UNBOUNDED NORM TOPOLOGY
IN BANACH LATTICES

M. KANDIC, M.A.A. MARABEH, AND V.G. TROITSKY

ABSTRACT. A net () in a Banach lattice X is said to un-converge
to a vector z if |||:z:(l — x| /\uH — 0 for every u € X, . In this paper,
we investigate un-topology, i.e., the topology that corresponds to
un-convergence. We show that un-topology agrees with the norm
topology iff X has a strong unit. Un-topology is metrizable iff X
has a quasi-interior point. Suppose that X is order continuous,
then un-topology is locally convex iff X is atomic. An order con-
tinuous Banach lattice X is a KB-space iff its closed unit ball Bx
is un-complete. For a Banach lattice X, By is un-compact iff X
is an atomic KB-space. We also study un-compact operators and
the relationship between un-convergence and weak*-convergence.

1. INTRODUCTION AND PRELIMINARIES

For a net (z,) in a vector lattice X, we write z, — = if (z,) con-
verges to x in order. That is, there is a net (u,), possibly over a
different index set, such that u, | 0 and for every v there exists o such

that |z, — x| < u, whenever a > ay. We write z, 2% 2 and say that

(zo) wo-converges to x if |1, — x| Au = 0 for every u € X,; “uo”

stands for “unbounded order”. For a net (z,) in a normed lattice X,

. Il . . . un
we write ¢, — x if (xa) converges to x in norm. We write x, —
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and say that (z,) un-converges to z if |z, — x| Au Tl o for every
u € X; “un” stands for “unbounded norm”.

A variant of uo-convergence was originally introduced in |[Nak4§],
while the term “uo-convergence” was first coined in [DeM64]. Re-
lationships between uo, weak, and weak* convergences were investi-
gated in [Wic77, [GX14] [Gaol4]. Relationships between uo-convergence
and almost everywhere convergence were investigated and applied in
[GX14, [EM16, IGTX]. We refer the reader to |[GTX] for a further re-
view of properties of uo-convergence. Un-convergence was introduced
in [Tro04] and further investigated in [DOT]. For unexplained terminol-
ogy on vector and Banach lattices we refer the reader to [AA02, [AB06].
All vector lattices are assumed to be Archimedean.

Let us start by briefly going over some of the known properties
of these modes of convergence; we refer the reader to |[GTX, [DOT]
for details. Both uo-convergence and un-convergence respect linear
and lattice operations; limits are unique. In particular, z, — =«
iff |v, — 2| => 0; similarly, v, > =z iff |z, — 2| == 0. For order
bounded nets, uo-convergence agrees with order convergence while un-
convergence agrees with norm convergence. It follows that order inter-
vals are uo- and un-closed. For sequences in L,(x1), where 1 < p < o0
and p is a finite measure, it is easy to see that uo-convergence agrees
with convergence almost everywhere, see, e.g., [DeM64, Example 2].
Under the same assumptions, un-convergence agrees with convergence
in measure, see [Tro04, Example 23]. We write L, for L,|0, 1].

Suppose that X is a vector lattice. By [GTXl, Corollary 3.6], every
disjoint sequence in X is uo-null. Recall that a sublattice Y of X is
regular if the inclusion map preserves suprema and infima of arbitrary
subsets. It was shown in [GTX| Theorem 3.2 that uo-convergence is
stable under passing to and from regular sublattices. That is, if (y,) is
a net in a regular sublattice Y of X then y, — 0in Y iff y, — 0 in
X (in fact, this property characterizes regular sublattices).

It is clear that if X is an order continuous normed lattice then uo-
convergence implies un-convergence. Let X be a Banach lattice and

(x,) a un-null sequence in X. Then (x,) has a uo-null subsequence by
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Proposition 4.1 of [DOT]. A disjoint sequence need not be un-null. For
example, the standard unit sequence (e,,) in ¢+, is not un-null. However,
a un-null sequence has an asymptotically disjoint subsequence. More
precisely, we have the following.

Theorem 1.1. ([DOT], Theorem 3.2]) Let (x,) be a un-null net. There
is an increasing sequence of indices (ay) and a disjoint sequence (dy,)

such that xo, — dj M> 0.

While uo-convergence need not be given by a topology, it was ob-
served in [DOT] that un-convergence is topological. For every ¢ > 0
and non-zero u € X, put

Viu={z e X : [[lz]Anul| <e}.

The collection of all sets of this form is a base of zero neighborhoods
for a topology, and the convergence in this topology agrees with un-
convergence. We will refer to this topology as un-topology.

Every time a new linear topology is discovered, one is expected to
ask several natural questions: is this topology metrizable? Is it locally-
convex? Complete? Can one characterize (relatively) compact sets?
Is this topology stronger or weaker than other known topologies? In
this paper, we study these and similar questions for un-topology. In
other words, our motivation for this paper is to investigate topological
properties of un-topology.

Throughout this paper, X will be assumed to be a Banach lattice,
unless specified otherwise. We write By for the closed unit ball of X.
It was observed in [DOT] that z, — 2 implies ||z| < liminf||z.]|.
This yields that Bx is un-closed.

The following facts will be used throughout the paper.

Lemma 1.2. (1) If (x4) is an increasing net in a vector lattice X
and T, — x then x4 T ;

(ii) If (z4) is an increasing net in a normed lattice X and x4 —> x
then o T x and x, M x

Proof. Without loss of generality, x, > 0 for all «; otherwise, pick

any index o and consider the net (z, — Zay)asay, Which converges to
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T — To,. Since lattice operations are uo- and un-continuous, we have
= 0.

Take any z € X,. It follows from uo-continuity of lattice opera-
tions that 2, A 2z = 2 A 2. Since the net (x4 A 2) is order bounded and
increasing, this yields z, A 2 = & A z and, therefore £, Az T2 A 2. It
follows that z, A z < x for every a and every z € X, . Applying this
with z = x, we get x, < x. Thus, the net (z,) is order bounded and,
therefore, z, — x, hence z, 1 .

The proof is similar and uses the fact that every monotone norm
convergent net converges in order to the same limit. We note that

Ta N\ 2 M x A z and, therefore, x, A z T A z for every z € X . It

follows that the net (z,) is order bounded, which yields z, L and,

therefore, z, 1 x. O

Recall that [DOT), Question 2.14] asks whether z, — 0 implies that
there exists an increasing sequence of indices (ay) such that z,, — 0.

The following counterexample was kindly provided to us by E. Emelyanov.

Example 1.3. Let {2 be an uncountable set; let X be the closed sub-
lattice of £ (£2) consisting of all the functions with countable support.
For w € Q, we write e, for the characteristic function of {w}.

Let A be the set of all countable subsets of €2, ordered by inclusion.
For each o € A, pick any w ¢ « and put =, = e,. We claim that
To — 0. Indeed, let u € X,; let o be the support of u. Then
To AN u = 0 whenever a > ay.

On the other hand, let (wy) be any sequence in €2; we claim that the
sequence (e, ) is not un-null. Indeed, put § = {wy : k € N} and let
u be the characteristic function of 3. Then e,, A u = e,, for every k;
hence it does not converge in norm to zero.

In particular, if (ay) is an increasing sequence of indices in A then

Tq,. ) 18 not un-null.
(Tay)

Let e € X, . Recall that the band B, generated by e is norm closed
and contains the principal ideal I,; hence I, € I, C B.. Recall also
that
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e cis a strong unit when I, = X; equivalently, for every x > 0
there exists n € N such that x < ne;

e ¢ is a quasi-interior point if I, = X ; equivalently, z Ane M>
x for every x € X ;

e cis a weak unit if B, = X; equivalently, x A ne 1 x for every
r e Xy.

In particular, strong unit = quasi-interior point = weak unit.

