SEMITRANSITIVE SPACES OF OPERATORS

HEYDAR RADJAVI AND VLADIMIR G. TROITSKY

ABSTRACT. A collection S of linear maps on a vector space X is strictly semitransitive if for every two vectors x, y there is $A \in S$ such that Ax = y or Ay = x. There is also a topological version of this property for bounded maps on a Banach space. In this paper we discuss semitransitive subspaces of L(X). We also study k-semitransitivity, which is the multi-variable version of semitransitivity, the corresponding weakening of the well-known notion of k-transitivity. We establish, in particular, that every strictly k-semitransitive subspace is strictly (k - 1)-transitive. We also show that if $2k > \dim X$, then every k-semitransitive subspace is k-transitive. Finally, we extend Jacobson's theorem to semitransitive rings.

1. INTRODUCTION AND NOTATION

Throughout this paper, X will be a real or complex Banach space, and by L(X)we denote the space of all continuous linear operators on X. In the finite-dimensional case we will write M_n instead of L(X), where $n = \dim X$. In fact, most of the results in the finite-dimensional case remain valid for $M_n(\mathbb{F})$ where \mathbb{F} is an arbitrary field.

A subset $S \subseteq L(X)$ is said to be *strictly transitive* if for every two non-zero vectors $x, y \in X$ there is $A \in S$ such that Ax = y. We say that S is *topologically transitive* if for every two non-zero vectors $x, y \in X$ and every $\varepsilon > 0$ there is $A \in S$ such that $||Ax - y|| < \varepsilon$. Given a positive integer k, we say that S is *strictly* (or *topologically*) *k*-transitive if for every linearly independent *k*-tuple x_1, \ldots, x_k in X and for every *k*-tuple y_1, \ldots, y_k in X (and every $\varepsilon > 0$) there exists $A \in S$ such that for every $i = 1, \ldots, k$ one has $Ax_i = y_i$ (respectively, $||Ax_i - y_i|| < \varepsilon$). Clearly, S is strictly (or topologically) 1-transitive if and only if it is strictly (respectively, topologically) transitive.

We say that S is *strictly semitransitive* if for every two non-zero vectors $x, y \in X$ there is $A \in S$ such that Ax = y or Ay = x. We say that S is *topologically semitransitive* if for every two non-zero vectors $x, y \in X$ and every $\varepsilon > 0$ there

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47L05. Secondary: 47A16, 15A30.

Key words and phrases. semitransitive subspace, transitive subspace, semitransitive ring, cyclic vector.

The first author was supported by NSERC. The second author was supported by the University of Alberta start-up grant.

is $A \in S$ such that $||Ax - y|| < \varepsilon$ or $||Ay - x|| < \varepsilon$. Given a positive integer k, we say that S is **strictly** k-semitransitive if for every two linearly independent k-tuples x_1, \ldots, x_k and y_1, \ldots, y_k in X there exists $A \in S$ such that $Ax_i = y_i$ for all $i = 1, \ldots, k$, or $Ay_i = x_i$ for all $i = 1, \ldots, k$. Topological k-semitransitivity is defined accordingly.

For $x \in X$, we will write Sx for the orbit of x under S, i.e., $Sx = \{Ax \mid A \in S\}$. We say that x is *strictly cyclic* under S if Sx = X, we say that x is *topologically cyclic* under S if Sx is dense in X.

For $A \in L(X)$, let $A^{(k)}$ be an element of $L(X^k)$ defined by $A^{(k)}(x_1, \ldots, x_k) = (Ax_1, \ldots, Ax_k)$. Let $\mathcal{S}^{(k)} = \{A^{(k)} \mid A \in \mathcal{S}\}.$

These definitions immediately yield the following characterization. A subset S in L(X) is strictly (or topologically) k-transitive if and only if every linearly independent k-tuple in X^k is strictly (respectively, topologically) cyclic for $S^{(k)}$. That is, if $x = (x_1, \ldots, x_k)$ is a linearly independent k-tuple, then $S^{(k)}x = X^k$ (respectively, $\overline{S^{(k)}x} = X^k$). Similarly, S is strictly (or topologically) k-semitransitive if and only if for every two linearly independent k-tuples x and y in X^k we have $x \in S^{(k)}y$ or $y \in S^{(k)}x$ (respectively, $x \in \overline{S^{(k)}y}$ or $y \in \overline{S^{(k)}x}$).

One usually equips S with some additional structure. It is easy to see that if S is a group then strict semitransitivity coincides with strict transitivity. For bounded groups, topological semitransitivity coincides with topological transitivity. There is extensive literature on topologically transitive and *n*-transitive algebras, see [RR] for a survey. Strictly semitransitive algebras of operators on Banach spaces were investigated in [RT]. It is easy to see that a unital algebra of operators is topologically semitransitive if and only if it is unicellular; such algebras were studied in [RR]. We refer the reader to [BGMRT] for a study of strictly semitransitive subspaces of M_n . In this paper we will be primarily interested in semitransitive and k-semitransitive subspaces of M_n . Note that if \mathcal{L} is a linear (i.e., not necessarily closed) subspace of L(X) then $\mathcal{L}x$ is a linear subspace of M_n is strictly k-semitransitive if and only if it is topologically k-semitransitive as every linear subspace is closed. Hence, when talking about subspaces of M_n we will be omitting the adverbs "strictly" or "topologically".

