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Abstract. A collection S of linear maps on a vector space X is strictly semitransi-
tive if for every two vectors x, y there is A ∈ S such that Ax = y or Ay = x. There
is also a topological version of this property for bounded maps on a Banach space.
In this paper we discuss semitransitive subspaces of L(X). We also study k-semi-
transitivity, which is the multi-variable version of semitransitivity, the corresponding
weakening of the well-known notion of k-transitivity. We establish, in particular, that
every strictly k-semitransitive subspace is strictly (k − 1)-transitive. We also show
that if 2k > dim X, then every k-semitransitive subspace is k-transitive. Finally, we
extend Jacobson’s theorem to semitransitive rings.

1. Introduction and notation

Throughout this paper, X will be a real or complex Banach space, and by L(X)

we denote the space of all continuous linear operators on X. In the finite-dimensional

case we will write Mn instead of L(X), where n = dim X. In fact, most of the results

in the finite-dimensional case remain valid for Mn(F) where F is an arbitrary field.

A subset S ⊆ L(X) is said to be strictly transitive if for every two non-zero

vectors x, y ∈ X there is A ∈ S such that Ax = y. We say that S is topologically

transitive if for every two non-zero vectors x, y ∈ X and every ε > 0 there is A ∈ S
such that ‖Ax − y‖ < ε. Given a positive integer k, we say that S is strictly (or

topologically) k-transitive if for every linearly independent k-tuple x1, . . . , xk in X

and for every k-tuple y1, . . . , yk in X (and every ε > 0) there exists A ∈ S such that for

every i = 1, . . . , k one has Axi = yi (respectively, ‖Axi−yi‖ < ε). Clearly, S is strictly

(or topologically) 1-transitive if and only if it is strictly (respectively, topologically)

transitive.

We say that S is strictly semitransitive if for every two non-zero vectors x, y ∈ X

there is A ∈ S such that Ax = y or Ay = x. We say that S is topologically

semitransitive if for every two non-zero vectors x, y ∈ X and every ε > 0 there
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is A ∈ S such that ‖Ax − y‖ < ε or ‖Ay − x‖ < ε. Given a positive integer k, we

say that S is strictly k-semitransitive if for every two linearly independent k-tuples

x1, . . . , xk and y1, . . . , yk in X there exists A ∈ S such that Axi = yi for all i = 1, . . . , k,

or Ayi = xi for all i = 1, . . . , k. Topological k-semitransitivity is defined accordingly.

For x ∈ X, we will write Sx for the orbit of x under S, i.e., Sx = {Ax | A ∈ S}.
We say that x is strictly cyclic under S if Sx = X, we say that x is topologically

cyclic under S if Sx is dense in X.

For A ∈ L(X), let A(k) be an element of L(Xk) defined by A(k)(x1, . . . , xk) =

(Ax1, . . . , Axk). Let S(k) = {A(k) | A ∈ S}.
These definitions immediately yield the following characterization. A subset S in

L(X) is strictly (or topologically) k-transitive if and only if every linearly independent

k-tuple in Xk is strictly (respectively, topologically) cyclic for S(k). That is, if x =

(x1, . . . , xk) is a linearly independent k-tuple, then S(k)x = Xk (respectively, S(k)x =

Xk). Similarly, S is strictly (or topologically) k-semitransitive if and only if for every

two linearly independent k-tuples x and y in Xk we have x ∈ S(k)y or y ∈ S(k)x

(respectively, x ∈ S(k)y or y ∈ S(k)x).