2. STRONG UNITS

It is easy to see that each V., is solid. It is also absorbing, that is,
for every x € X there exists A > 0 such that Az € V_,. The following
lemma is a dichotomy: it says that V., is either “very small” or “very
large”.

Lemma 2.1. Lete > 0, and 0 # uw € Xy. ThenV_,, is either contained

in [—u,u] or contains a non-trivial ideal.

Proof. Suppose that V., is not contained in [—u,u]. Then there exists
x € V., such that x ¢ [—u,u]. Replacing x with |z|, we may assume
that * > 0. Let y = (x — u)™; then y > 0. It is an easy exercise to
show that (A\y) A u < 2 Aw for every A > 0; it follows that Ay € V, .

Since V,, is solid, it contains the principal ideal I,,. O
Lemma 2.2. If V., is contained in [—u,u| then u is a strong unit.

Proof. Let x € X ;. There exists A > 0 such that Az € V_,, hence
Ax € [—u,u]. It follows that u is a strong unit. O

Recall that if e is a positive vector in X then the principal ideal I,
equipped with the norm

[zfle =inf{A >0 : 2| < Ae}

is lattice isometric to C'(K) for some compact Hausdorff space K, with
e corresponding to the constant one function 1; see, e.g., Theorems 3.4
and 3.6 in [AAQ2]. If e is a strong unit in X then I, = X; it is easy to
see that in this case ||| is equivalent to the original norm; it follows
that X is lattice and norm isomorphic to C'(K).
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It is easy to see that if x, M> x then z, — z, so norm topology
generally is stronger than un-topology.

Theorem 2.3. Let X be a Banach lattice. The following are equiva-
lent.

(i) Un-topology agrees with norm topology;
(ii) X has a strong unit.

Proof. Suppose that un-topology and norm topology agree. It follows
that V,, is contained in Bx for some ¢ > 0 and u > 0. By Lemma ,
we conclude that V., is contained in [—u, u]; hence u is a strong unit
by Lemma

Suppose now that X has a strong unit. Then X is lattice and norm
isomorphic to C'(K) for some compact Hausdorft space K. Without
loss of generality, X = C(K). It follows from z, — 0 that |z A1 LN
0. Since the norm in C(K) is the sup-norm, it is easy to see that

xaﬂo. O

3. QUASI—INTERIOR POINTS AND METRIZABILITY

Given a net (z4) in a vector lattice with a weak unit e, then z, ~—
iff |z, — x| Ae > 0; see, e.g., [GTX, Corollary 3.5] (this was proved
in [Kap97] in the special case when the lattice is order complete). That
is, it suffices to test uo-convergence on a weak unit. Lemma 2.11
in [DOT] provides a similar statement for un-convergence and quasi-
interior points. We now prove that this property actually characterizes

quasi-interior points.
Theorem 3.1. Let e € X . The following are equivalent.
(i) e is a quasi-interior point;

(i) For every net (x4) in X4, if x4 Ne T 0 then Ty —> 0;

(iii) For every sequence (x,) in X, if z, Ne T then Ty 0.
Proof. The implication ({)=-(il) was proved in [DOT, Lemma 2.11].
:> is trivial. This leaves :>.

Suppose . Fix x € X,. We need to show that x A ne M> x or,

equivalently (z — ne)™ T g as a sequence of n. Put uw = x Ve. The
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ideal I, is lattice isomorphic (as a vector lattice) to C(K) for some
compact space K, with u corresponding to 1. Since z,e € I,,, we may
consider x and e as elements of C'(K'). Note that Ve = 1 implies that
x and e never vanish simultaneously.

For each n € N, we define
F,={te K : z(t) 2 ne(t)} and O, = {t € K : x(t) > ne(t)}.

Clearly, O,, C F,,, O, is open, and Fj, is closed.

Claim 1: F,11 C O,. Indeed, let t € F,, 1. Then z(t) > (n+ 1)e(t).
If e(t) > 0 then z(t) > ne(t), so that t € O,,. If e(t) = 0 then z(t) > 0,
hence t € O,

By Urysohn’s Lemma, we find z, € C(K) such that 0 < z, < z, 2,
agrees with x on F,.; and vanishes outside of O,,. We can also view
zp as an element of X.

Claim 2: n(z, Ne) < z. Let t € K. If t € O,, then n(z, Ae)(t) <
ne(t) < z(t). If t ¢ O,, then z,(t) = 0, so that the inequality is satisfied
trivially.

Claim 3: (z — (n+ 1)€)+ < z,. Again, let t € K. If t € F, 1 then
(z—(n+1)e)" <a(t) = z,(t). I t ¢ F,yy then z(t) < (n+ 1)e(t), so
that (z — (n+ 1)e)+(t) = 0 and the inequality is satisfied trivially.

Now, Claim 2 yields 0 < z, A e < %x M) 0, so that z, Ae M> 0.
By assumption, this yields z, — 0. Since 0 < 2, < @ for every n, the

sequence (z,) is order bounded and, therefore, z, I 0. Now Claim 3

yields (z — (n + 1)6>+ LN 0, which concludes the proof. O

Theorem 3.2. Un-topology is metrizable iff X has a quasi-interior
point. If e is a quasi-interior point then d(x,y) = H|x —y| A eH s a
metric for un-topology.

Proof. Suppose that e € X is a quasi-interior point and put d(z,y) =
H|x —y| A eH for z,y € X. It can be easily verified that this defines
a metric on X. Indeed, d(z,z) = 0 and d(x,y) = d(y,z) for every
z,y € X. If d(z,y) = 0 then |z — y| Ae = 0, hence |z — y| = 0 because
e is a weak unit, so that = y. The triangle inequality follows from
the fact that

lt—z|ANe< |z —y|ANe+|y—z| Ae.
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Note also that z, — = iff d(x,,2) — 0 for every net (z,) in X.
Conversely, suppose that un-topology is metrizable; let d be a metric
for it. For each n, let B1 be the ball of radius % centred at zero for the
metric, that is, !
By ={r€X :d0) <}

Since Bi is a neighborhood of zero for the un—topology, it contains
Ve, i for some ¢, > 0 and u, > 0. Let M, = 2™||u,|| + 1; then the
70;1 ;\’4—: converges. Note that M, > 1 and u,, < M,e for
every n. We claim that e is a quasi-interior point.

series e =

It suffices that Theorem is satisfied. Suppose that x,Ae M> 0

for some net (z,) in X,. Fix n. It follows from

To Ny < (Mpxa) A (Mye) = M, (x4 A e) H—”> 0

that =, A u,, — ” H

whenever a > . Consequently, x,, is in V.

0. Then there exists g such that ||z, A u,| < &,
and, therefore, in B:.

n,Un

It follows that z, — 0 in the metric, hence z, — 0. [

Note that a linear Hausdorff topological space is metrizable iff it
is first countable, i.e., has a countable base of neighborhoods of zero,
see, e.g., [KNG3| pp. 49]. Therefore, Theorem [3.2)implies, in particular,
that un-topology is first countable iff X has a quasi-interior point. This
should be compared with Corollary 2.13 and Question 2.14 in [DOT]
(we now know from Example that Question 2.14 has a negative

answer).

Proposition 3.3. Un-topology is stronger than or equal to a metric
topology iff X has a weak unit.

Proof. Suppose that un-topology is stronger than or equal to a topology
given by a metric. Construct e as in the second part of the proof of
Theorem [3.2l We claim that e is a weak unit. Suppose that z Ae = 0.
It follows that x A u,, = 0 for every n and, therefore, x € V.
x € Bi. It follows that z = 0.

Conzfersely, let e € X be a weak unit. For z,y € X, define d(x,y) =
H |z —y| A eH. As in the first part of the proof of Theorem , this is
a metric and z, — x implies d(z4,z) — 0. O

hence

n,Un )
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When is every un-null sequence norm bounded? If X has a
strong unit then, by Theorem [2.3] un-topology agrees with norm topol-
ogy, hence every un-null sequence is norm null and, in particular, norm
bounded. This justifies the following question: If every un-null se-
quence in X is norm bounded (or even norm null), does this imply that
X has a strong unit? The following example shows that, in general,
the answer in negative.

