SEMITRANSITIVE SPACES OF OPERATORS

HEYDAR RADJAVI AND VLADIMIR G. TROITSKY

Abstract

A collection \mathcal{S} of linear maps on a vector space X is strictly semitransitive if for every two vectors x, y there is $A \in \mathcal{S}$ such that $A x=y$ or $A y=x$. There is also a topological version of this property for bounded maps on a Banach space. In this paper we discuss semitransitive subspaces of $L(X)$. We also study k-semitransitivity, which is the multi-variable version of semitransitivity, the corresponding weakening of the well-known notion of k-transitivity. We establish, in particular, that every strictly k-semitransitive subspace is strictly $(k-1)$-transitive. We also show that if $2 k>\operatorname{dim} X$, then every k-semitransitive subspace is k-transitive. Finally, we extend Jacobson's theorem to semitransitive rings.

1. Introduction and notation

Throughout this paper, X will be a real or complex Banach space, and by $L(X)$ we denote the space of all continuous linear operators on X. In the finite-dimensional case we will write M_{n} instead of $L(X)$, where $n=\operatorname{dim} X$. In fact, most of the results in the finite-dimensional case remain valid for $M_{n}(\mathbb{F})$ where \mathbb{F} is an arbitrary field.

A subset $\mathcal{S} \subseteq L(X)$ is said to be strictly transitive if for every two non-zero vectors $x, y \in X$ there is $A \in \mathcal{S}$ such that $A x=y$. We say that \mathcal{S} is topologically transitive if for every two non-zero vectors $x, y \in X$ and every $\varepsilon>0$ there is $A \in \mathcal{S}$ such that $\|A x-y\|<\varepsilon$. Given a positive integer k, we say that \mathcal{S} is strictly (or topologically) k-transitive if for every linearly independent k-tuple x_{1}, \ldots, x_{k} in X and for every k-tuple y_{1}, \ldots, y_{k} in X (and every $\varepsilon>0$) there exists $A \in \mathcal{S}$ such that for every $i=1, \ldots, k$ one has $A x_{i}=y_{i}$ (respectively, $\left\|A x_{i}-y_{i}\right\|<\varepsilon$). Clearly, \mathcal{S} is strictly (or topologically) 1-transitive if and only if it is strictly (respectively, topologically) transitive.

We say that \mathcal{S} is strictly semitransitive if for every two non-zero vectors $x, y \in X$ there is $A \in \mathcal{S}$ such that $A x=y$ or $A y=x$. We say that \mathcal{S} is topologically semitransitive if for every two non-zero vectors $x, y \in X$ and every $\varepsilon>0$ there

2000 Mathematics Subject Classification. Primary: 47L05. Secondary: 47A16, 15A30.
Key words and phrases. semitransitive subspace, transitive subspace, semitransitive ring, cyclic vector.

The first author was supported by NSERC. The second author was supported by the University of Alberta start-up grant.
is $A \in \mathcal{S}$ such that $\|A x-y\|<\varepsilon$ or $\|A y-x\|<\varepsilon$. Given a positive integer k, we say that \mathcal{S} is strictly k-semitransitive if for every two linearly independent k-tuples x_{1}, \ldots, x_{k} and y_{1}, \ldots, y_{k} in X there exists $A \in \mathcal{S}$ such that $A x_{i}=y_{i}$ for all $i=1, \ldots, k$, or $A y_{i}=x_{i}$ for all $i=1, \ldots, k$. Topological k-semitransitivity is defined accordingly.

For $x \in X$, we will write $\mathcal{S} x$ for the orbit of x under \mathcal{S}, i.e., $\mathcal{S} x=\{A x \mid A \in \mathcal{S}\}$. We say that x is strictly cyclic under \mathcal{S} if $\mathcal{S} x=X$, we say that x is topologically cyclic under \mathcal{S} if $\mathcal{S} x$ is dense in X.