Starting with [BGMRT], several authors have studied naturally arising semitransitivity questions on finite-dimensional spaces, including reducibility and triangularizability of semitransitive subspace of M_n . We would like to mention the two recent papers [Bled] and [BDKKO] which contain many new results in this direction.

2. Cyclic vectors of semitransitive subspaces

Theorem 1. Suppose that X is a separable Banach space and \mathcal{L} is a linear subspace of L(X). Suppose that \mathcal{L} is topologically semitransitive. Then it has a topologically cyclic vector. Moreover, the set of topologically cyclic vectors for \mathcal{L} contains a dense G_{δ} set.

Proof. Let C be the set of all topologically cyclic vectors in X. For $x \in X$ write

$$\mathcal{L}^{\circ}x = \big\{ y \in X \mid x \in \overline{\mathcal{L}y} \big\}.$$

Clearly, topological semitransitivity of \mathcal{L} is equivalent to $\overline{\mathcal{L}x} \cup \mathcal{L}^{\circ}x = X$ for every nonzero $x \in X$. In particular, if $x \in X \setminus C$, then $\overline{\mathcal{L}x}$ is a proper closed subspace, so that $\mathcal{L}^{\circ}x$ contains an open dense subset, namely, $X \setminus \overline{\mathcal{L}x}$.

If C contains a dense open subset, then we are done. Otherwise, the closure of $X \setminus C$ contains an open set. Since X is separable, there is a sequence (x_i) in $X \setminus C$ whose linear span is dense in X. Put $G = \bigcap_{i=1}^{\infty} \mathcal{L}^{\circ} x_i$; then, by the Baire Category Theorem, G contains a dense G_{δ} subset. We show that $G \subseteq C$. Indeed, if $y \in G$, then for every i we have $y \in \mathcal{L}^{\circ} x_i$, so that $x_i \in \overline{\mathcal{L}y}$. Since (x_i) spans a dense subspace of X, it follows that $\overline{\mathcal{L}y} = X$, hence y is topologically cyclic.

Remark 2. We would like to mention here that Corollary 3.10 of [RT] asserts that if X is a Banach space and \mathcal{A} is a strictly semitransitive norm-closed subalgebra of L(X), then the set of strictly cyclic vectors for \mathcal{A} is residual, i.e., its complement is of first category.

Corollary 3. If \mathcal{L} is a semitransitive subspace of M_n then dim $\mathcal{L} \ge n$.

Proof. By Theorem 1, \mathcal{L} has a cyclic vector. Let x be a cyclic vector for \mathcal{L} . Then $\dim \mathcal{L} \ge \dim \mathcal{L} x = n$.

3. k-semitransitive sets

We start with a simple observation that generally k-semitransitivity implies $\frac{k}{2}$ -transitivity. We will see later that better estimates hold when S is a subspace or a subring.

Proposition 4. Suppose that X is a Banach space and S is a topologically k-semitransitive subset of L(X) for some even $k \leq \dim X$. Then S is topologically $\frac{k}{2}$ -transitive.

Proof. Put $m = \frac{k}{2}$. Assume that we have linearly independent vectors x_1, \ldots, x_m in X, arbitrary y_1, \ldots, y_m in X, and an arbitrary $\varepsilon > 0$. For every $i = 1, \ldots, m$ one can find

 $\tilde{y}_1, \ldots, \tilde{y}_m$ such that $\|\tilde{y}_i - y_i\| < \frac{\varepsilon}{2}$ and so that $x_1, \ldots, x_m, \tilde{y}_1, \ldots, \tilde{y}_m$ are all linearly independent. Applying the definition of k-semitransitivity to the k-tuples

 $(x_1,\ldots,x_m,\tilde{y}_1,\ldots,\tilde{y}_m)$ and $(\tilde{y}_1,\ldots,\tilde{y}_m,x_1,\ldots,x_m)$

we conclude that there is $A \in S$ such that $||Ax_i - \tilde{y}_i|| < \frac{\varepsilon}{2}$ and, therefore, $||Ax_i - y_i|| < \varepsilon$ for all $i = 1, \ldots, m$.

If S is strictly k-semitransitive then, by the preceding proposition, S is topologically *m*-transitive for every $m \leq \frac{k}{2}$. Hence, $S^{(m)}x$ is dense in X^m for every linearly independent $x \in X^m$. We claim that if, in addition, S is convex then $S^{(m)}x = X$ for every such x, so that S is strictly *m*-transitive. Indeed, let $x \in X^m$ be linear independent and $y \in X^m$ be arbitrary. Choose $z \in X^m$ so that the 2*m*-tuple (x, z) is linearly independent. Then $(x, \varepsilon y + z)$ and $(x, \varepsilon y - z)$ are still linear independent for some sufficiently small ε . Hence $(x, y + \varepsilon^{-1}z)$ and $(x, y - \varepsilon^{-1}z)$ are linearly independent. Applying strict 2*m*-semitransitivity to the following pairs of 2*m*-tuples: $(x, y + \varepsilon^{-1}z)$ and $(y + \varepsilon^{-1}z, x)$, and $(x, y - \varepsilon^{-1}z)$ and $(y - \varepsilon^{-1}z, x)$ we conclude that $y + \varepsilon^{-1}z$ and $y - \varepsilon^{-1}z$ are both in $S^{(m)}x$. Since $S^{(m)}$ is convex, it follows that $y \in S^{(m)}x$.