Example 3.4. Let X be as in Example [.3] Clearly, X does not have
a strong unit; it does not even have a weak unit. Yet, every un-null
sequence in X is norm null. Indeed, suppose that x,, — 0. Let u be the
characteristic function of | J)_, supp z,,. By assumption, |z,| Au LAY
It follows that for every ¢ € (0, 1) there exists ng such that for every

n = ng we have |||z, A ul| < e. It follows that ||z,|| < e.

However, we will see that the answer is affirmative under certain
additional assumptions.

Recall that every disjoint sequence is uo-null. Thus, if dim X = oo,
one can take any non-zero disjoint sequence, scale it to make it norm
unbounded, and thus produce a uo-null sequence which is not norm
bounded. However, this trick does not work for un-topology because a

disjoint sequence need not be un-null. Moreover, we have the following.

Proposition 3.5. The following are equivalent.

(i) X is order continuous;
(i) Every disjoint sequence in X is un-null;

(iii) Ewvery disjoint net in X is un-null.

Proof. :> because every disjoint sequence is uo-null and, there-
fore, un-null. To show that :>, note that every order bounded
disjoint sequence is norm null and apply [ABO6, Theorem 4.14].
=> is trivial. To show that =>, suppose that there exists
a disjoint net (x,) which is not un-null. Then there exist ¢ > 0 and
u € X such that for every o there exists # > o with [[|zg| A ul| > e.
Inductively, we find an increasing sequence (ay) of indices such that
||za,| Aul| > e. Hence, the sequence (zq,) is disjoint but not un-
null. U
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Corollary 3.6. If X is order continuous and every un-null sequence in
X is norm bounded then dim X < oo (and, therefore, X has a strong
unit).

Proof. Suppose dim X = oco. Then there exists a non-zero disjoint
sequence in X. Scaling it if necessary, we may assume that it is not

norm bounded. Yet it is un-null. A contradiction. O

Note that Example 2.7 in [DOT] is an example of a disjoint but non
un-null sequence in an infinite-dimensional Banach lattice which is not

order continuous and lacks a strong unit.

Proposition 3.7. If X has a quasi-interior point and every un-null

sequence is norm bounded then X has a strong unit.

Proof. By Theorem [3.2] the un-topology on X is metrizable. Fix such
a metric. As before, for each n, let B1 be the ball of radius % centred
at zero for the metric. For each n, B; contains V;, ,,. for some ¢, >0
and u, > 0. If V. .. C [—up,u) for some n then u, is a strong
unit by Lemma 2.2} Otherwise, by Lemma each V, ,, contains a
non-trivial ideal. Pick any x,, in this ideal with ||z,|| = n. Then the
sequence (z,) is norm unbounded; yet z, € B% for every n, so that

T, —> 0; a contradiction. O

4. UN-CONVERGENCE IN A SUBLATTICE

Recall that if (y,) is a net in a regular sublattice Y of a vector lattice
X then yo, — 0in Y iff yo — 0in X. The situation is very different for
un-convergence. Let Y be a sublattice of a normed lattice X and (y,)
anetin Y. If y, — 0 in X then, clearly, y, — 0 in Y. However, the
following examples show that the converse fails even for closed ideals

or bands.

Example 4.1. The sequence of the standard unit vectors (e,) is un-
null in ¢y but not in /.., even though ¢ is a closed ideal in /.

Example 4.2. Let X = C[—1,1] and Y be the set of all f € X which
vanish on [—1,0]. It is easy to see that Y is a band (though it is not
a projection band). Let (f,) be a sequence in Y, such that ||f,|| =1
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and supp f, C [n%l, %] Since X has a strong unit, the un-topology
on X agrees with the norm topology, hence (f,,) is not un-null in X.

However, it is easy to see that (f,) is un-null in Y.

Nevertheless, there are some good news. Recall that a sublattice Y
of a vector lattice X is majorizing if for every x € X, there exists
y €Y, with z <.

Theorem 4.3. Let Y be a sublattice of a normed lattice X and (yq)
a net in'Y such that y, — 0 in' Y. Each of the following conditions
implies that yo — 0 in X.
(i) Y is majorizing in X;
(i) Y is norm dense in X;
(iii) Y is a projection band in X.

Proof. Without loss of generality, y, > 0 for every a. (i) is straight-
forward. To prove , take u € Xy and fix ¢ > 0. Find v € Y, with

|lu — v|]| < e. By assumption, y, A v Il o, We can find ap such that
lya A v|| < & whenever a > ap. It follows from u < v + |u — v| that

Yo AU < Yo AU+ |u— 0], so that

19 A ull < Hlya Aol + [lu = ol < 2e.

It follows that y, A u M 0. Hence yo — 0 in X.

To prove , let w € X;. Then u = v + w for some positive v € Y’

and w € Y% It follows from 4, L w that yo Au =1y, Av M> 0. 0

Recall that every (Archimedean) vector lattice X is majorizing in its
order (or Dedekind) completion X°; see , e.g., [AB06, p. 101].

Corollary 4.4. If X is a normed lattice and x, — = in X then
To —> x in the order completion X° of X.

Corollary 4.5. If X is a KB-space and x, 20 in X then z, — 0
m X,

Proof. By [ABOG, Theorem 4.60], X is a projection band in X**. The
conclusion now follows from Theorem [4.3](ii). O

Example 4.1|shows that the assumption that X is a KB-space cannot
be removed.
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Corollary 4.6. Let Y be a sublattice of an order continuous Banach
lattice X. If yo — 0 in' Y then yo — 0 in X.

Proof. Suppose that 3, — 0 in Y. By Theorem , Yo — 0 in
the ideal I(Y) generated by Y in X. By Theorem , Yo — 0

in the closure I(Y) of the ideal. Since X is order continuous, I(Y)
is a projection band in X. It now follows from Theorem that
Yo — 0in X. 0

Question 4.7. Let B be a band in X. Suppose that every net in B
which is un-null in B is also un-null in X. Does this imply that B is a

projection band?

Proposition 4.8. Every band in a normed lattice is un-closed.

Proof. Let B be a band and (z,) a net in B such that z, — z. Fix
z € B% Then |z,| A 2 = 0 for every a. Since lattice operations are

un-continuous, we have |x| A z = 0. It follows that z € B¥ = B. [

Remark 4.9. Let B be a projection band a normed lattice X. We
write Pp for the corresponding band projection. It follows easily from
0 < Pg < I that if z, — z in X then Pgz, — Pgx both in X and
in B.

Dense band decompositions. Let X be a Banach lattice. By a
dense band decomposition of X we mean a family B of pairwise
disjoint projection bands in X such that the linear span of all of the
bands in B is norm dense in X.

Lemma 4.10. Let B be a family of pairwise disjoint projection bands
in a Banach lattice X. B is a dense band decomposition of X iff for
every x € X and every € > 0 there exist By,..., B, in B such that
|z — i, P <e.

Proof. Suppose that B is a dense band decomposition of X. Let x € X

and ¢ > 0. By assumption, we can find distinct bands Bi,..., B,
and vectors z; € By,...,x, € B, such that Hx - Z?:l ZBZH < e. Put
Q =1->%",Pp. Then Q is also a band projection, hence it is a
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lattice homomorphism and 0 < Q) < I. Note also that Qx; = 0 for
1=1,...,n. We have
|x — Z%! > Q}x — le| = ’Qx — ZQ:UZ} = |$ — ZPBil".
i=1 i=1 i=1 i=1
It follows that ||z — >0 | Pgz|| <e.
The converse implication is trivial. 0

Our definition of a disjoint band decomposition is partially motivated

by following fact.