One usually equips S with some additional structure. It is easy to see that if S
is a group then strict semitransitivity coincides with strict transitivity. For bounded

groups, topological semitransitivity coincides with topological transitivity. There is

extensive literature on topologically transitive and n-transitive algebras, see [RR] for a

survey. Strictly semitransitive algebras of operators on Banach spaces were investigated

in [RT]. It is easy to see that a unital algebra of operators is topologically semitransitive

if and only if it is unicellular; such algebras were studied in [RR]. We refer the reader

to [BGMRT] for a study of strictly semitransitive semigroups and algebras in Mn, and

to [DLMR] for a study of transitive subspaces of Mn. In this paper we will be primarily

interested in semitransitive and k-semitransitive subspaces of Mn. Note that if L is a

linear (i.e., not necessarily closed) subspace of L(X) then Lx is a linear subspace of X

for every x. Therefore, it follows from the previous paragraph that a linear subspace

of Mn is strictly k-semitransitive if and only if it is topologically k-semitransitive as

every linear subspace is closed. Hence, when talking about subspaces of Mn we will be

omitting the adverbs “strictly” or “topologically”.

Starting with [BGMRT], several authors have studied naturally arising semitransi-

tivity questions on finite-dimensional spaces, including reducibility and triangulariz-

ability of semitransitive subspace of Mn. We would like to mention the two recent

papers [Bled] and [BDKKO] which contain many new results in this direction.
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2. Cyclic vectors of semitransitive subspaces

Theorem 1. Suppose that X is a separable Banach space and L is a linear subspace

of L(X). Suppose that L is topologically semitransitive. Then it has a topologically

cyclic vector. Moreover, the set of topologically cyclic vectors for L contains a dense

Gδ set.

Proof. Let C be the set of all topologically cyclic vectors in X. For x ∈ X write

L◦x =
{
y ∈ X | x ∈ Ly

}
.

Clearly, topological semitransitivity of L is equivalent to Lx∪L◦x = X for every non-

zero x ∈ X. In particular, if x ∈ X \ C, then Lx is a proper closed subspace, so that

L◦x contains an open dense subset, namely, X \ Lx.

If C contains a dense open subset, then we are done. Otherwise, the closure of X \C
contains an open set. Since X is separable, there is a sequence (xi) in X \ C whose

linear span is dense in X. Put G =
⋂∞
i=1 L◦xi; then, by the Baire Category Theorem,

G contains a dense Gδ subset. We show that G ⊆ C. Indeed, if y ∈ G, then for every

i we have y ∈ L◦xi, so that xi ∈ Ly. Since (xi) spans a dense subspace of X, it follows

that Ly = X, hence y is topologically cyclic. �

Remark 2. We would like to mention here that Corollary 3.10 of [RT] asserts that

if X is a Banach space and A is a strictly semitransitive norm-closed subalgebra of

L(X), then the set of strictly cyclic vectors for A is residual, i.e., its complement is of

first category.

Corollary 3. If L is a semitransitive subspace of Mn then dimL > n.

Proof. By Theorem 1, L has a cyclic vector. Let x be a cyclic vector for L. Then

dimL > dimLx = n. �

3. k-semitransitive sets

We start with a simple observation that generally k-semitransitivity implies k
2
-tran-

sitivity. We will see later that better estimates hold when S is a subspace or a subring.

Proposition 4. Suppose that X is a Banach space and S is a topologically k-semitran-

sitive subset of L(X) for some even k 6 dim X. Then S is topologically k
2
-transitive.

Proof. Put m = k
2
. Assume that we have linearly independent vectors x1, . . . , xm in X,

arbitrary y1, . . . , ym in X, and an arbitrary ε > 0. For every i = 1, . . . ,m one can find
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ỹ1, . . . , ỹm such that ‖ỹi − yi‖ < ε
2

and so that x1, . . . , xm, ỹ1, . . . , ỹm are all linearly

independent. Applying the definition of k-semitransitivity to the k-tuples

(x1, . . . , xm, ỹ1, . . . , ỹm) and (ỹ1, . . . , ỹm, x1, . . . , xm)

we conclude that there is A ∈ S such that ‖Axi− ỹi‖ < ε
2

and, therefore, ‖Axi−yi‖ < ε

for all i = 1, . . . ,m. �

If S is strictly k-semitransitive then, by the preceding proposition, S is topologically

m-transitive for every m 6 k
2
. Hence, S(m)x is dense in Xm for every linearly inde-

pendent x ∈ Xm. We claim that if, in addition, S is convex then S(m)x = X for every

such x, so that S is strictly m-transitive. Indeed, let x ∈ Xm be linear independent

and y ∈ Xm be arbitrary. Choose z ∈ Xm so that the 2m-tuple (x, z) is linearly

independent. Then (x, εy + z) and (x, εy − z) are still linear independent for some

sufficiently small ε. Hence (x, y + ε−1z) and (x, y − ε−1z) are linearly independent.