The following example shows that for arbitrary sets strict k-semitransitivity does not imply $\frac{k}{2}$ -transitivity.

Example. Let S be the subset of M_2 consisting of all the 2×2 matrices except the matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with |a| > 1. Clearly, if $A \in M_2$ is invertible then either A or A^{-1} belongs to S. It follows that S is strictly 2-semitransitive. However, it is not strictly transitive as no matrix in S takes e_1 into $2e_1$.

4. *k*-semitransitive subspaces

We show in this section that a much stronger result than Proposition 4 holds for subspaces of M_n . Namely, every k-semitransitive subspace of M_n is (k-1)-transitive. Here, again, we will assume that the scalar field is \mathbb{R} or \mathbb{C} , though many of the proofs remain valid for arbitrary fields.

Let M_{nk} be the space of all $n \times k$ matrices. It is well known that M_{nk} becomes a Hilbert space if equipped with scalar product $\langle A, B \rangle = \operatorname{tr}(A^*B) = \sum_{i,j} a_{ij}\bar{b}_{ij}$, where $A = (a_{ij})$ and $B = (b_{ij})$ are two matrices in M_{nk} . It follows from $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ for any $A, B \in M_n$ that $\langle \cdot, \cdot \rangle$ is stable under unitary equivalences. That is, if U and V are unitaries in M_n and M_k respectively, then $\langle UAV, UBV \rangle = \langle A, B \rangle$ for any $A, B \in M_{nk}$. If \mathcal{L} is a linear subspace of M_{nk} then, clearly, \mathcal{L} is proper if and only if $\mathcal{L} \perp T$ for some $T \in M_{nk}$. The following lemma is well known. For completeness, we provide the proof.

Lemma 5. Let \mathcal{L} be a subspace of M_n and $k \leq n$. Then \mathcal{L} is not k-transitive if and only if there is a nonzero $T \in M_n$ such that rank $T \leq k$ and $\mathcal{L} \perp T$.

Proof. For $A \in M_n$ and $k \leq n$ let \widetilde{A} denote the matrix in M_{nk} composed of the first k columns of A. Furthermore, if \mathcal{M} is a subspace of M_n , let $\widetilde{\mathcal{M}} = \{\widetilde{A} \mid A \in \mathcal{M}\}$. Clearly, \mathcal{M} is a linear subspace of M_{nk} .

Suppose that \mathcal{L} is not k-transitive. Then there exists a linearly independent ktuple (x_1, \ldots, x_k) and a k-tuple (y_1, \ldots, y_k) such that no $A \in \mathcal{L}$ satisfies $Ax_i = y_i$ for all $i = 1, \ldots, k$. Let S be an invertible operator in M_n such that $Sx_i = e_i$ for $i = 1, \ldots, k$, and put $\mathcal{M} = S\mathcal{L}S^{-1}$. Let A be a matrix in M_n whose first k columns are Sy_1, \ldots, Sy_k . Then $ASx_i = Ae_i = Sy_i$, so that $S^{-1}ASx_i = y_i$ for $i = 1, \ldots, k$. It follows that $S^{-1}AS \notin \mathcal{L}$ so that $A \notin \mathcal{M}$. Since this is true for every such A, we have $\widetilde{A} \notin \widetilde{\mathcal{M}}$, hence $\widetilde{\mathcal{M}}$ is a proper subspace of M_{nk} . Then there exists $T_0 \in M_{nk}$ such that $\widetilde{\mathcal{M}} \perp T_0$ in M_{nk} . Extend T_0 to a matrix T_1 in M_n , that is $T_1 = (T_0 \ 0)$. Clearly, rank $T_1 \leq k$ and $\mathcal{M} \perp T_1$. Let $T = S^*T_1S^{-1^*}$, then rank $T \leq k$ and $\mathcal{L} \perp T$.

Conversely, if a non-zero $T \in M_n$ satisfies rank $T \leq k$ and $\mathcal{L} \perp T$, we can assume without loss of generality that Range $T \subseteq \text{span}\{e_1, \ldots, e_k\}$, so that $T = (T_0, 0)$ for some non-zero $T_0 \in M_{nk}$. It follows that $\widetilde{\mathcal{L}} \perp T_0$, so that $\widetilde{\mathcal{L}}$ is a proper subspace of M_{nk} . Let $A_0 \in M_{nk} \setminus \widetilde{\mathcal{L}}$, and let y_1, \ldots, y_k be the columns of A_0 , then no matrix in \mathcal{L} sends e_1, \ldots, e_k into y_1, \ldots, y_k .

Recall that an operator T is an *involution* if $T^2 = I$.

Lemma 6. The set of all involutions in M_n spans M_n .