For $A \in L(X)$, let $A^{(k)}$ be an element of $L\left(X^{k}\right)$ defined by $A^{(k)}\left(x_{1}, \ldots, x_{k}\right)=$ $\left(A x_{1}, \ldots, A x_{k}\right)$. Let $\mathcal{S}^{(k)}=\left\{A^{(k)} \mid A \in \mathcal{S}\right\}$.

These definitions immediately yield the following characterization. A subset \mathcal{S} in $L(X)$ is strictly (or topologically) k-transitive if and only if every linearly independent k-tuple in X^{k} is strictly (respectively, topologically) cyclic for $\mathcal{S}^{(k)}$. That is, if $x=$ $\left(x_{1}, \ldots, x_{k}\right)$ is a linearly independent k-tuple, then $\mathcal{S}^{(k)} x=X^{k}$ (respectively, $\overline{\mathcal{S}^{(k)} x}=$ X^{k}). Similarly, \mathcal{S} is strictly (or topologically) k-semitransitive if and only if for every two linearly independent k-tuples x and y in X^{k} we have $x \in \mathcal{S}^{(k)} y$ or $y \in \mathcal{S}^{(k)} x$ (respectively, $x \in \overline{\mathcal{S}^{(k)} y}$ or $y \in \overline{\mathcal{S}^{(k)} x}$).

One usually equips \mathcal{S} with some additional structure. It is easy to see that if \mathcal{S} is a group then strict semitransitivity coincides with strict transitivity. For bounded groups, topological semitransitivity coincides with topological transitivity. There is extensive literature on topologically transitive and n-transitive algebras, see $[R R]$ for a survey. Strictly semitransitive algebras of operators on Banach spaces were investigated in [RT]. It is easy to see that a unital algebra of operators is topologically semitransitive if and only if it is unicellular; such algebras were studied in $[\mathrm{RR}]$. We refer the reader to [BGMRT] for a study of strictly semitransitive semigroups and algebras in M_{n}, and to [DLMR] for a study of transitive subspaces of M_{n}. In this paper we will be primarily interested in semitransitive and k-semitransitive subspaces of M_{n}. Note that if \mathcal{L} is a linear (i.e., not necessarily closed) subspace of $L(X)$ then $\mathcal{L} x$ is a linear subspace of X for every x. Therefore, it follows from the previous paragraph that a linear subspace of M_{n} is strictly k-semitransitive if and only if it is topologically k-semitransitive as every linear subspace is closed. Hence, when talking about subspaces of M_{n} we will be omitting the adverbs "strictly" or "topologically".

Starting with [BGMRT], several authors have studied naturally arising semitransitivity questions on finite-dimensional spaces, including reducibility and triangularizability of semitransitive subspace of M_{n}. We would like to mention the two recent papers [Bled] and [BDKKO] which contain many new results in this direction.

2. Cyclic vectors of semitransitive subspaces

Theorem 1. Suppose that X is a separable Banach space and \mathcal{L} is a linear subspace of $L(X)$. Suppose that \mathcal{L} is topologically semitransitive. Then it has a topologically cyclic vector. Moreover, the set of topologically cyclic vectors for \mathcal{L} contains a dense G_{δ} set.

Proof. Let C be the set of all topologically cyclic vectors in X. For $x \in X$ write

$$
\mathcal{L}^{\circ} x=\{y \in X \mid x \in \overline{\mathcal{L} y}\} .
$$

Clearly, topological semitransitivity of \mathcal{L} is equivalent to $\overline{\mathcal{L} x} \cup \mathcal{L}^{\circ} x=X$ for every nonzero $x \in X$. In particular, if $x \in X \backslash C$, then $\overline{\mathcal{L} x}$ is a proper closed subspace, so that $\mathcal{L}^{\circ} x$ contains an open dense subset, namely, $X \backslash \overline{\mathcal{L} x}$.