Applying strict 2m-semitransitivity to the following pairs of 2m-tuples: (x, y + ε−1z)

and (y + ε−1z, x), and (x, y − ε−1z) and (y − ε−1z, x) we conclude that y + ε−1z and

y − ε−1z are both in S(m)x. Since S(m) is convex, it follows that y ∈ S(m)x.

The following example shows that for arbitrary sets strict k-semitransitivity does

not imply k
2
-transitivity.

Example. Let S be the subset of M2 consisting of all the 2 × 2 matrices except the

matrices of the form ( a b0 c ) with |a| > 1. Clearly, if A ∈ M2 is invertible then either A

or A−1 belongs to S. It follows that S is strictly 2-semitransitive. However, it is not

strictly transitive as no matrix in S takes e1 into 2e1.

4. k-semitransitive subspaces

We show in this section that a much stronger result than Proposition 4 holds for

subspaces of Mn. Namely, every k-semitransitive subspace of Mn is (k − 1)-transitive.

Here, again, we will assume that the scalar field is R or C, though many of the proofs

remain valid for arbitrary fields.

Let Mnk be the space of all n × k matrices. It is well known that Mnk becomes a

Hilbert space if equipped with scalar product 〈A, B〉 = tr(A∗B) =
∑

i,j aij b̄ij, where

A = (aij) and B = (bij) are two matrices in Mnk. It follows from tr(AB) = tr(BA) for

any A, B ∈Mn that 〈·, ·〉 is stable under unitary equivalences. That is, if U and V are

unitaries in Mn and Mk respectively, then 〈UAV, UBV 〉 = 〈A, B〉 for any A, B ∈Mnk.

If L is a linear subspace of Mnk then, clearly, L is proper if and only if L ⊥ T for some

T ∈Mnk.
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The following lemma is well known. For completeness, we provide the proof.

Lemma 5. Let L be a subspace of Mn and k 6 n. Then L is not k-transitive if and

only if there is a nonzero T ∈Mn such that rank T 6 k and L ⊥ T .

Proof. For A ∈ Mn and k 6 n let Ã denote the matrix in Mnk composed of the first

k columns of A. Furthermore, if M is a subspace of Mn, let M̃ = {Ã | A ∈ M}.
Clearly, M is a linear subspace of Mnk.

Suppose that L is not k-transitive. Then there exists a linearly independent k-

tuple (x1, . . . , xk) and a k-tuple (y1, . . . , yk) such that no A ∈ L satisfies Axi = yi

for all i = 1, . . . , k. Let S be an invertible operator in Mn such that Sxi = ei for

i = 1, . . . , k, and put M = SLS−1. Let A be a matrix in Mn whose first k columns

are Sy1, . . . , Syk. Then ASxi = Aei = Syi, so that S−1ASxi = yi for i = 1, . . . , k.

It follows that S−1AS /∈ L so that A /∈ M. Since this is true for every such A, we

have Ã /∈ M̃, hence M̃ is a proper subspace of Mnk. Then there exists T0 ∈Mnk such

that M̃ ⊥ T0 in Mnk. Extend T0 to a matrix T1 in Mn, that is T1 = (T0 0). Clearly,

rank T1 6 k and M⊥ T1. Let T = S∗T1S
−1∗, then rank T 6 k and L ⊥ T .

Conversely, if a non-zero T ∈ Mn satisfies rank T 6 k and L ⊥ T , we can assume

without loss of generality that Range T ⊆ span{e1, . . . , ek}, so that T = (T0, 0) for

some non-zero T0 ∈ Mnk. It follows that L̃ ⊥ T0, so that L̃ is a proper subspace of

Mnk. Let A0 ∈ Mnk \ L̃, and let y1, . . . , yk be the columns of A0, then no matrix in L
sends e1, . . . , ek into y1, . . . , yk. �

Recall that an operator T is an involution if T 2 = I.