Theorem 4.11. ([LT79, Proposition 1.a.9]) Every order continuous
Banach lattice admits a dense band decomposition B such that each

band in B has a weak unit.

It is easy to see that if X is an order continuous Banach lattice and
B is a pairwise disjoint collection of bands such that x = sup{Ppx :
B € B} for every x € X then B is a dense band decomposition.

Theorem 4.12. Suppose that B is a dense band decomposition of a
Banach lattice X. Then x, — = in X iff Pgxo — Pgx in B for each
B e B.

Proof. Without loss of generality, + = 0 and x, > 0 for every a. The
forward implication follows immediately from Remark To prove
the converse, suppose that Ppr, — 0 in B for each B € B. Let
u € X,; it suffices to show that z, A u LN 0. Fix ¢ > 0. Find
Bi,...,B, € B such that Hu - > PBiuH < e. Since Pp,x4 — 0 in
B;asi=1,...,n, we can find ag such that ||PBZ.33a A PBiuH < £ for
every o > ap and every ¢ = 1,...,n. It follows from z, A Pg,u € B;
that z, A Pp,u = Pp,xo N Pp,u. Therefore,

ra NS Po| + Ju= 3 P
=1 =1

" €
:HE PBixa/\PBiuH—l—egn-—%—eg%.
n
i=1

oo Aul < |

‘ < HZ Ty N PB{UH +e€
=1

O
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Remark 4.13. Recall that a positive non-zero vector a in a vector
lattice X is an atom if the principal ideal I, generated by a coincides
with span a. In this case, I, is a projection band, and the corresponding
band projection P, has form f, ®a for some positive functional f,, that
is, P,x = f.(x)a. We say that X is non-atomic if it has no atoms.
We say that X is atomic if X is the band generated by all the atoms.
In the latter case, = sup{f.(z)a : ais an atom} for every z € X,.
See, e.g., [Sch74, p. 143].

It follows that if X is an order continuous atomic Banach lattice, the
family {/, : a is an atom} is a dense band decomposition of X. Ap-
plying Theorem [4.12 we conclude that in such spaces un-convergence

is exactly the “coordinate-wise” convergence:

Corollary 4.14. Let X be an atomic order continuous Banach lattice.
Then xo — x iff falxs) — fao(z) for every atom a.

Remark 4.15. The order continuity assumption cannot be removed.
Indeed, /., is atomic, the sequence (e,) converges to zero coordinate-

wise, yet it is not un-null.
The following results extends [DOT!, Proposition 6.2].

Proposition 4.16. The following are equivalent:
(i) To = 0 implies x4 — 0 for every net (x) in X ;
(ii) @, — 0 implies ¥, — 0 for every sequence (z,,) in X;

(iii) X is atomic and order continuous.

Proof. ({)=-(i) is trivial. The implication (i)=(ii) is a part of [DOT,
Proposition 6.2]. The implication :> follows from Corollary [4.14}
O

5. AL-REPRESENTATIONS AND LOCAL CONVEXITY

In this section, we will show that un-topology on an order continuous
Banach lattice X is locally convex iff X is atomic. Our main tool is the

relationship between un-convergence in X and in an AL-representation
of X.
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It was observed in [Tro04, Example 23] that for a net (z,) in L,(u)
where 1 is a finite measure and 1 < p < 00, one has z, — 0iff z, & 0
(i.e., the net converges to zero in measure). Note that this does not
extend to o-finite measures. Indeed, let X = L,(R) and let z,, be the
characteristic function of [n,n + 1]. Then z,, — 0 but (x,) does not
converge to zero in measure. On the other hand, let (z,) be a net in
L, (1) where p is a o-finite measure, let (€2,,) be a countable partition of
(2 into sets of finite measure; it follows from Theorem m that 7, — 0
iff the restriction of x, to €1, converges to zero in measure for every n.

Suppose that X is an order continuous Banach lattice with a weak
unit e. By [LT79, Theorem 1.b.14], X can be represented as an ideal of
Ly(p) for some probability measure p. More precisely, there is a lattice
isomorphism from X onto a norm-dense ideal of L;(u); with a slight
abuse of notation we will view X itself as an ideal of Li(u). Moreover,
this representation may be chosen so that e corresponds to 1, L, (u) is
a norm-dense ideal in X, and both inclusions in L. () € X C Ly(p)
are continuous. We call L;(u) an A L-representation for X and e.
Let (z,,) be a sequence in X. It was shown in [GTX| Remark 4.6]
that 2, — 0 in X iff 2, =% 0 in Ly(x). It was shown in [DOT)
Theorem 4.6] that x,, — 0 in X iff z,, £ 0in L; (). Since un-topology
and the topology of convergence in measure are both metrizable on X
because X has a weak unit, it follows that these two topologies coincide
on X. In particular, z, —» 0 in X iff 4 £ 0 in Ly(u) for every net
(z) in X. This may also be deduced from Amemiya’s Theorem (see,
e.g., Theorem 2.4.8 in [MNO91]) as follows:

Amemiya
=

To 3 0in X & |zaiellx — 0 |zaALllL, =0 <«

for every net (z,) in X,.

Proposition 5.1. Let X be a non-atomic order continuous Banach
lattice and W a neighborhood of zero for un-topology. If W is convex
then W = X.

Proof. Fix e € X ; we will show that e € W. We know that V., C W
for some ¢ > 0 and v > 0. Consider the principal band B.. Since

X is order continuous, B, is a projection band in X; let P, be the

To 5 0in Ly(p)
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corresponding band projection. Furthermore, B, is a non-atomic order
continuous Banach lattice with a weak unit. Let L;(Q2,F,u) be an
AL-representation for B, with e = 1. Note that the measure u is
non-atomic because if a measurable set A were an atom for p then its
characteristic function y 4 would be an atom in X. Fix n € N. Using
the non-atomicity of p, we find a measurable partition A, 1,...,A4,,
of Q with p(A,,) = % as i = 1,...,n; see, e.g., Exercise 2 in [Hal70),
p. 174]. Since Loo(p) € B. C Li(p), we may view the characteristic
functions x4, , as elements of B.. Consider the vectors (nxa,,) A u
as ¢ = 1,...,n; they belong to B, so that we may view them as
functions in Ly (u). Let g, be the function in this list whose norm in X
is maximal; if there are more than one, pick any one. Repeating this
construction for every n € N, we produce a sequence (g,) in [0, u] N Be.
It follows that g, < P.u for every n. Since P.u may be viewed as an
element of L;(x) and the measure of the support of g, tends to zero,
it follows that ||g,|/z, — 0. Amemiya’s Theorem yields |/g,||x — 0.
Fix n such that ||g,||x < e. It follows from the definition of g, that
|(nxa,.,) A u||X <casi=1,...,n, so that ny,,, is in V,, and,
therefore, in W. Since W is convex and

e=1= %;HXAM,

we have e € W. Therefore, X, C W. Furthermore, it follows from
NXA,: € Vew that —nxa,, € Vo, forall © = 1,...,n and, therefore,
—e € W. This yields X_ C W. Finally, for every z € X we have
z=1(22% +2(—27)), so that € W.

O

Theorem 5.2. Let X be an order continuous Banach lattice. Un-

topology on X 1s locally convex iff X 1is atomic.

Proof. Suppose that X is atomic. By Corollary un-topology is
determined by the family of seminorms z +— | fa(:p)| where a is an
atom of X; hence the topology is locally convex.

Suppose that un-topology is locally convex but X is not atomic. It
follows that there is e € X, such that B, is non-atomic. By Theo-
rem un-topology on B, agrees with the relative topology induced



UNBOUNDED NORM TOPOLOGY 17

on B, by un-topology on X; in particular, it is locally convex. On the
other hand, Proposition [5.1] asserts that this topology on B, has no
proper convex neighborhoods; a contradiction. O

Un-continuous functionals. Theorem [£.2 allows us to describe un-
continuous linear functionals. For a functional ¢ € X*, we say that ¢
is un-continuous if it is continuous with respect to the un-topology

on X or, equivalently, if x, — 0 implies ¢(x,) — 0.

