . ).

In the former case, the only happy b-face of F is obtained by dropping the last vertex,

while in the latter case the only happy b-face of F is obtained by dropping the first

vertex.

(ii)⇒(iii) Trivial.

(iii)⇒(i) Suppose that ∂̃F has an odd number of happy b-faces. Let E be a happy

b-face in ∂̃F . Then the color code of E is the sequence (bwbw. . . ) of length k− 1. The

color code of F is obtained by inserting one extra symbol into this sequence. Note that

inserting the extra symbol should not result in two consecutive b’s or w’s, as in this
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case F would have exactly two happy b-faces (corresponding to removing each of the

two consecutive symbols), which would contradict the assumption. Hence, the color

code of F should be an alternating sequence, so that F is happy. �

Lemma 6. For every R ⊆ Fk−1, the number of happy facets in R and the number of

happy b-faces in ∂̃R have the same parity.

Proof. For R ⊆ Fk−1, define the parity of R to be the parity of the number of happy

b-faces in ∂̃R. Observe that if R and S are two disjoints subsets of Fk−1, then the

parity of R∪S is the sum of the parities of R and S (mod 2). It follows that the parity

of R is the sum of the parities of all of the facets that make up R (mod 2). But this

is exactly the parity of the number of happy facets in R by Lemma 5. �

For every face F of P we write −F for the opposite face. If R is a set of facets, we

write −R = {−F : F ∈ R}. Also, we write
⋃

R for the set theoretic union of all the

facets in R.

Theorem 7. Every marked polytope has a happy facet.

Proof. We will prove a stronger statement: every marked polytope in R
k has an odd

number of happy b-facets. The proof is by induction on k. For k = 1, the statement is

trivial. Let k > 1 and let P be a marked polytope in R
k.

For every facet F , let n̄F be the normal vector of F , directed outwards of P . Fix a

vector v̄ of length one such that v̄ is not parallel to any of the facets of P (equivalently,

not orthogonal to n̄F for any facet F ); it is easy to see that such a vector exists. By

rotating P we may assume without loss of generality that v̄ = (0, . . . , 0, 1). Let T

be the projection from R
k to R

k−1 such that T : (x1, . . . , xk−1, xk) 7→ (x1, . . . , xk−1).

We can think of T as the orthogonal projection onto the “horizontal” hyperplane

{x̄ ∈ R
k : xk = 0} in R

k. Let Q = T (P ). Since T is linear and surjective, Q is again

a centrally symmetric convex polytope in R
k−1 with a non-empty interior.

�
�
�
�

1

12

2

77

Figure 4. The images T (P ) of the polytopes in Figure 2.
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It follows from our choice of v̄ that the k-th coordinate of n̄F is non-zero for every

facet F . Let R be the set of all the facets of P that “face upward”, that is,

R =
{

F ∈ Fk−1 : the k-th coordinate of n̄F is positive
}

.

Clearly, a facet F is in −R iff the k-th coordinate of n̄F is negative. Hence, −R∩R = ∅

and −R ∪ R = Fk−1. Observe that ∂̃R = ∂̃(−R); hence ∂̃R is centrally symmetric.

Clearly, every vertical line (i.e., a line parallel to v̄) that intersects the interior of P

meets the boundary of P at exactly two points and meets the interior of Q at exactly

one point. It follows that the restriction of T to
⋃

R is a bijection between
⋃

R

and Q. The same is also true for −R. Therefore, the restriction of T to
⋃

∂̃R is a face-

preserving bijection between
⋃

∂̃R and the boundary of Q. Under this bijection, the

faces in ∂̃R correspond to the facets of Q. Hence, this bijection induces a structure of a

marked polytope on the boundary of Q, making Q into a marked polytope. It follows,

by the induction hypothesis, that the boundary of Q has an odd number of happy

b-facets. Hence, ∂̃R has an odd number of happy b-faces. It follows from Lemma 6

that R has an odd number of happy facets.