If C contains a dense open subset, then we are done. Otherwise, the closure of $X \backslash C$ contains an open set. Since X is separable, there is a sequence $\left(x_{i}\right)$ in $X \backslash C$ whose linear span is dense in X. Put $G=\bigcap_{i=1}^{\infty} \mathcal{L}^{\circ} x_{i}$; then, by the Baire Category Theorem, G contains a dense G_{δ} subset. We show that $G \subseteq C$. Indeed, if $y \in G$, then for every i we have $y \in \mathcal{L}^{\circ} x_{i}$, so that $x_{i} \in \overline{\mathcal{L} y}$. Since $\left(x_{i}\right)$ spans a dense subspace of X, it follows that $\overline{\mathcal{L} y}=X$, hence y is topologically cyclic.

Remark 2. We would like to mention here that Corollary 3.10 of [RT] asserts that if X is a Banach space and \mathcal{A} is a strictly semitransitive norm-closed subalgebra of $L(X)$, then the set of strictly cyclic vectors for \mathcal{A} is residual, i.e., its complement is of first category.

Corollary 3. If \mathcal{L} is a semitransitive subspace of M_{n} then $\operatorname{dim} \mathcal{L} \geqslant n$.
Proof. By Theorem 1, \mathcal{L} has a cyclic vector. Let x be a cyclic vector for \mathcal{L}. Then $\operatorname{dim} \mathcal{L} \geqslant \operatorname{dim} \mathcal{L} x=n$.

3. k-SEMITRANSITIVE SETS

We start with a simple observation that generally k-semitransitivity implies $\frac{k}{2}$-transitivity. We will see later that better estimates hold when \mathcal{S} is a subspace or a subring.

Proposition 4. Suppose that X is a Banach space and \mathcal{S} is a topologically k-semitransitive subset of $L(X)$ for some even $k \leqslant \operatorname{dim} X$. Then \mathcal{S} is topologically $\frac{k}{2}$-transitive.

Proof. Put $m=\frac{k}{2}$. Assume that we have linearly independent vectors x_{1}, \ldots, x_{m} in X, arbitrary y_{1}, \ldots, y_{m} in X, and an arbitrary $\varepsilon>0$. For every $i=1, \ldots, m$ one can find
$\tilde{y}_{1}, \ldots, \tilde{y}_{m}$ such that $\left\|\tilde{y}_{i}-y_{i}\right\|<\frac{\varepsilon}{2}$ and so that $x_{1}, \ldots, x_{m}, \tilde{y}_{1}, \ldots, \tilde{y}_{m}$ are all linearly independent. Applying the definition of k-semitransitivity to the k-tuples

$$
\left(x_{1}, \ldots, x_{m}, \tilde{y}_{1}, \ldots, \tilde{y}_{m}\right) \text { and }\left(\tilde{y}_{1}, \ldots, \tilde{y}_{m}, x_{1}, \ldots, x_{m}\right)
$$

we conclude that there is $A \in \mathcal{S}$ such that $\left\|A x_{i}-\tilde{y}_{i}\right\|<\frac{\varepsilon}{2}$ and, therefore, $\left\|A x_{i}-y_{i}\right\|<\varepsilon$ for all $i=1, \ldots, m$.

If \mathcal{S} is strictly k-semitransitive then, by the preceding proposition, \mathcal{S} is topologically m-transitive for every $m \leqslant \frac{k}{2}$. Hence, $\mathcal{S}^{(m)} x$ is dense in X^{m} for every linearly independent $x \in X^{m}$. We claim that if, in addition, \mathcal{S} is convex then $\mathcal{S}^{(m)} x=X$ for every such x, so that \mathcal{S} is strictly m-transitive. Indeed, let $x \in X^{m}$ be linear independent and $y \in X^{m}$ be arbitrary. Choose $z \in X^{m}$ so that the $2 m$-tuple (x, z) is linearly independent. Then $(x, \varepsilon y+z)$ and $(x, \varepsilon y-z)$ are still linear independent for some sufficiently small ε. Hence $\left(x, y+\varepsilon^{-1} z\right)$ and $\left(x, y-\varepsilon^{-1} z\right)$ are linearly independent. Applying strict $2 m$-semitransitivity to the following pairs of $2 m$-tuples: $\left(x, y+\varepsilon^{-1} z\right)$ and $\left(y+\varepsilon^{-1} z, x\right)$, and $\left(x, y-\varepsilon^{-1} z\right)$ and $\left(y-\varepsilon^{-1} z, x\right)$ we conclude that $y+\varepsilon^{-1} z$ and $y-\varepsilon^{-1} z$ are both in $\mathcal{S}^{(m)} x$. Since $\mathcal{S}^{(m)}$ is convex, it follows that $y \in \mathcal{S}^{(m)} x$.