Proposition 5.3. The set of all un-continuous functionals in X* is an

1deal.

Proof. 1t is straightforward to verify that this set is a linear subspace.
Suppose that ¢ in X* is un-continuous; we will show that |¢| is also
un-continuous. Fix § > 0. One can find ¢ > 0 and u > 0 such that
|o(x)| < & whenever z € V.. Fix # € V.. Since V., is solid, |y| < |z|
implies y € V., and, therefore, ’go(y)‘ < 0. By the Riesz-Kantorovich

formula, we get

ol ()| < lel(l2]) = sup{|e(y)| : Iyl < x|} < 6.

It follows that |p]| is un-continuous. Hence, the set of all un-continuous
functionals in X* forms a sublattice. It is easy to see that if ¢ € X7
is un-continuous and 0 < ¥ < ¢ then 9 is also un-continuous; this
completes the proof. O

Recall that if a is an atom then f, stands for the corresponding

“coordinate functional”.

Corollary 5.4. Suppose that X is an order continuous Banach lattice
and @ € X* is un-continuous.
(i) If X is atomic then o = Ay fo, +- -+ Aufa,, where Ay, ... N, €
R and aq,...,a, are atoms;

(i) If X is non-atomic then ¢ = 0.

Proof. By Proposition [5.3, we may assume that ¢ > 0; otherwise we
consider ¢ and ¢~

Suppose X is atomic; let A be a maximal disjoint family of atoms.
We claim that the set F':= {a € A : ¢(a) # 0} is finite. Indeed, other-

wise, take a sequence (a,) of distinct atoms in F’ and put =, = ﬁan.
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Then z,, — 0 by Corollary , yet ¢(x,) = 1; a contradiction. This
proves the claim.

Since X is order continuous, it follows from Remark [4.13|that X has
a disjoint band decomposition X = Bp @ Bayr. Since p(a) = 0 for
all a € A\ F, ¢ vanishes on the ideal I4\p and, therefore, on Ba\p
because ¢ is order continuous. On the other hand, since F' is finite,
Br = span F' and, therefore, is finite-dimensional. It follows that ¢ is
a linear combination of {f, : a € F'}.

Suppose now that X is non-atomic. Let W = ¢~!(—1,1). Then W is
a convex neighborhood of zero for the un-topology. By Proposition [5.1]
W = X. This easily implies ¢ = 0. U

Case (fi)) of the preceding corollary essentially says that every un-
continuous functional on an atomic order continuous space has finite

support.

Example 5.5. Let X = /3. By Corollary the set of all un-
continuous functionals in X* may be identified with cqg, the linear
subspace of all sequences with finite support. Clearly, it is neither
norm closed nor order closed; it is not even o-order closed in X*.

Example 5.6. Let X = Cy(2) where Q is a locally compact Hausdorff
topological space. It was observed in [Tro04, Example 20| that the
un-topology in X agrees with the topology of uniform convergence on
compact subsets of 2.

Let ¢ € X}. By the Riesz Representation Theorem, there exists a
regular Borel measure p such that ¢(f) = [ fdu for every f € X;
see, e.g., [Con99, Theorem II1.5.7]. An argument similar to the proof
of [Con99, Proposition IV.4.1] shows that ¢ is un-continuous iff x has

compact support.

6. UN-COMPLETENESS

Throughout this section, X is assumed to be an order continuous Ba-
nach lattice. Since un-topology is linear, one can talk about un-Cauchy
nets. That is, a net (z,) is un-Cauchy if for every un-neighborhood U

of zero there exists ag such that x, — 23 € U whenever o, 8 > op. We
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investigate whether X itself or some “nice” subset of X is un-complete.
First, we observe that the entire space is un-complete only when X is

finite-dimensional.

Lemma 6.1. Let (x,) be a positive disjoint sequence in an order con-
tinuous Banach lattice X such that (x,) is not norm null. Put s, =

Sov @i Then (s,) is un-Cauchy but not un-convergent.

Proof. The sequence (s,,) is monotone increasing and does not converge
in norm; hence it is not un-convergent by Lemma . To show that
(sn) is un-Cauchy, fix any ¢ > 0 and a non-zero u € X,. Since x;’s
are disjoint, we have s, Au = > (x; A u). The sequence (s, A u)
is increasing and order bounded, hence is norm Cauchy by Nakano’s
Theorem; see [AB06, Theorem 4.9]. We can find ng such that Hsm A
U — S, A uH < ¢ whenever m > n > ng. Observe that

m
Sm AU — Sy AU = Z (i Au) = (S — Sp) AU =[Sy — Sp| A u.
1=n-+1
It follows that H|sm — Sp| A uH < g, so that s, — s, € Vg O

Proposition 6.2. Let X be an order continuous Banach lattice. X 1is
un-complete iff X is finite-dimensional.

Proof. If X is finite-dimensional then it has a strong unit, so that un-
topology agrees with norm topology and is, therefore, un-complete.
Suppose now that dim X = oo. Then X contains a disjoint normalized

positive sequence. By Lemma [6.1], X is not un-complete. U

Example 6.3. Let X = L, with 1 <p < oo. Pick 0 <z € L\ L,
and put z, = x A (nl). It is easy to see that (x,) is un-Cauchy in L,

yet it does not un-converge in L.

Even when the entire space is not un-complete, the closed unit ball
Bx may still be un-complete; that is, complete in the topology in-
duced by un-topology on X. Since By is un-closed, it is un-complete
iff every norm bounded un-Cauchy net in X is un-convergent. The fol-
lowing theorem should be compared with [GX14, Theorem 4.7], where

a similar statement was proved for uo-convergence.
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Theorem 6.4. Let X be an order continuous Banach lattice. Then
Bx is un-complete iff X is a KB-space.

Proof. Suppose X is not KB. Then X contains a lattice copy of ¢y. Let
(x,) be the sequence in X corresponding to the unit basis of ¢y. Let
$n = iy @;. Clearly, (s,) is norm bounded. However, by Lemmal6.1]
(sn) is un-Cauchy but not un-convergent.

Suppose now that X is a KB-space. First, we consider the case when
X has a weak unit. In this case, un-topology on X and, therefore, on
By, is metrizable by Theorem [3.2] Hence, it suffices to prove that By
is sequentially un-complete. Let (z,) be a sequence in By which is
un-Cauchy in X. Let L;(u) be an AL-representation for X. It follows
that (z,,) is Cauchy with respect to convergence in measure in Lj ().
By [Fol99, Theorem 2.30], there is a subsequence (x,,, ) which converges
a.e. It follows that (x,,) is uo-Cauchy in X by [GTX| Remark 4.6].
Then [GX14, Theorem 4.7] yields that z,, — x for some = € X.
It follows that z,, —» x. Since (z,) is un-Cauchy, this yields that
P

Now consider the general case. Let X be a KB-space and (z,) a net
in By such that (z,) is un-Cauchy in X; we need to prove that the
net is un-convergent. We may assume without loss of generality that
zo = 0 for every a; otherwise, consider (z}) and (x), which are also
un-Cauchy because |27 — 5| < |z, —25] and |z —25] < |zo —24]. By
Theorem [.11], there exists a dense band decomposition B of X such
that each B in B has a weak unit. Put

C={Bi® - ®B, : Bi,...,B, € B}.

Note that C is a family of bands with weak units. Furthermore, C
is a directed set when ordered by inclusion, so the family of band
projections (Pc)cec may be viewed as a net.