Proof. It suffices to find n^2 linearly independent involutions in M_n . Consider all the matrices of the following forms:

- (i) Diagonal diag $\{\underbrace{1,\ldots,1}_{i},\underbrace{-1,\ldots,-1}_{n-i}\}, i = 1,\ldots,n;$
- (ii) The identity matrix with *i*-th and *j*-th rows interchanged and multiplied respectively by 2 and $\frac{1}{2}$.

It can be easily seen that all these matrices are involutions, they are linearly independent, and there are n^2 of them.

Lemma 7. Suppose that \mathcal{L} is a k-semitransitive subspace of M_n for some $k \leq n$, and P is an orthogonal projection of rank k. Then $\mathcal{L}P$ contains PM_nP .

Proof. Without loss of generality, up to a unitary equivalence, we can assume that P is the orthogonal projection onto span $\{e_1, \ldots, e_k\}$. Pick an invertible matrix V in M_k , and let y_1, \ldots, y_k be the columns of V extended by zeros at the end to n-tuples. Since \mathcal{L} is k-semitransitive, there exists $A \in \mathcal{L}$ such that either $Ae_i = y_i$ as $i = 1, \ldots, k$, or $Ay_i = e_i$ as $i = 1, \ldots, k$. It follows that either $A = \begin{pmatrix} V & R \\ 0 & S \end{pmatrix}$ or $A = \begin{pmatrix} V^{-1} & R \\ 0 & S \end{pmatrix}$ for some R and S. In particular, for every involution V in M_k there are matrices R and S such that $\begin{pmatrix} V & R \\ 0 & S \end{pmatrix}$ is in \mathcal{L} , hence, $\begin{pmatrix} V & 0 \\ 0 & 0 \end{pmatrix}$ is in $\mathcal{L}P$. Lemma 6 yields that $\begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$ is in $\mathcal{L}P$ for every $B \in M_k$, but the set of all the matrices of this form is exactly PM_nP .

Remark 8. One can easily verify that the proofs of Lemmas 6 and 7 remain valid for $M_n(\mathbb{F})$ for any field \mathbb{F} with char $\mathbb{F} \neq 2$.

Suppose now that char $\mathbb{F} = 2$. Then (i) and (ii) in the proof of Lemma 6 are not valid. However, we claim that Lemma 7 remains true in this case. A glance at the original proof reveals that it is sufficient to show that if \mathcal{L} is a subspace of $M_n(\mathbb{F})$ such that for every invertible matrix $A \in M_n(\mathbb{F})$ either $A \in \mathcal{L}$ or $A^{-1} \in \mathcal{L}$, then $\mathcal{L} = M_n(\mathbb{F})$. Therefore, \mathcal{L} contains all the involutions. In particular, $I \in \mathcal{L}$. Note that V is an involution if and only if $(V + I)^2 = 0$, it follows that every square-zero matrix is in \mathcal{L} . Denote by E_{ij} the standard basis matrix $e_i e_j^T$. Let $S_1 = \{E_{ij} \mid i \neq j\}$ and $S_2 = \{E_{11} + E_{1i} + E_{i1} + E_{ii} \mid 1 < i \leq n\}$. Then S_1 and S_2 consist of square-zero matrices, so that $S_1 \cup S_2 \subset \mathcal{L}$. Furthermore, $S_1 \cup S_2$ is linearly independent and has $n^2 - 1$ elements. Note also, that all the elements of $S_1 \cup S_2$ have zero trace. If n is odd, then tr I = 1 so that I is linearly independent of $S_1 \cup S_2$. It follows that $S_1 \cup S_2 \cup \{I\}$ spans M_n , hence $\mathcal{L} = M_n$. Suppose that n is even. Let $A = I + E_{12} + E_{21} - E_{22}$, then $A^{-1} = I + E_{12} + E_{21} - E_{11}$. Then tr $A = \text{tr } A^{-1} = 1$ yields that both A and A^{-1} are linearly independent of $S_1 \cup S_2$. Since either A or A^{-1} is in \mathcal{L} then dim $\mathcal{L} = n^2$, hence $\mathcal{L} = M_n$.

In the case k = n and P = I, Lemma 7 yields the following.

Corollary 9. M_n contains no proper n-semitransitive subspaces.

Lemma 10. Suppose that \mathcal{L} is a k-semitransitive subspace of M_n for some $k \leq n$, and $T \in M_n$ such that rank $T \leq k$ and $\mathcal{L} \perp T$. Then $T^2 = 0$.

Proof. Without loss of generality (up to a unitary similarity) we can assume that T is of the form $\begin{pmatrix} R & 0 \\ S & 0 \end{pmatrix}$, where R is $k \times k$. Let P be the projection on the first k coordinates. By Lemma 7, $\mathcal{L}P$ contains all the matrices of the form $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ for all $A \in M_k$. Since T is orthogonal to \mathcal{L} , it follows that R = 0, so that $T^2 = 0$. **Theorem 11.** Suppose that \mathcal{L} is a (k + 1)-semitransitive subspace of M_n for some k < n. Then \mathcal{L} is k-transitive.

Proof. Suppose that \mathcal{L} is not k-transitive. It follows from Lemma 5 that there is a non-zero $T \in M_n$ with $\mathcal{L} \perp T$ and rank $T \leq k$. Since \mathcal{L} is (k+1)-semitransitive and, therefore, k-semitransitive, Lemma 10 yields $T^2 = 0$.