Let m and ℓ be the numbers of all happy b-facets and w-facets in R, respectively.

Then m + ℓ is odd. Observe that F is a happy b-facet iff −F is a happy w-facet.

It follows that −R contains ℓ happy b-facets and m happy w-facets. Thus, the total

number of happy b-facets of P is m+ ℓ, which we proved to be odd. �

3. Proof of Theorem 1 via algebraic topology

Fix a natural number n and let Bn
∞ and Sn−1

∞ be, respectively, the unit ball and the

unit sphere of ℓn∞, i.e., Bn
∞ = {x ∈ R

n : max|xi| 6 1} and Sn−1
∞ = {x ∈ R

n : max|xi| =

1}. For k > 1 we define

Γk = {x ∈ Bn
∞ : x has at least k alternating coordinates ±1},

A+
k = {x ∈ Bn

∞ : x has at least k alternating coordinates ±1, starting with 1},

A−
k = −A+

k .

Note that A−
k is exactly the set of all zigzags of order k in R

n. Put also A+
0 = A−

0 =

Γ0 = Bn
∞. For k > 1, Γk, A

±
k ⊂ Sn−1

∞ and we have

A+
k ∪ A−

k = Γk,

A+
k ∩ A−

k = Γk+1.

Note that the first relation above is true also for k = 0.

We start with a simple lemma.
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Lemma 8. Suppose p is a real polynomial of degree m, and there are m+2 real numbers

t1 < t2 < · · · < tm+2, such that p(ti) > 0 for i odd and p(ti) 6 0 for i even. Then

p ≡ 0.

Proof. We do induction with respect to m. If m = 0, the result is obvious. If the

lemma has been proved up to m− 1, and p is a polynomial of degree m, then p has at

least one real root s. We write p(t) = (t− s)q(t), and q (or −q) has a similar property,

with respect to at least m− 1 values ti—so we can apply induction. �

Lemma 9. There exists a sequence of subspaces πk ⊂ R
n, πk ⊃ πk+1, dimπk = n− k,

such that, if Pk is the orthogonal projection onto πk, then Pk|A
+
k is injective.

Proof. For 1 6 j 6 n we define the vectors ζj ∈ R
n by the formula ζj

i = ij−1. One

checks easily that the ζj’s are linearly independent. Define π0 = R
n, and, for k > 1,

πk = (span{ζ1, . . . , ζk})⊥.

Suppose that x, y ∈ A+
k , and Pkx = Pky. There exist scalars α1, . . . , αk, such that

x− y =
∑k

j=1 αjζ
j. We have indices 1 6 r1 < · · · < rk 6 n and 1 6 s1 < · · · < sk 6 n,

such that xrl
= ysl

= (−1)l−1. It follows that xrl
− yrl

> 0 for l odd and 6 0 for l even,

while xsl
− ysl

6 0 for l odd and > 0 for l even.

Let the polynomial p of degree k − 1 be given by p(t) =
∑k

j=1 αjt
j−1. If rl = sl for

all l, we obtain
∑

j

αjζ
j
rl

=
∑

j

αjrl
j−1 = 0

for all l = 1, . . . k. Thus p has k distinct zeros; it must be identically 0, whence x = y.

Suppose now that we have rl 6= sl for at least one index l. We claim then that

among the union of the indices rl and sl we can find ι1 < ι2 < · · · < ιk+1, such that

xιl − yιl have alternating signs. This can be achieved by induction with respect to k.

For k = 1 we must have r1 6= s1, so we may take ι1 = min{r1, s1}, ι2 = max{r1, s1}.

For k > 1, there are two cases. If r1 = s1, we take ι1 = r1 = s1 and apply the induction

hypothesis to obtain the rest. If r1 6= s1, we take ι1 as the lesser of the two and ι2 as

the other one, and then we continue “accordingly” to ι2 (that is, taking as ι’s the rest

of r’s if ι2 = r1 and the rest of s’s if ι2 = s1).