For every C € C, the net (Pox,,) is un-Cauchy by Remark . Since
C' has a weak unit, the first part of the proof yields that (Pcz,) un-
converges to some positive vector z¢ in C'. This produces a net (x¢)cec-
It is easy to verify that xc = g, +- - -+xp, whenever C' = B1®---@& B,
for some By, ..., B, € B. It follows that the net (x¢)cec is increasing.
On the other hand, ||z¢| < liminf,||Pexs| < 1, so that this net is
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norm bounded. Since X is a KB-space, the net (x¢)cec converges in
norm to some x € X.

Fix B € B. On one hand, norm continuity of Pg yields limgcee Ppre =
Ppx. On the other hand, for every C' € C with B C C' we have
Ppxe = xp, so that limgee Ppre = xp. It follows that Pgxr = xp,
so that Pgx, — Pgx for every B € B. Now Theorem yields
Ty — T O

The assumption that X is order continuous cannot be removed: for
example, £, is not a KB-space, yet its closed unit ball is un-complete
(because the un and the norm topologies on /., agree).

Example 6.5. The following examples show that in general Bx in The-
orem cannot be replaced with an arbitrary convex closed bounded
set. Let X = /1; let C be the set of all vectors in By whose coordi-

nates sum up to zero. Clearly, C' is convex, closed, and bounded. Let

_ 1
2

%el which is not in C'. Thus, C' is not un-closed in X; in particular, C'

Ty, (e1 — epn). Then (z,) is a sequence in C' which un-converges to
is not un-complete.

It is easy to construct a similar example in X = Lq; take C' = {x €
Bx : [z =0} and put z, = Xpo.2) = 5X[2,142), 10 = 2.

Proposition 6.6. Suppose that X* is order continuous and C is a
norm closed convex norm bounded subset of X. Then C' is un-closed.

Proof. Suppose that z, — x for a net (z,) in C and a vector x in
X. Since (z,) is norm bounded and X* is order continuous, [DOT),
Theorem 6.4] guarantees that (x,) converges to x weakly. Since C is

convex and closed, it is weakly closed, hence x € C. O

Corollary 6.7. Let X be a reflexive Banach lattice and C' a closed

convexr norm bounded subset of X. Then C' is un-complete.

Proof. Since X is reflexive, X is a KB-space and X* is order continuous.
Let (7,) be a un-Cauchy net in C. Theorem [6.4] yields that z, — x
for some z € X, while Proposition implies that z € C. O
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7. UN-COMPACT SETS

The main result of this section is Theorem which asserts that
By is (sequentially) un-compact iff X is an atomic KB-space. We start
with some auxiliary results. The following theorem shows that, under
certain assumptions, un-compactness is a “local” property.

Theorem 7.1. Let X be a KB-space, B a dense band decomposition
of X, and A a un-closed norm bounded subset of X. Then A is un-
compact iff Pg(A) is un-compact in B for every B € B.

Proof. If A is un-compact then Pg(A) is un-compact in B for every
B € B because Pp is un-continuous by Remark To prove the
converse, suppose that Pg(A) is un-compact in B for every B € B.
Let H = [[pes B, the formal product of all the bands in B. That
is, H consists of families (xp)pep indexed by B, where zp € B. We
equip H with the topology of coordinate-wise un-convergence; this is
the product of un-topologies on the bands that make up H. This makes
H a topological vector space. Define ®: X — H via ®(z) = (Ppz)ges-
Clearly, ® is linear. Since B is a dense band decomposition, ® is one-
to-one. By Theorem [£.12] ® is a homeomorphism from X equipped
with un-topology onto its range in H.

Let K be the subset of H defined by K = [ 5.5 Ps(A). By Tikhonov’s
Theorem, K is compact in H. It is easy to see that ®(A) C K.

We claim that ®(A) is closed in H. Indeed, suppose that ®(z,) — h
in H for some net (z,) in A. In particular, the net (®(z,)) is Cauchy
in H. Since ® is a homeomorphism, the net (x,) is un-Cauchy in A.
Since (z,) is bounded and X is a KB-space, (z,) un-converges to some
z € X by Theorem|[6.4] Since A is un-closed, we have x € A. It follows
that h = ®(z), so that h € ®(A).

Being a closed subset of a compact set, ®(A) is itself compact. Since
® is a homeomorphism, we conclude that A is un-compact. O

Next, we discuss relationships between the sequential and the general
variants of un-closedness and un-compactness. Recall that for a set A
in a topological space, we write A for the closure of A; we write A~
for the sequential closure of A, ic., a € A” iff a is the limit of a
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sequence in A. We say that A is sequentially closed if A” = A. It

is well known that for a metrizable topology, we always have A° = A.
For a set A in a Banach lattice, we write A" and A°  for the

un-closure and the sequential un-closure of A, respectively. Obviously,

Za’-un g zun.

Example 7.2. In general, A" # A° . Indeed, in the notation of

Example [L.3] let A = {e, : w € Q}. It follows from Example [L.3| that

zeroisin A" but not in A7 .

Proposition 7.3. Let A be a subset of a Banach lattice X. If X has

—o-un

.. . . . . —un
a quasi-interior point or X 1is order continuous then A~ = A .

Proof. If X has a quasi-interior point then its un-topology is metrizable
by Theorem [3.2] hence A" = A7

Suppose that X is order continuous. Suppose that z € A" ; we need
to show that z € A7 . Without loss of generality, 2 = 0. This means
that A contains a un-null net (x,). By Theorem there exists an
increasing sequence of indices (o) and a disjoint sequence (dj) such
that z,, —dx M> 0. It follows that z,, —dj 2 0. Since (dy,) is disjoint,
it is uo-null and, since X is order continuous, un-null. It follows that

— o-un

To, — 0 and, therefore, 0 € A" . O

Recall that a topological space is said to be sequentially compact
if every sequence has a convergent subsequence. In a Hausdorff topolog-
ical vector space which is metrizable (or, equivalently, first countable),
sequential compactness is equivalent to compactness, see, e.g., [Roy88|
Theorem 7.21]. We do not know whether un-compactness and sequen-
tial un-compactness are equivalent in general, yet we have the following

partial result.

Proposition 7.4. Let A be a subset of a Banach lattice X.
(i) If X has a quasi-interior point, then A is sequentially un-
compact iff A is un-compact.
(ii) Suppose that X is order continuous. If A is un-compact then
A is sequentially un-compact.
(iii) Suppose that X is a KB-space. If A is norm bounded and

sequentially un-compact then A is un-compact.
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Proof. follows immediately from Theorem .
Let (z,) be a sequence in A. Find e € X, such that (x,) is
contained in B, (e.g., take e = )

oo Ty
n=1 T F1
the set AN B, is un-compact in B.. Since e is a quasi-interior point for

). Since B, is un-closed,

B., the un-topology on B, is metrizable, hence A N B, is sequentially
un-compact. It follows that there is a subsequence (z,,) which un-
converges in B, to some x € AN B,.. By Theorem , T, 2 zin
X.

Clearly, A is sequentially un-closed and, therefore, un-closed by
Proposition [7.3] Let B be as in Theorem For each B € B, the
band projection Pg is un-continuous by Remark [1.9] so that Pg(A)
is sequentially un-compact in B. Since B has a weak unit, the un-
topology on B is metrizable, so that Pg(A) is un-compact in B. The
conclusion now follows from Theorem [7.1] 0

Theorem 7.5. For a Banach lattice X, TFAE:

(i) Bx is un-compact;
(ii) Bx is sequentially un-compact;
(iii) X is an atomic KB-space.

Proof. First, observe that both (i) and imply that X is order con-
tinuous and atomic. Indeed, since order intervals are bounded and
un-closed, they are (sequentially) un-compact. But on order intervals,
the un-topology agrees with the norm topology, hence order intervals
are norm compact. This implies that X is atomic and order continuous;
see, e.g., [Wnuk99, Theorem 6.1].