Let $m = \operatorname{rank} T$. Since T is nilpotent, we may assume without loss of generality (up to a similarity) that T is in Jordan form, no matter what the underlying field may be. Since $T^2 = 0$, it follows that all the non-zero Jordan blocks of T are of the form $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Let (t_{ij}) be the matrix of T. Then $t_{2i-1,2i} = 1$ for all $i = 1, \ldots, m$, and all the other entries of the matrix are zero.

It follows from $m \leq k$ that \mathcal{L} is (m + 1)-semitransitive. Apply the definition of (m + 1)-semitransitivity to the following (m + 1)-tuples:

$$(e_1, e_2, e_4, e_6, \dots, e_{2m})$$
 and $(e_2, e_1, e_4, e_6, \dots, e_{2m})$.

Hence there exists $A \in \mathcal{L}$ such that $Ae_2 = e_1$ and $Ae_{2i} = e_{2i}$ for $i = 2, \ldots, m$. Let (a_{ij}) be the matrix of A, then $a_{1,2} = 1$ and $a_{2i-1,2i} = 0$ for $i = 2, \ldots, m$. It follows that $\langle A, T \rangle = 1$, which contradicts $\mathcal{L} \perp T$.

5. When a k-semitransitive subspace is k-transitive

Proposition 12. Suppose that \mathcal{L} is a k-semitransitive subspace of M_n for some $k \leq n$. If \mathcal{L} is not k-transitive then there exists $T \in M_n$ such that $\mathcal{L} \perp T$, rank T = k, and $T^2 = 0$.

Proof. Suppose that \mathcal{L} is a k-semitransitive subspace of M_n for some $k \leq n$, and \mathcal{L} is not k-transitive. By Lemma 5 there exists a non-zero $T \in M_n$ such that $\mathcal{L} \perp T$ and rank $T \leq k$. If k > 1 then Theorem 11 asserts that \mathcal{L} is (k - 1)-transitive, so that Lemma 5 yields rank T > k - 1, hence rank T = k. If k = 1 then we still have rank T = k as $T \neq 0$. Finally, it follows from Lemma 10 that $T^2 = 0$.

Combining Proposition 12 with Lemma 5, we obtain the following characterization.

Corollary 13. Suppose that \mathcal{L} is a k-semitransitive subspace of M_n for some k < n. Then \mathcal{L} is k-transitive if and only if \mathcal{L}^{\perp} contains no operator of rank k with zero square.

This also allows us to improve the result of Theorem 11 when $k > \frac{n}{2}$.

Corollary 14. If 2k > n then every k-semitransitive subspace of M_n is k-transitive.

Proof. Suppose that 2k > n and observe that no operator of rank k has zero square. Indeed, let $T \in M_n$ be such that rank T = k. Then dim Range T = k while dim ker T = n - k > k, so that Range T is not contained in ker T, hence $T^2 \neq 0$. Therefore, the result follows from Proposition 12.

The following result is, in a sense, a complement to Corollary 14. We show that if $2k \leq n$ then there exists a k-semitransitive subspace of M_n that is not k-transitive.

Proposition 15. Let $T \in M_n$ such that rank T = k and $T^2 = 0$. Then $\{T\}^{\perp}$ is k-semitransitive, but not k-transitive.

Proof. Let $\mathcal{L} = \{T\}^{\perp}$. Observe that \mathcal{L} is not k-transitive by Lemma 5. On the other hand, since \mathcal{L}^{\perp} consists of multiples of T only, no non-zero matrix of rank less than k is orthogonal to \mathcal{L} , so that Lemma 5 yields that \mathcal{L} is (k-1)-transitive.

We claim that \mathcal{L} is k-semitransitive. Suppose not. Let (x_1, \ldots, x_k) and (y_1, \ldots, y_k) be two k-tuples, each linearly independent, such that no matrix in \mathcal{L} takes all x_i 's into the corresponding y_i 's or vice versa. Let $H = \text{span}\{x_1, \ldots, x_k\}$ and put $Z = H^{\perp}$. Let $A: H \mapsto X$ be such that $Ax_i = y_i$ as $i = 1, \ldots, k$. Choose an orthonormal basis e_1, \ldots, e_k of H and an orthonormal basis e_{k+1}, \ldots, e_n of Z, so that e_1, \ldots, e_n is an orthonormal basis of X. In these bases we can view A as an $n \times k$ matrix. Let $(t_{ij})_{i,j=1}^n$ be the matrix of T relative to the basis e_1, \ldots, e_n . Let T_H and T_Z be the matrices consisting of the first k and of the last (n-k) columns of $(t_{ij})_{i,j=1}$ respectively, so that $T = (T_H T_Z)$. For every $F \in M_{n,n-k}$ we have $(A F) \in M_n$ and $(A F)x_i = Ax_i = y_i$ for $i = 1, \ldots, k$, so that $(AF) \notin \mathcal{L}$. It follows that $0 \neq \langle (AF), T \rangle = \langle A, T_H \rangle + \langle F, T_Z \rangle$. Since F was chosen arbitrarily, it follows that $T_Z = 0$, so that $Z \subseteq \ker T$. Since dim ker $T = n - k = \dim Z$, we have $Z = \ker T$. Therefore, span $\{x_1, \ldots, x_k\} =$ $(\ker T)^{\perp}$. Since (x_1, \ldots, x_k) and (y_i, \ldots, x_i) could be interchanged in the construction, it follows that span $\{y_1, \ldots, y_k\} = (\ker T)^{\perp} = \operatorname{span}\{x_1, \ldots, x_k\} = H$. It follows that Range $A \subseteq H$, so that $A = \begin{pmatrix} B \\ 0 \end{pmatrix}$ for some $B \in M_k$. Let $C = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$, then $Cx_i = y_i$ as $i = 1, \ldots, k$, so that $C \notin \mathcal{L}$.