The following example shows that for arbitrary sets strict k-semitransitivity does not imply $\frac{k}{2}$-transitivity.

Example. Let \mathcal{S} be the subset of M_{2} consisting of all the 2×2 matrices except the matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ with $|a|>1$. Clearly, if $A \in M_{2}$ is invertible then either A or A^{-1} belongs to \mathcal{S}. It follows that \mathcal{S} is strictly 2 -semitransitive. However, it is not strictly transitive as no matrix in \mathcal{S} takes e_{1} into $2 e_{1}$.

4. k-SEmitransitive subspaces

We show in this section that a much stronger result than Proposition 4 holds for subspaces of M_{n}. Namely, every k-semitransitive subspace of M_{n} is $(k-1)$-transitive. Here, again, we will assume that the scalar field is \mathbb{R} or \mathbb{C}, though many of the proofs remain valid for arbitrary fields.

Let $M_{n k}$ be the space of all $n \times k$ matrices. It is well known that $M_{n k}$ becomes a Hilbert space if equipped with scalar product $\langle A, B\rangle=\operatorname{tr}\left(A^{*} B\right)=\sum_{i, j} a_{i j} \bar{b}_{i j}$, where $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are two matrices in $M_{n k}$. It follows from $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for any $A, B \in M_{n}$ that $\langle\cdot, \cdot\rangle$ is stable under unitary equivalences. That is, if U and V are unitaries in M_{n} and M_{k} respectively, then $\langle U A V, U B V\rangle=\langle A, B\rangle$ for any $A, B \in M_{n k}$. If \mathcal{L} is a linear subspace of $M_{n k}$ then, clearly, \mathcal{L} is proper if and only if $\mathcal{L} \perp T$ for some $T \in M_{n k}$.

The following lemma is well known. For completeness, we provide the proof.
Lemma 5. Let \mathcal{L} be a subspace of M_{n} and $k \leqslant n$. Then \mathcal{L} is not k-transitive if and only if there is a nonzero $T \in M_{n}$ such that $\operatorname{rank} T \leqslant k$ and $\mathcal{L} \perp T$.

Proof. For $A \in M_{n}$ and $k \leqslant n$ let \widetilde{A} denote the matrix in $M_{n k}$ composed of the first k columns of A. Furthermore, if \mathcal{M} is a subspace of M_{n}, let $\widetilde{\mathcal{M}}=\{\widetilde{A} \mid A \in \mathcal{M}\}$. Clearly, \mathcal{M} is a linear subspace of $M_{n k}$.

Suppose that \mathcal{L} is not k-transitive. Then there exists a linearly independent k tuple $\left(x_{1}, \ldots, x_{k}\right)$ and a k-tuple $\left(y_{1}, \ldots, y_{k}\right)$ such that no $A \in \mathcal{L}$ satisfies $A x_{i}=y_{i}$ for all $i=1, \ldots, k$. Let S be an invertible operator in M_{n} such that $S x_{i}=e_{i}$ for $i=1, \ldots, k$, and put $\mathcal{M}=S \mathcal{L} S^{-1}$. Let A be a matrix in M_{n} whose first k columns are $S y_{1}, \ldots, S y_{k}$. Then $A S x_{i}=A e_{i}=S y_{i}$, so that $S^{-1} A S x_{i}=y_{i}$ for $i=1, \ldots, k$. It follows that $S^{-1} A S \notin \mathcal{L}$ so that $A \notin \mathcal{M}$. Since this is true for every such A, we have $\widetilde{A} \notin \widetilde{\mathcal{M}}$, hence $\widetilde{\mathcal{M}}$ is a proper subspace of $M_{n k}$. Then there exists $T_{0} \in M_{n k}$ such that $\widetilde{\mathcal{M}} \perp T_{0}$ in $M_{n k}$. Extend T_{0} to a matrix T_{1} in M_{n}, that is $T_{1}=\left(T_{0} 0\right)$. Clearly, $\operatorname{rank} T_{1} \leqslant k$ and $\mathcal{M} \perp T_{1}$. Let $T=S^{*} T_{1} S^{-1^{*}}$, then $\operatorname{rank} T \leqslant k$ and $\mathcal{L} \perp T$.