Lemma 6. The set of all involutions in Mn spans Mn.

Proof. It suffices to find n2 linearly independent involutions in Mn. Consider all the

matrices of the following forms:

(i) Diagonal diag{1, . . . , 1︸ ︷︷ ︸
i

,−1, . . . ,−1︸ ︷︷ ︸
n−i

}, i = 1, . . . , n;

(ii) The identity matrix with i-th and j-th rows interchanged and multiplied re-

spectively by 2 and 1
2
.

It can be easily seen that all these matrices are involutions, they are linearly indepen-

dent, and there are n2 of them. �

Lemma 7. Suppose that L is a k-semitransitive subspace of Mn for some k 6 n, and

P is an orthogonal projection of rank k. Then LP contains PMnP .
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Proof. Without loss of generality, up to a unitary equivalence, we can assume that P

is the orthogonal projection onto span{e1, . . . , ek}. Pick an invertible matrix V in Mk,

and let y1, . . . , yk be the columns of V extended by zeros at the end to n-tuples. Since

L is k-semitransitive, there exists A ∈ L such that either Aei = yi as i = 1, . . . , k, or

Ayi = ei as i = 1, . . . , k. It follows that either A = ( V R
0 S ) or A =

(
V −1 R

0 S

)
for some R

and S. In particular, for every involution V in Mk there are matrices R and S such

that ( V R
0 S ) is in L, hence, ( V 0

0 0 ) is in LP . Lemma 6 yields that ( B 0
0 0 ) is in LP for

every B ∈Mk, but the set of all the matrices of this form is exactly PMnP . �

Remark 8. One can easily verify that the proofs of Lemmas 6 and 7 remain valid for

Mn(F) for any field F with char F 6= 2.

Suppose now that char F = 2. Then (i) and (ii) in the proof of Lemma 6 are not

valid. However, we claim that Lemma 7 remains true in this case. A glance at the

original proof reveals that it is sufficient to show that if L is a subspace of Mn(F)

such that for every invertible matrix A ∈ Mn(F) either A ∈ L or A−1 ∈ L, then

L = Mn(F). Therefore, L contains all the involutions. In particular, I ∈ L. Note

that V is an involution if and only if (V + I)2 = 0, it follows that every square-zero

matrix is in L. Denote by Eij the standard basis matrix eie
T
j . Let S1 = {Eij | i 6= j}

and S2 = {E11 + E1i + Ei1 + Eii | 1 < i 6 n}. Then S1 and S2 consist of square-zero

matrices, so that S1 ∪ S2 ⊂ L. Furthermore, S1 ∪ S2 is linearly independent and has

n2−1 elements. Note also, that all the elements of S1∪S2 have zero trace. If n is odd,

then tr I = 1 so that I is linearly independent of S1 ∪S2. It follows that S1 ∪S2 ∪ {I}
spans Mn, hence L = Mn. Suppose that n is even. Let A = I + E12 + E21 −E22, then

A−1 = I + E12 + E21 − E11. Then tr A = tr A−1 = 1 yields that both A and A−1 are

linearly independent of S1 ∪ S2. Since either A or A−1 is in L then dimL = n2, hence

L = Mn.

In the case k = n and P = I, Lemma 7 yields the following.

Corollary 9. Mn contains no proper n-semitransitive subspaces.

Lemma 10. Suppose that L is a k-semitransitive subspace of Mn for some k 6 n, and

T ∈Mn such that rank T 6 k and L ⊥ T . Then T 2 = 0.

Proof. Without loss of generality (up to a unitary similarity) we can assume that T is

of the form ( R 0
S 0 ), where R is k×k. Let P be the projection on the first k coordinates.

By Lemma 7, LP contains all the matrices of the form ( A 0
0 0 ) for all A ∈ Mk. Since T

is orthogonal to L, it follows that R = 0, so that T 2 = 0. �
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Theorem 11. Suppose that L is a (k + 1)-semitransitive subspace of Mn for some

k < n. Then L is k-transitive.