We know that $T = (T_H 0) = \begin{pmatrix} R & 0 \\ S & 0 \end{pmatrix}$ for some $R \in M_{k,k}$ and $S \in M_{n-k,k}$. Since $T^2 = 0$, it follows that Range $T \subseteq \ker T = Z$. In particular, $T(H) \subseteq Z$, so that R = 0. Thus,

$$\langle C,T\rangle = \left\langle \begin{pmatrix} B & 0\\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0\\ S & 0 \end{pmatrix} \right\rangle = 0,$$

contradiction.

Corollary 16. For every $k \leq \frac{n}{2}$ there exists a k-semitransitive subspace of M_n which fails to be k-transitive.

Proof. Let $T \in M_n$ be as follows: let $t_{2i-1,2i} = 1$ as $i = 1, \ldots, k$, and let all other entries of the matrix of T be zeros. Then rank T = k and $T^2 = 0$. Now the conclusion follows from Proposition 15.

Next, we show that k-transitivity does not imply (k + 1)-semitransitivity.

Proposition 17. Suppose that \mathcal{L} is a subspace of M_n and $1 < k \leq n$ such that \mathcal{L} is (k-1)-transitive but not k-transitive. Then there exist unitaries $U, V \in M_n$ such that $U\mathcal{L}$ and $\mathcal{L}V$ are (k-1)-transitive but not k-semitransitive.

Proof. If \mathcal{L} is not k-semitransitive then we are done. Suppose that \mathcal{L} is k-semitransitive. Then by Proposition 12 there exists $T \in \mathcal{L}^{\perp}$ with rank T = k and $T^2 = 0$. Choose a unitary $U \in M_n$ so that $(UT)^2 \neq 0$. Observe that rank UT = k and $UT \in (U\mathcal{L})^{\perp}$. It follows from Lemma 5 that $U\mathcal{L}$ is not k-transitive. Since $(UT)^2 \neq 0$, Lemma 10 yields that $U\mathcal{L}$ is not k-semitransitive. The existence of V is proved in a similar fashion. \Box

Corollary 18. If $1 < k \leq n$ then there exists a subspace of M_n that is (k-1)-transitive but not k-semitransitive.

Proof. Let $T \in M_n$ with rank T = k, and let $\mathcal{L} = \{T\}^{\perp}$. Lemma 5 yields that \mathcal{L} is (k-1)-transitive but not k-transitive. Proposition 17 completes the proof. \Box

We conclude this section with a few examples.

Example. Recall that a matrix $A = (a_{i,j})$ in M_n is **Toeplitz** if $a_{i,j} = a_{i+1,j+1}$ for all i, j < n. Let \mathcal{L} be the subspace of all Toeplitz matrices in M_n . It is known and easy to prove (see, e.g., [Az]) that \mathcal{L} is a transitive subspace. We claim that it is not 2-semitransitive. Consider the following two pairs: (e_1, e_2) and $(e_1 + e_2, e_1 - e_2)$. Suppose first that there is $A \in \mathcal{L}$ such that $Ae_1 = e_1 + e_2$, and $Ae_2 = e_1 - e_2$. But since A is Toeplitz, then $Ae_1 = e_1 + e_2$ implies $Ae_2 = e_2 + e_3$, contradiction. On the other hand, suppose that there is $A \in \mathcal{L}$ such that $A(e_1 + e_2) = e_1$, and $A(e_1 - e_2) = e_2$. Then

(1)
$$Ae_1 = A\left(\frac{e_1 + e_2}{2} + \frac{e_1 - e_2}{2}\right) = \frac{1}{2}(e_1 + e_2).$$

Again, since A is Toeplitz, it follows that $Ae_2 = \frac{1}{2}(e_2 + e_3)$. However, as in (1), we have $Ae_2 = \frac{1}{2}(e_1 - e_2)$, contradiction. Therefore, \mathcal{L} is not 2-semitransitive.

Example. Let $\mathcal{L} = \{A \in M_3 \mid \operatorname{tr}(A) = 0\}$. It is easy to see that \mathcal{L} is 2-transitive but not 3-transitive. Observe that $\mathcal{L} = \{I\}^{\perp}$. Lemma 10 implies that \mathcal{L} is not 3-semitransitive.

Example. Fix $t \neq 0$ and let \mathcal{L} be the set of all the matrices in M_2 of the form $\begin{pmatrix} \alpha & \beta \\ 0 & t\alpha \end{pmatrix}$. Then \mathcal{L} is a two-dimensional semitransitive subspace of M_2 .