Now, the way ιl have been chosen implies that p(t) defined above satisfies the hy-

potheses of Lemma 8: it has degree k − 1 and the values it takes in ι1, . . . , ιk+1 have

alternating signs. It must then be identically 0, which implies x = y. �

Since A−
k = −A+

k , it follows that Pk|A
−
k is also injective.
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Lemma 10. If πk, Pk are obtained in Lemma 9, then

∆k := Pk(Γk)

is a balanced, convex subset of πk, with 0 as an interior point (in πk). Moreover,

∆k = Pk(A−
k ) = Pk(A+

k ) and ∂∆k = Pk(Γk+1) (the boundary in the relative topology of

πk).

Proof. We will use induction with respect to k. The statement is immediately checked

for k = 0 (note that P0 = IRn and ∂∆0 = Sn−1
∞ = Γ1).

Assume the statement true for k; we will prove its validity for k+1. By the induction

hypothesis, we have

∆k+1 = Pk+1Pk(Γk+1) = Pk+1∂∆k = Pk+1∆k

and is therefore a balanced, convex subset of πk+1, with 0 as an interior point.

Take then y ∈
◦

∆k+1. Suppose P−1
k+1(y)∩∂∆k contains a single point. Then P−1

k+1(y)∩

∆k also contains a single point, and therefore P−1
k+1(y) ∩ πk is a support line for the

convex set ∆k. This line is contained in a support hyperplane (in πk); but then the

whole of ∆k projects onto πk+1 on one side of this hyperplane, and thus y belongs to

the boundary of this projection. Therefore y cannot be in
◦

∆k+1.

The contradiction obtained shows that P−1
k+1(y) ∩ ∂∆k contains at least two points.

But

∂∆k = Pk(Γk+1) = Pk(A+
k+1) ∪ Pk(A−

k+1)

whence

Pk+1(∂∆k) = Pk+1(A
+
k+1) ∪ Pk+1(A

−
k+1).

Since Pk+1 restricted to each of the two terms in the right hand side is injective by

Lemma 9, there exists a unique z+ ∈ A+
k+1 such that y = Pk+1z+ and a unique z− ∈

A−
k+1 such that y = Pk+1z−.

Take x ∈ P−1
k+1(y) ∩ ∂∆k. Then either x ∈ Pk(A+

k+1) or x ∈ Pk(A−
k+1). If x ∈

Pk(A+
k+1) then x = Pkz for some z ∈ A+

k+1, so that y = Pk+1x = Pk+1z, which yields

z = z+; hence x = Pkz+. Similarly, if x ∈ Pk(A−
k+1) then x = Pkz−. It follows that

P−1
k+1(y) ∩ ∂∆k ⊆ {Pkz+, Pkz−}. Since P−1

k+1(y) ∩ ∂∆k contains at least two points,

we conclude that P−1
k+1(y) ∩ ∂∆k = {Pkz+, Pkz−} and Pkz+ 6= Pkz−. It follows from

y = Pk+1z± that
◦

∆k+1 ⊂ Pk+1(A
±
k+1). But, ∆k+1 being a closed convex set with a

nonempty interior, it is the closure of its interior
◦

∆k+1; since the two sets on the right

are closed, we have actually ∆k+1 = Pk+1(A
±
k+1).
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We want to show now that ∂∆k+1 = Pk+1(Γk+2). Suppose first that y ∈ Pk+1(Γk+2) =

Pk+1(A
+
k+1 ∩ A−

k+1); that is, y = Pk+1z with z ∈ A+
k+1 ∩ A−

k+1. Clearly, y ∈ ∆k+1. If

y ∈
◦

∆k+1, then, defining z+ and z− as before, the injectivity of Pk+1 on A±
k+1 implies

z = z− = z+. This contradicts Pkz+ 6= Pkz−; consequently, y ∈ ∂∆k+1.