Proof. Suppose that L is not k-transitive. It follows from Lemma 5 that there is a

non-zero T ∈ Mn with L ⊥ T and rank T 6 k. Since L is (k + 1)-semitransitive and,

therefore, k-semitransitive, Lemma 10 yields T 2 = 0.

Let m = rank T . Since T is nilpotent, we may assume without loss of generality (up

to a similarity) that T is in Jordan form, no matter what the underlying field may be.

Since T 2 = 0, it follows that all the non-zero Jordan blocks of T are of the form ( 0 1
0 0 ) .

Let (tij) be the matrix of T . Then t2i−1,2i = 1 for all i = 1, . . . ,m, and all the other

entries of the matrix are zero.

It follows from m 6 k that L is (m + 1)-semitransitive. Apply the definition of

(m + 1)-semitransitivity to the following (m + 1)-tuples:

(e1, e2, e4, e6, . . . , e2m) and (e2, e1, e4, e6, . . . , e2m).

Hence there exists A ∈ L such that Ae2 = e1 and Ae2i = e2i for i = 2, . . . ,m. Let

(aij) be the matrix of A, then a1,2 = 1 and a2i−1,2i = 0 for i = 2, . . . ,m. It follows that

〈A, T 〉 = 1, which contradicts L ⊥ T . �

5. When a k-semitransitive subspace is k-transitive

Proposition 12. Suppose that L is a k-semitransitive subspace of Mn for some k 6 n.

If L is not k-transitive then there exists T ∈ Mn such that L ⊥ T , rank T = k, and

T 2 = 0.

Proof. Suppose that L is a k-semitransitive subspace of Mn for some k 6 n, and L
is not k-transitive. By Lemma 5 there exists a non-zero T ∈ Mn such that L ⊥ T

and rank T 6 k. If k > 1 then Theorem 11 asserts that L is (k − 1)-transitive, so

that Lemma 5 yields rank T > k − 1, hence rank T = k. If k = 1 then we still have

rank T = k as T 6= 0. Finally, it follows from Lemma 10 that T 2 = 0. �

Combining Proposition 12 with Lemma 5, we obtain the following characterization.

Corollary 13. Suppose that L is a k-semitransitive subspace of Mn for some k < n.

Then L is k-transitive if and only if L⊥ contains no operator of rank k with zero square.

This also allows us to improve the result of Theorem 11 when k > n
2
.

Corollary 14. If 2k > n then every k-semitransitive subspace of Mn is k-transitive.
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Proof. Suppose that 2k > n and observe that no operator of rank k has zero square.

Indeed, let T ∈Mn be such that rank T = k. Then dim Range T = k while dim ker T =

n − k > k, so that Range T is not contained in ker T , hence T 2 6= 0. Therefore, the

result follows from Proposition 12. �

The following result is, in a sense, a complement to Corollary 14. We show that if

2k 6 n then there exists a k-semitransitive subspace of Mn that is not k-transitive.

Proposition 15. Let T ∈ Mn such that rank T = k and T 2 = 0. Then {T}⊥ is k-

semitransitive, but not k-transitive.

Proof. Let L = {T}⊥. Observe that L is not k-transitive by Lemma 5. On the other

hand, since L⊥ consists of multiples of T only, no non-zero matrix of rank less than k

is orthogonal to L, so that Lemma 5 yields that L is (k − 1)-transitive.

We claim that L is k-semitransitive. Suppose not. Let (x1, . . . , xk) and (y1, . . . , yk)

be two k-tuples, each linearly independent, such that no matrix in L takes all xi’s

into the corresponding yi’s or vice versa. Let H = span{x1, . . . , xk} and put Z = H⊥.