Suppose . Since X is order continuous, Proposition yields .

Suppose (ii). We already know that X is atomic. To show that X
is a KB-space, let (x,) be an increasing norm bounded sequence in
X.. By assumption, it has a un-convergent subsequence (z,,). By
Lemma[L.2|(i), (z,,) converges in norm, hence (x,) converges in norm.
This yields .

Suppose . Let A be a maximal disjoint family of atoms in X.
Then {Ba D a € A} is a dense band decomposition of X. For every
a € A, P,(Bx) is a closed bounded subset of the one-dimensional band
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B,, hence P,(Bx) is norm and un-compact in B,. Theorem now
implies that By is un-compact, which yields (). O

Example 7.6. Let X = ¢y and z,, = e¢; + -+ + e,. Then (z,) is a

sequence in By with no un-convergent subsequences.

Proposition 7.7. Let A be a subset of an order continuous Banach
lattice X. If A is relatively un-compact then A is relatively sequentially
un-compact.

Proof. Let (x,) be a sequence in A. Find e € X, such that (z,) is
contained in B.. Since A" is un-compact, the set A N B, is un-
compact in B, and, therefore, sequentially un-compact in B, because
the un-topology on B, is metrizable. Hence, there is a subsequence
(@p, ) which un-converges in B, and, therefore, in X. O

8. UN-CONVERGENCE AND WEAK*-CONVERGENCE

When does un-convergence imply weak*-convergence? It is
easy to see that, in general, un-convergence does not imply weak™*-
convergence. Indeed, let X be an infinite-dimensional Banach lattice
with order continuous dual. Pick any unbounded disjoint sequence ( f;,)
in X*. Being unbounded, (f,) cannot be weak*-null. Yet it is un-null
by Proposition [3.5 However, if we restrict ourselves to norm bounded
nets, the situation is more interesting. The following result is analo-
gous to [Gaol4, Theorem 2.1]. Recall that for a net (f,) in X*, we

|of(X",X

write fq P, i | fal(z) — 0 for every x € X.

Theorem 8.1. Let X be a Banach lattice such that X* is order con-

tinuous. The following are equivalent:

(i) X is order continuous;
(ii) for any norm bounded net (f,) in X*, if fo — 0, then f, LA

0;
(iii) for any norm bounded net (f.) in X*, if fo —> 0, then f, lolX*20
0,

(iv) for any norm bounded sequence (f,) in X*, if fn — 0, then
fo <5 0;
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(v) for any norm bounded sequence (f,) in X*, if fn — 0, then
f o] (X, X) 0

The proof is similar to that of [Gaol4l Theorem 2.1] except that
in the proof of :> we use Proposition . Note that without
the assumption that X* is order continuous, we still get the following

0 =@« @ = [ @]

When does weak*-convergence imply un-convergence? Recall

implications:

that for norm bounded nets, weak™-convergence implies uo-convergence
in X* iff X is atomic and order continuous by [Gaol4, Theorem 3.4].
Furthermore, Proposition [4.16| immediately yields the following.

Corollary 8.2. If f, Y50 implies f, — 0 for every sequence in X*
then X* is atomic and order continuous.

The following example shows that the converse is false in general.

Example 8.3. Let X = ¢, the space of all convergent sequences. By
[ABOGa, Theorem 16.14], X* may be identified with ¢; @ R with the
duality given by

<(f7 T),SL’> =T h?Ilnxn + anxm

where x € ¢, f € (1, and r € R. It is easy to see that X* is atomic and
order continuous. Consider the sequence ((en, 0)) in X*, where ¢, is the
n-th standard unit vector in ¢;. It is easy to see that (e, 0) A 0,1)
in X*. On the other hand, this sequence is disjoint and, therefore,
un-null. Take f,, = (e,, —1); it follows that (f,) is weak™-null but not
un-null. Note that in this example, X* is order continuous while X is

not.

Nevertheless, we will show that the converse implication is true under
the additional assumption that X is order continuous.

Theorem 8.4. The following are equivalent:
(i) For every net (fa) in X*, if fa Y0 then £, 2 0;

(il) X* is atomic and both X and X* are order continuous.
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Proof. :> By Corollary X* is atomic and order continuous.
Suppose X is not order continuous. By [MNO91, Corollary 2.4.3] there
exists a disjoint norm-bounded sequence ( f,,) in X* which is not weak*-
null. One can then find a subsequence (f,,), a vector zy € X and a
positive real ¢ so that ‘ fo (:EO)| > ¢ for every k. By the Alaoglu-
Bourbaki Theorem, there is a subnet (g,) of (f,,) such that g, AN g
for some g € X*. Since (f,,) is disjoint and X* is order continuous,
we have f,, — 0 and, therefore, g, — 0. By assumption, this yields
g =0, so that g, ~» 0. This contradicts |ga(z0)| > € for every a.
: Let f, % 0in X. Let A be a maximal disjoint collection of
atoms in X*; for each atom a € A let P, and ¢, be the corresponding
band projection and the coordinate functional, respectively; P, and ¢,
are defined on X*. By [MN91l, Corollary 2.4.7], P, and, therefore, ¢,,
is weak*-continuous. It follows that ¢,(f,) — 0 in a. Corollary
yields that f, — 0. O

Proposition 8.5. Suppose that X* is atomic. The following are equiv-

alent.
(i) For every net (fo) in X*, if fa 120 then fo 25 0;
(ii) For every sequence (f,) in X*, if f, 21900 then f = 0;

(iii) X* is order continuous.

Proof. é is trivial.

:> The proof is similar to that of Proposition m To show
that X* is order continuous, suppose that (f,) is an order bounded
positive disjoint sequence in X7 . It follows that f, M 0 and, by
assumption, f, — 0. Since the sequence is order bounded, this yields
fn— il — 0. Therefore, X* is order continuous.

.:>. i) By [MN91, Proposition 2.4.5], band projections on X* are
lo|(X*, X )-continuous. The proof is now analogous to the implication

()= in Theorem [3.4] O

Simultaneous weak* and un-convergence. Section 4 of [Gaol4]
contains several results that assert that if a sequence or a net in X*
converges in both weak™ and uo-topology then it also converges in some

other topology. Several of these results remain valid if uo-convergence
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is replaced with un-convergence. In particular, this works for Propo-
sition 4.1 in [Gaol4]. Propositions 4.3, 4.4, and 4.6 in |Gaol4] remain
valid under the additional assumption that X* is order continuous (note
that the dual positive Schur property already implies that X* is order
continuous by [Wnuk13, Proposition 2.1]). The proofs are analogous
to the corresponding proofs in [Gaol4]. Alternatively, the un-versions
of these may be deduced from the uo-versions using the following two
facts: first, every un-convergent sequence has a uo-convergent subse-
quence and, second, a sequence (x,) converges to x in a topology 7
iff every subsequence (z,, ) has a further subsequence (x,, ) such that
Ty

N
b T

9. UN-COMPACT OPERATORS

Throughout this section, let F be a Banach space, X a Banach lat-
tice, and T' € L(F, X). We say that T is (sequentially) un-compact
if T Bp is relatively (sequentially) un-compact in E. Equivalently, for
every bounded net (z,) (respectively, every bounded sequence (x,,)) its
image has a subnet (respectively, subsequence), which is un-convergent.

Clearly, if T" is compact then it is un-compact and sequentially un-
compact. Theorems [3.2]and [7.5]and Proposition[7.7]yield the following.

Proposition 9.1. Let T € L(E, X).
(i) If X has a quasi-interior point then T is un-compact iff it is
sequentially un-compact;
(i) If X is order continuous and T is un-compact then T is se-
quentially un-compact;
(iii) If X is an atomic KB-space then T is un-compact and sequen-

tially un-compact.