6. More on the infinite-dimensional case

In this section we show that some of the results of Section 4 remain valid in the infinite-dimensional setting. Namely, we present infinite-dimensional analogues of Lemmas 5 and 7, and of Theorem 11. Note that these results still hold if X is just a vector space, and bounded maps are replaced with linear maps.

The following generalization of Lemma 5 can be easily deduced from the definition of strict k-transitivity.

Lemma 19. Suppose that \mathcal{L} is a linear subspace of L(X). Then \mathcal{L} is strictly k-transitive if and only if $\mathcal{L}P = L(X)P$ for every projection $P \in L(X)$ with rank $P \leq k$.

Lemma 20. Suppose that \mathcal{L} is a strictly k-semitransitive subspace of L(X), and $P \in L(X)$ is a projection with rank $P \leq k$. Then $PL(X)P \subseteq \mathcal{L}P$

Proof. Let Y = Range P. Let e_1, \ldots, e_m be a basis of Y. Note that $m \leq k$. Relative to this basis, any $m \times m$ matrix A can be viewed as a bounded operator from Y to Yor from Y to X; then $AP = PAP \in L(X)$. Also, PL(X)P can be identified with M_m . Let V be an $m \times m$ involution. Put $y_i = Ve_i$ for $i = 1, \ldots, m$; they are linearly independent since V is invertible. Note that \mathcal{L} is strictly m-semitransitive, hence there exists $A \in \mathcal{L}$ which either takes all e_i 's into y_i 's, or vice versa. Suppose that for each $i = 1, \ldots, m$ we have $Ae_i = y_i$. Then $APe_i = y_i$. It follows that AP = V, so that $V \in \mathcal{L}P$. On the other hand, suppose that for each $i = 1, \ldots, m$ we have $Ay_i = e_i$. Then $APy_i = e_i$, so that AP = V, so again $V \in \mathcal{L}P$. Lemma 6 now yields that $M_m \subseteq \mathcal{L}P$.

Theorem 21. If \mathcal{L} is a strictly (k + 1)-semitransitive subspace of L(X) for some finite k, then \mathcal{L} is strictly k-transitive.

Proof. Suppose that \mathcal{L} is not strictly k-transitive. Lemma 19 yields that there is a projection $P \in L(X)$ with $m := \operatorname{rank} P \leq k$ such that $\mathcal{L}P$ is contained in L(X)P. On the other hand, since \mathcal{L} is strictly k-semitransitive, Lemma 20 yields $PL(X)P \subseteq \mathcal{L}P$. It follows that there exists $D \in L(X)$ such that $DP \notin \mathcal{L}P$ while $PDP \in \mathcal{L}P$, hence $(I - P)DP \notin \mathcal{L}P$.

Let Y = Range P. Let e_1, \ldots, e_m be a basis of Y. Let $z_i = (I - P)DPe_i$. Then $z_i \in \text{Range}(I - P)$.

Using strict k-semitransitivity of \mathcal{L} on the k-tuples (e_1, \ldots, e_m) and (e_1, \ldots, e_m) we conclude that there exists $B \in \mathcal{L}$ such that $Be_i = e_i$ for $i = 1, \ldots, m$.

Applying strict (k + 1)-semitransitivity of \mathcal{L} to the (k + 1)-tuples

$$(z_1, e_1, e_2, e_3, \ldots, e_m)$$
 and $(e_1, z_1, e_2, e_3, \ldots, e_m)$,

we conclude that there exists $C_1 \in \mathcal{L}$ such that $C_1e_i = e_i$ for i = 2, ..., m and $C_1e_1 = z_1$. Similarly, for each j = 1, ..., m we find $C_j \in \mathcal{L}$ such that $C_je_i = e_i$ if $i \neq j$ and $C_je_j = z_j$. Let $A = C_1 + \cdots + C_m - (m-1)B$. Observe that $A \in \mathcal{L}$, hence $AP \in \mathcal{L}P$. On the other hand, $Ae_i = z_i$ for all i = 1, ..., m, so that AP = (I - P)DP, contradiction.

7. More on 2-semitransitivity

In this section the vector spaces are finite or infinite dimensional. The following two results concern rings of linear transformations on a vector space over an arbitrary underlying field.

Proposition 22. Let \mathcal{R} be a ring of linear transformations on a vector space. Then \mathcal{R} is strictly 2-semitransitive if and only if it is strictly 2-transitive.

Proof. Obviously, if \mathcal{R} is strictly 2-transitive then it is strictly 2-semitransitive. Suppose that \mathcal{R} is strictly 2-semitransitive. Take two linearly independent vectors x and y, and two vectors u and v. We show that there is $R \in \mathcal{R}$ such that Rx = u and Ry = v.

If u = v = 0 then R = 0 will do the job. Thus, we can assume that either $u \neq 0$ or $v \neq 0$. Note that given any two linearly independent vectors a and b, applying the definition of strict 2-semitransitivity to the pairs (a, b) and (b, a) one can find an operator $D_{(a,b)} \in \mathcal{R}$ such that $D_{(a,b)}a = b$ and $D_{(a,b)}b = a$.