Let A : H 7→ X be such that Axi = yi as i = 1, . . . , k. Choose an orthonormal basis

e1, . . . , ek of H and an orthonormal basis ek+1, . . . , en of Z, so that e1, . . . , en is an

orthonormal basis of X. In these bases we can view A as an n×k matrix. Let (tij)
n
i,j=1

be the matrix of T relative to the basis e1, . . . , en. Let TH and TZ be the matrices

consisting of the first k and of the last (n−k) columns of (tij)i,j=1 respectively, so that

T = (TH TZ). For every F ∈ Mn,n−k we have (A F ) ∈ Mn and (A F )xi = Axi = yi for

i = 1, . . . , k, so that (A F ) /∈ L. It follows that 0 6= 〈(A F ), T 〉 = 〈A, TH〉 + 〈F, TZ〉.
Since F was chosen arbitrarily, it follows that TZ = 0, so that Z ⊆ ker T . Since

dim ker T = n − k = dim Z, we have Z = ker T . Therefore, span{x1, . . . , xk} =(
ker T

)⊥
. Since (x1, . . . , xk) and (yi, . . . , xi) could be interchanged in the construction,

it follows that span{y1, . . . , yk} =
(
ker T

)⊥
= span{x1, . . . , xk} = H. It follows that

Range A ⊆ H, so that A = ( B0 ) for some B ∈ Mk. Let C = ( B 0
0 0 ), then Cxi = yi as

i = 1, . . . , k, so that C /∈ L.

We know that T = (TH 0) = ( R 0
S 0 ) for some R ∈Mk,k and S ∈Mn−k,k. Since T 2 = 0,

it follows that Range T ⊆ ker T = Z. In particular, T (H) ⊆ Z, so that R = 0. Thus,

〈C, T 〉 =

〈(
B 0
0 0

)
,

(
0 0
S 0

)〉
= 0,

contradiction. �

Corollary 16. For every k 6 n
2

there exists a k-semitransitive subspace of Mn which

fails to be k-transitive.
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Proof. Let T ∈ Mn be as follows: let t2i−1,2i = 1 as i = 1, . . . , k, and let all other

entries of the matrix of T be zeros. Then rank T = k and T 2 = 0. Now the conclusion

follows from Proposition 15. �

Next, we show that k-transitivity does not imply (k + 1)-semitransitivity.

Proposition 17. Suppose that L is a subspace of Mn and 1 < k 6 n such that L is

(k − 1)-transitive but not k-transitive. Then there exist unitaries U, V ∈Mn such that

UL and LV are (k − 1)-transitive but not k-semitransitive.

Proof. If L is not k-semitransitive then we are done. Suppose that L is k-semitransitive.

Then by Proposition 12 there exists T ∈ L⊥ with rank T = k and T 2 = 0. Choose a

unitary U ∈ Mn so that (UT )2 6= 0. Observe that rank UT = k and UT ∈ (UL)⊥. It

follows from Lemma 5 that UL is not k-transitive. Since (UT )2 6= 0, Lemma 10 yields

that UL is not k-semitransitive. The existence of V is proved in a similar fashion. �

Corollary 18. If 1 < k 6 n then there exists a subspace of Mn that is (k−1)-transitive

but not k-semitransitive.

Proof. Let T ∈ Mn with rank T = k, and let L = {T}⊥. Lemma 5 yields that L is

(k − 1)-transitive but not k-transitive. Proposition 17 completes the proof. �

We conclude this section with a few examples.

Example. Recall that a matrix A = (ai,j) in Mn is Toeplitz if ai,j = ai+1,j+1 for all

i, j < n. Let L be the subspace of all Toeplitz matrices in Mn. It is known and easy

to prove (see, e.g., [Az]) that L is a transitive subspace. We claim that it is not 2-

semitransitive. Consider the following two pairs: (e1, e2) and (e1 +e2, e1−e2). Suppose

first that there is A ∈ L such that Ae1 = e1 + e2, and Ae2 = e1 − e2. But since A is

Toeplitz, then Ae1 = e1 + e2 implies Ae2 = e2 + e3, contradiction. On the other hand,

suppose that there is A ∈ L such that A(e1 + e2) = e1, and A(e1 − e2) = e2. Then

(1) Ae1 = A
(e1 + e2

2
+

e1 − e2

2

)
= 1

2
(e1 + e2).