Conversely, take y ∈ ∂∆k+1 = ∂
(

Pk+1(∆k)
)

. Again, take z+ ∈ A+
k+1, z− ∈ A−

k+1,

such that Pk+1z+ = Pk+1z− = y. We have then Pkz+ ∈ ∂∆k (if Pkz+ ∈
◦

∆k, then

Pk+1z+ = Pk+1Pkz+ must be in the interior of Pk+1∆k, which is
◦

∆k+1). Similarly,

Pkz− ∈ ∂∆k.

If Pkz+ 6= Pkz−, then Pk+1 applied to the whole segment
[

Pkz+, Pkz−
]

is equal to y.

Therefore the segment belongs to ∂∆k. Since ∂∆k = Pk(A+
k+1 ∪A

−
k+1), there exist two

values x1, x2 either both in A+
k+1 or both in A−

k+1, such that Pkx1, Pkx2 ∈
[

Pkz+, Pkz−
]

,

and thus Pk+1x1 = Pk+1x2 = y. This contradicts the injectivity of Pk+1 on A±
k+1.

Therefore Pkz+ = Pkz−. But z+ and z− both belong to A+
k , on which Pk is injective.

It follows that z+ = z− ∈ A+
k+1 ∩ A−

k+1 = Γk+2, and Pk+1z+ = y. This ends the

proof. �

The main consequence of Lemma 10, in combination with Lemma 9, is the fact that

the linear map Pk−1 maps homeomorphically Γk into ∂∆k−1, which is the boundary of

a convex, balanced set, containing 0 in its interior.

Proof of Theorem 1. As noted above, Pk−1 maps homeomorphically Γk onto the bound-

ary of a convex, balanced set, containing 0 in its interior. Composing it with the map

x 7→ x
‖x‖

, we obtain a homeomorphic map φ from Γk to Sn−k, which satisfies the relation

φ(−x) = −φ(x).

Suppose that E is a k-dimensional subspace of R
n with no zigzags. Then E∩Γk = ∅,

so that the projection of Γk onto E⊥ does not contain 0. Composing this projection

with the map x 7→ x
‖x‖

, we obtain a continuous map from ψ : Γk → Sn−k−1, that

satisfies ψ(−x) = −ψ(x). Then the map Φ := ψ ◦ φ−1 : Sn−k → Sn−k−1 is continuous

and satisfies Φ(−x) = −Φ(x). This is however impossible: it is known that such a map

does not exist (see, for instance, [4]). �

Remark 11. In Theorem 1, the alternating sequence (−1, 1,−1, 1, . . . ) cannot gen-

erally be replaced with another “pattern”, i.e., another sequence of length k of ±1’s.

Indeed, suppose that the pattern has two consecutive 1’s, say, in positions r and r+ 1.

Let E be the subspace of R
n defined by the relations xr + xr+1 + xr+2 = 0 and xi = 0

whenever r + 3 6 i 6 n − k + r + 1. Then dimE = k and it is easy to see that no

vector in E ∩Bn
∞ has the required pattern.
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On the other hand, it follows easily from Theorem 1 that for every subspace E ⊆ R
n

with dimE = 2k−1, one can find a vector in E∩Bn
∞ with any given pattern of length k.

Generally, 2k − 1 is a sharp estimate, as the following example shows. Consider the

pattern (1, 1, . . . , 1) of length k. Consider the subspace E ⊂ R
n consisting of all the

vectors whose first 2k − 1 coordinates add up to zero, and the remaining coordinates

are zero. Then dimE = 2k − 2 and E ∩ Bn
∞ contains no vectors conforming to the

pattern.
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[5] B. Grünbaum, Convex polytopes. 2nd edition. Graduate Texts in Mathematics, 221. Springer–

Verlag, New York, 2003.
[6] R.C. James, A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad.

Sci. U.S.A. 37(1951), 174–177.
[7] J. Lindenstrauss, L. Tsafriri, Classical Banach spaces. I. Sequence spaces. Springer-Verlag, Berlin-

New York, 1977.
[8] V. Maslyuchenko and A. Plichko, Quasireflexive locally convex spaces without Banach subspaces.
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