Suppose first that the underlying field has characteristic different from 2. Applying the definition of strict 2-semitransitivity to the following pairs of pairs: (x, y) and (x, y), and to (x, y) and (x, -y), we obtain operators J and A in \mathcal{R} such that Jx = x, Jy = y, Ax = x, and Ay = -y. Put B = J + A and C = J - A, then

$$Bx = 2x$$
, $By = 0$, $Cx = 0$, and $Cy = 2y$.

Suppose that $u \neq 0$. We find $S \in \mathcal{R}$ such that Sx = u and Sy = 0 as follows. If x and u are linearly independent, we take $S = D_{(2x,u)}B$. Otherwise, y and u have to be linearly independent, in which case we take $S = D_{(2y,u)}CD_{(x,y)}$. Similarly, if $v \neq 0$ then there exists $T \in \mathcal{R}$ such that Tx = 0 and Ty = v. Finally, if both u and v are non-zero, then we find S and T as before and put R = S + T. Clearly, Rx = u and Ry = v.

Now suppose that the underlying field is of characteristic 2. As before, we can find $J \in \mathcal{R}$ such that Jx = x and Jy = y. Observe that

$$D_{(x,x+y)}y = D_{(x,x+y)}((x+y)+x) = x + (x+y) = y.$$

Let $B = D_{(x,y)}(J + D_{(x,x+y)})$, then Bx = x and By = 0. Clearly, $B \in \mathcal{R}$. Similarly, one can find $C \in \mathcal{R}$ such that Cx = 0 and Cy = y. The rest of the proof is similar to the first case.

It follows, in particular, under the hypotheses of Proposition 22, that if \mathcal{R} is strictly 2-semitransitive then it is strictly transitive. Jacobson's Theorem [Jac] asserts that if \mathcal{R} is strictly 2-transitive, then it is **strictly dense**, i.e., strictly *n*-transitive for every *n*. Together with Proposition 22 it yields the following extension.

Corollary 23. Let \mathcal{R} be a unital ring of linear transformations on a vector space. If \mathcal{R} is strictly 2-semitransitive, then it is strictly dense.

Let X be a Banach space, S a subset of L(X), and T a closed operator defined on a linear subspace of X. We say that T commutes with S if dom T is invariant under every operator $A \in S$ and ATx = TAx for every $x \in \text{dom } T$.

Proposition 24. Suppose that X is a Banach space, S is a topologically 2-semitransitive subset of L(X), and T is a closed operator defined on a linear subspace of X. If S commutes with T then T is a multiple of the identity operator.

Proof. Suppose not. Then there exists $x \in \text{dom } T$ such that x and Tx are linearly independent. Apply the definition of topological 2-transitivity of S to the pairs (x, Tx)and (x, 2Tx). Suppose first that there is a sequence of operators (A_n) in S such that $||A_nx - x|| \to 0$ and $||A_n(Tx) - 2Tx|| \to 0$. Since T is closed, this implies Tx = 2Tx, contradiction. On the other hand, suppose that there is (A_n) in S such that $||A_nx - x|| \to 0$ and $||A_n(2Tx) - Tx|| \to 0$, so that $Tx = \frac{1}{2}Tx$, contradiction. \Box

Corollary 25. If X is Banach space, then no commutative subset of L(X) is topologically 2-semitransitive.

Suppose that T is an operator on a Banach space X such that T has no invariant subspaces. Let \mathcal{A} be the subalgebra of L(X) generated by T. Then, clearly, \mathcal{A} is topologically transitive. On the other hand, Corollary 25 implies that \mathcal{A} is not topologically 2-semitransitive.

References

- [Az] E. Azoff, On finite rank operators and preannihilators. Mem. Amer. Math. Soc., **64**(1986), no. 357.
- [Bled] J. Bernik et al (Semitransitivity Working Group at LAW'05, Bled), Semitransitive subspaces of matrices, *Electronic Journal of Linear Algebra*, 15 (2006), 225–238.
- [BDKKO] J. Bernik, R. Drnovšek, D. Kokol-Bukovšek, T. Košir, and M. Omladič, Reducibility and triangularizability of semitransitive operator spaces, to appear in *Houston J. Math.*
- [BGMRT] J. Bernik, L. Grunenfelder, M. Mastnak, H. Radjavi, and V.G. Troitsky, On semitransitive collections of operators, *Semigroup Forum*, 70 (2005), no. 3, 436–450.
- [DLMR] K. Davidson, R. Levene, L. Marcoux, and H. Radjavi, Transitive subspaces, preprint.
- [Jac] N. Jacobson, *Structure of rings*, Amer. Math. Soc., Providence, R.I., 1964.
- [RR] H. Radjavi, P. Rosenthal, *Simultaneous triangularization*, Springer 2000.
- [RT] H. Rosenthal and V.G. Troitsky, Strictly semi-transitive operator algebras, J. of Operator Theory, 53 (2005), no. 2, 315–329.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ON, N2L 3G1. CANADA.

E-mail address: hradjavi@math.uwaterloo.ca

DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES, UNIVERSITY OF ALBERTA, ED-MONTON, AB, T6G 2G1. CANADA.

E-mail address: vtroitsky@math.ualberta.ca