Again, since A is Toeplitz, it follows that Ae2 = 1
2
(e2 + e3). However, as in (1), we

have Ae2 = 1
2
(e1 − e2), contradiction. Therefore, L is not 2-semitransitive.

Example. Let L = {A ∈M3 | tr(A) = 0}. It is easy to see that L is 2-transitive but not

3-transitive. Observe that L = {I}⊥. Lemma 10 implies that L is not 3-semitransitive.

Example. Fix t 6= 0 and let L be the set of all the matrices in M2 of the form
(
α β
0 tα

)
.

Then L is a two-dimensional semitransitive subspace of M2.
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6. More on the infinite-dimensional case

In this section we show that some of the results of Section 4 remain valid in the

infinite-dimensional setting. Namely, we present infinite-dimensional analogues of Lem-

mas 5 and 7, and of Theorem 11. Note that these results still hold if X is just a vector

space, and bounded maps are replaced with linear maps.

The following generalization of Lemma 5 can be easily deduced from the definition

of strict k-transitivity.

Lemma 19. Suppose that L is a linear subspace of L(X). Then L is strictly k-

transitive if and only if LP = L(X)P for every projection P ∈ L(X) with rank P 6 k.

Lemma 20. Suppose that L is a strictly k-semitransitive subspace of L(X), and P ∈
L(X) is a projection with rank P 6 k. Then PL(X)P ⊆ LP

Proof. Let Y = Range P . Let e1, . . . , em be a basis of Y . Note that m 6 k. Relative

to this basis, any m×m matrix A can be viewed as a bounded operator from Y to Y

or from Y to X; then AP = PAP ∈ L(X). Also, PL(X)P can be identified with Mm.

Let V be an m × m involution. Put yi = V ei for i = 1, . . . ,m; they are linearly

independent since V is invertible. Note that L is strictly m-semitransitive, hence there

exists A ∈ L which either takes all ei’s into yi’s, or vice versa. Suppose that for each

i = 1, . . . ,m we have Aei = yi. Then APei = yi. It follows that AP = V , so that

V ∈ LP . On the other hand, suppose that for each i = 1, . . . ,m we have Ayi = ei.

Then APyi = ei, so that AP = V , so again V ∈ LP . Lemma 6 now yields that

Mm ⊆ LP . �

Theorem 21. If L is a strictly (k + 1)-semitransitive subspace of L(X) for some

finite k, then L is strictly k-transitive.

Proof. Suppose that L is not strictly k-transitive. Lemma 19 yields that there is a

projection P ∈ L(X) with m := rank P 6 k such that LP is contained in L(X)P . On

the other hand, since L is strictly k-semitransitive, Lemma 20 yields PL(X)P ⊆ LP .

It follows that there exists D ∈ L(X) such that DP /∈ LP while PDP ∈ LP , hence

(I − P )DP /∈ LP .

Let Y = Range P . Let e1, . . . , em be a basis of Y . Let zi = (I − P )DPei. Then

zi ∈ Range(I − P ).

Using strict k-semitransitivity of L on the k-tuples (e1, . . . , em) and (e1, . . . , em) we

conclude that there exists B ∈ L such that Bei = ei for i = 1, . . . ,m.
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Applying strict (k + 1)-semitransitivity of L to the (k + 1)-tuples

(z1, e1, e2, e3, . . . , em) and (e1, z1, e2, e3, . . . , em),

we conclude that there exists C1 ∈ L such that C1ei = ei for i = 2, . . . ,m and

C1e1 = z1. Similarly, for each j = 1, . . . ,m we find Cj ∈ L such that Cjei = ei if

i 6= j and Cjej = zj. Let A = C1 + · · ·+ Cm − (m− 1)B. Observe that A ∈ L, hence

AP ∈ LP . On the other hand, Aei = zi for all i = 1, . . . ,m, so that AP = (I−P )DP ,

contradiction. �

7. More on 2-semitransitivity

In this section the vector spaces are finite or infinite dimensional. The following

two results concern rings of linear transformations on a vector space over an arbitrary

underlying field.