Proposition 9.2. The set of all un-compact operators is a linear sub-
space of L(E, X). The set of all sequentially un-compact operators in
L(E, X) is a closed subspace.

Proof. Linearity is straightforward. To prove closedness, suppose that
(T.,) is a sequence of sequentially un-compact operators in L(F, X)

and T,, M> T. We will show that T is sequentially un-compact.
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Let (z,) be a sequence in Bg. For every m, the sequence (T,,x,),
has a un-convergent subsequence. By a standard diagonal argument,
we can find a common subsequence for all these sequences. Passing to
this subsequence, we may assume without loss of generality that for
every m we have 7,2, — ¥, for some y,,. Note that

| Ym — il < limninf||men — Thwn|| < || T — Tk|| — 0,

so that the sequence (y,,) is Cauchy and, therefore, y,, M> y for some
y e X.

Fix u € X; and ¢ > 0. Find my such that ||T,,, — T|| < € and
[Ymo — ¥l < €. Find ng such that |||Ty,%n — Yme| A ul| < & whenever

n > ng. It follows from
[T, —y| Au < |Txp — T ol + | TongTn — Ymo| A U+ [Ymg — Y
that H\Txn—y|/\uH < 3¢, so that Tz, — v. d

We do not know whether the set of all un-compact operators is closed.

It is easy to see that if we multiply a (sequentially) un-compact
operator by another bounded operator on the right, the product is
again (sequentially) un-compact. The following example shows that
this fails when we multiply on the left.

Example 9.3. The class of all (sequentially) un-compact operators is
not a left ideal. Let T: ¢; — Ly be defined via Te, = r}, where (e,)
is the standard unit basis of ¢; and (r,) is the Rademacher sequence
in Ly. Note that T is neither un-compact nor sequentially un-compact
because the sequence (T'e,) has no un-convergent subsequences. On
the other hand, T = T'I,,, where I, is the identity operator on /.

Observe that I,, is un-compact by Proposition .

Proposition 9.4. In the diagram E L x 5 Y, suppose that T 1is
(sequentially) un-compact and S is a lattice homomorphism. If the
ideal generated by Range S is dense in Y then ST is (sequentially)

un-compact.

Proof. We will prove the statement for the sequential case; the other

case is analogous. Let (h,) be a norm bounded sequence in E. By



30 M. KANDIC, M.A.A. MARABEH, AND V.G. TROITSKY

assumption, there is a subsequence (h,,) such that Th,, —» =z for
some r € X. Let Z = RangeS; it is a sublattice of Y. Fix u € Z,.

Then v = Sv for some v € X, and |Th,, — x| Av LN Applying

S, we get ‘SThnk — Syl A u M 0. Therefore, STh,, — Sz in Z. It
follows from Theorem and that STh,, — Sz inY. O

Example 9.5. The set of all sequentially un-compact operators is not
order closed. Let T be as in Example 0.3, Let T,, = T'P,, where P,
is the n-th basis projection on 1, i.e., T,h = Y0 hyri for h € (1. It
is easy to see that each T, is finite rank and, therefore, sequentially

un-compact. Note that T,, T T, yet T is not sequentially un-compact.

Proposition 9.6. Suppose that for every sequence (1)) of sequentially
un-compact operators in L(cy, X), T,, T T implies that T is sequentially
un-compact. Then X 1s a KB-space.

Proof. Suppose not. Then there is a lattice isomorphism T": ¢y — X.
Put z, = Te,, where (e,) is the standard unit basis of ¢o. Put 7T, =
TP,, where P, is the n-th basis projection on ¢y, i.e., T,h = >"" | hiz;
for h € ¢y. It follows that T, h M Th, so that T,,h 1 Th for every h > 0
and, therefore, T,, T T. For each n, T,, has finite rank and, therefore,
is sequentially un-compact.

We claim that, nevertheless, T is not sequentially un-compact. Put
w, =e; + -+ + e, in ¢y. Note that (w,) is norm bounded and Tw,, =
1+ -+x,. Since T is an isomorphism, (7'w;,) is not norm-convergent.
Since (T'w,) is increasing, it is not un-convergent by Lemma [1.2]().
Similarly, no subsequence of (T'w,,) is un-convergent. U

We do not know whether the converse is true.
Next, we study whether un-compactness is inherited under domi-
nation. The following example shows that, in general, the answer is

negative.

Example 9.7. Let T be as in Example[9.3] Let S: ¢; — L; be defined
via Se,, = 1. Then S is a rank-one operator; hence it is compact and
un-compact. Clearly, 0 < T < S. Yet T is not un-compact.
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Proposition 9.8. Suppose that S, T: F — X, 0 < S < T, X 1s
a KB-space and T 1is a lattice homomorphism. If T is (sequentially)

un-compact then so is S.

Proof. We will prove the sequential case; the other case is similar. Let
(h,) be a bounded sequence in E. Passing to a subsequence, we may
assume that (Th,) is un-convergent. In particular, it is un-Cauchy.
Fix u € X,. Note that

(S h—Shy| At < (S]hn—hon|) At < (T[hn—hon|) At = |Thy =T hy| A 225 0

as n,m — oo. It follows that (Sh,,) is un-Cauchy and, therefore, un-
converges by Theorem [6.4] O

We would like to mention that the class of un-compact operators is
different from several other known classes of operators. We already
mentioned that every compact operator is un-compact. The converse
is false as the identity operator on any infinite-dimensional atomic KB-
space is un-compact but not compact.

Recall that an operator between Banach lattices is AM-compact if
it maps order intervals to relatively compact sets.

Proposition 9.9. Every order bounded un-compact operator is AM-

compact.

Proof. Let T: X — Y be an order bounded un-compact operator be-
tween Banach lattices. Fix an order interval [a,b] in X. Since 7T is
un-compact, T'[a,b] C C for some un-compact set C'. Since T is order
bounded, T'[a, b] C [c, d] for some ¢,d € Y. Note that [c, d] is un-closed,
hence C' N [¢,d] is un-compact and, being order bounded, is compact.
It follows that T[a, b] is relatively compact. O

Note that the converse is false: the identity operator on c¢q is AM-
compact but not un-compact.

The identity operator on ¢; is un-compact, yet it is neither L-weakly
compact nor M-weakly compact.

Finally, we note that if T" is sequentially un-compact and semi-
compact then 7" is compact. Indeed, let (h,) be a bounded sequence in
E. There is a subsequence (h,,, ) such that Th,, — x for some z € X.
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Since T is semi-compact, the sequence (T'h,, ) is almost order bounded

and, therefore, Th,,, LiLNg by [DOT) Lemma 2.9].
Finally, we discuss when weakly compact operators are un-compact.

Lemma 9.10. If z, — z and x, — y then x = v.

Proof. Without loss of generality, y = 0. By Theorem [I.1] there exist a
subsequence (x,, ) and a disjoint sequence (dy) such that z,, —dj T,
It follows that z,, — di — 0, so that dy — x. Now [AB06, Theo-
rem 4.34] yields = = 0. O

Theorem 9.11. A Banach lattice X is atomic and order continuous
iff T is sequentially un-compact for every Banach space E and every
weakly compact operator T: E — X.

Proof. The forward implication follows immediately from Proposition
To prove the converse, let (x,) be a weakly null sequence in X. By
Proposition m, it suffices to show that z,, — 0. Define T: ¢; — X
via Te,, = z,,. By |[ABO6, Theorem 5.26], T is weakly compact. By
assumption, T is sequentially un-compact. It follows that (T'e,) has
a un-convergent subsequence, i.e., T, = 2 for some z € X and a
subsequence (x,, ). Lemma m yields z = 0. By the same argument,
every subsequence of (z,) has a further subsequence which is un-null;

since un-convergence is topological, it follows that z, — 0. U

Corollary 9.12. Every operator from a reflexive Banach space to an
atomic order continuous Banach lattice is sequentially un-compact.
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