Proposition 22. Let R be a ring of linear transformations on a vector space. Then

R is strictly 2-semitransitive if and only if it is strictly 2-transitive.

Proof. Obviously, if R is strictly 2-transitive then it is strictly 2-semitransitive. Sup-

pose that R is strictly 2-semitransitive. Take two linearly independent vectors x and y,

and two vectors u and v. We show that there is R ∈ R such that Rx = u and Ry = v.

If u = v = 0 then R = 0 will do the job. Thus, we can assume that either u 6= 0

or v 6= 0. Note that given any two linearly independent vectors a and b, applying

the definition of strict 2-semitransitivity to the pairs (a, b) and (b, a) one can find an

operator D(a,b) ∈ R such that D(a,b)a = b and D(a,b)b = a.

Suppose first that the underlying field has characteristic different from 2. Applying

the definition of strict 2-semitransitivity to the following pairs of pairs: (x, y) and

(x, y), and to (x, y) and (x,−y), we obtain operators J and A in R such that Jx = x,

Jy = y, Ax = x, and Ay = −y. Put B = J + A and C = J − A, then

Bx = 2x, By = 0, Cx = 0, and Cy = 2y.

Suppose that u 6= 0. We find S ∈ R such that Sx = u and Sy = 0 as follows. If

x and u are linearly independent, we take S = D(2x,u)B. Otherwise, y and u have to

be linearly independent, in which case we take S = D(2y,u)CD(x,y). Similarly, if v 6= 0

then there exists T ∈ R such that Tx = 0 and Ty = v. Finally, if both u and v are

non-zero, then we find S and T as before and put R = S + T . Clearly, Rx = u and

Ry = v.
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Now suppose that the underlying field is of characteristic 2. As before, we can find

J ∈ R such that Jx = x and Jy = y. Observe that

D(x,x+y)y = D(x,x+y)

(
(x + y) + x

)
= x + (x + y) = y.

Let B = D(x,y)

(
J + D(x,x+y)

)
, then Bx = x and By = 0. Clearly, B ∈ R. Similarly,

one can find C ∈ R such that Cx = 0 and Cy = y. The rest of the proof is similar to

the first case. �

It follows, in particular, under the hypotheses of Proposition 22, that if R is strictly

2-semitransitive then it is strictly transitive. Jacobson’s Theorem [Jac] asserts that

if R is strictly 2-transitive, then it is strictly dense , i.e., strictly n-transitive for

every n. Together with Proposition 22 it yields the following extension.

Corollary 23. Let R be a unital ring of linear transformations on a vector space. If

R is strictly 2-semitransitive, then it is strictly dense.

Let X be a Banach space, S a subset of L(X), and T a closed operator defined on

a linear subspace of X. We say that T commutes with S if dom T is invariant under

every operator A ∈ S and ATx = TAx for every x ∈ dom T .

Proposition 24. Suppose that X is a Banach space, S is a topologically 2-semitran-

sitive subset of L(X), and T is a closed operator defined on a linear subspace of X. If

S commutes with T then T is a multiple of the identity operator.

Proof. Suppose not. Then there exists x ∈ dom T such that x and Tx are linearly

independent. Apply the definition of topological 2-transitivity of S to the pairs (x, Tx)

and (x, 2Tx). Suppose first that there is a sequence of operators (An) in S such

that ‖Anx − x‖ → 0 and ‖An(Tx) − 2Tx‖ → 0. Since T is closed, this implies

Tx = 2Tx, contradiction. On the other hand, suppose that there is (An) in S such

that ‖Anx− x‖ → 0 and ‖An(2Tx)− Tx‖ → 0, so that Tx = 1
2
Tx, contradiction. �

Corollary 25. If X is Banach space, then no commutative subset of L(X) is topolog-

ically 2-semitransitive.

Suppose that T is an operator on a Banach space X such that T has no invariant

subspaces. Let A be the subalgebra of L(X) generated by T . Then, clearly, A is topo-

logically transitive. On the other hand, Corollary 25 implies that A is not topologically

2-semitransitive.
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