Conversely, if a non-zero $T \in M_{n}$ satisfies $\operatorname{rank} T \leqslant k$ and $\mathcal{L} \perp T$, we can assume without loss of generality that Range $T \subseteq \operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$, so that $T=\left(T_{0}, 0\right)$ for some non-zero $T_{0} \in M_{n k}$. It follows that $\widetilde{\mathcal{L}} \perp T_{0}$, so that $\widetilde{\mathcal{L}}$ is a proper subspace of $M_{n k}$. Let $A_{0} \in M_{n k} \backslash \widetilde{\mathcal{L}}$, and let y_{1}, \ldots, y_{k} be the columns of A_{0}, then no matrix in \mathcal{L} sends e_{1}, \ldots, e_{k} into y_{1}, \ldots, y_{k}.

Recall that an operator T is an involution if $T^{2}=I$.
Lemma 6. The set of all involutions in M_{n} spans M_{n}.
Proof. It suffices to find n^{2} linearly independent involutions in M_{n}. Consider all the matrices of the following forms:
(i) Diagonal $\operatorname{diag}\{\underbrace{1, \ldots, 1}_{i}, \underbrace{-1, \ldots,-1}_{n-i}\}, i=1, \ldots, n$;
(ii) The identity matrix with i-th and j-th rows interchanged and multiplied respectively by 2 and $\frac{1}{2}$.
It can be easily seen that all these matrices are involutions, they are linearly independent, and there are n^{2} of them.

Lemma 7. Suppose that \mathcal{L} is a k-semitransitive subspace of M_{n} for some $k \leqslant n$, and P is an orthogonal projection of rank k. Then $\mathcal{L} P$ contains $P M_{n} P$.

Proof. Without loss of generality, up to a unitary equivalence, we can assume that P is the orthogonal projection onto $\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$. Pick an invertible matrix V in M_{k}, and let y_{1}, \ldots, y_{k} be the columns of V extended by zeros at the end to n-tuples. Since \mathcal{L} is k-semitransitive, there exists $A \in \mathcal{L}$ such that either $A e_{i}=y_{i}$ as $i=1, \ldots, k$, or $A y_{i}=e_{i}$ as $i=1, \ldots, k$. It follows that either $A=\left(\begin{array}{cc}V & R \\ 0 & S\end{array}\right)$ or $A=\left(\begin{array}{cc}V^{-1} & R \\ 0 & S\end{array}\right)$ for some R and S. In particular, for every involution V in M_{k} there are matrices R and S such that $\left(\begin{array}{cc}V & R \\ 0 & S\end{array}\right)$ is in \mathcal{L}, hence, $\left(\begin{array}{cc}V & 0 \\ 0 & 0\end{array}\right)$ is in $\mathcal{L} P$. Lemma 6 yields that $\left(\begin{array}{cc}B & 0 \\ 0 & 0\end{array}\right)$ is in $\mathcal{L} P$ for every $B \in M_{k}$, but the set of all the matrices of this form is exactly $P M_{n} P$.

Remark 8. One can easily verify that the proofs of Lemmas 6 and 7 remain valid for $M_{n}(\mathbb{F})$ for any field \mathbb{F} with char $\mathbb{F} \neq 2$.

Suppose now that char $\mathbb{F}=2$. Then (i) and (ii) in the proof of Lemma 6 are not valid. However, we claim that Lemma 7 remains true in this case. A glance at the original proof reveals that it is sufficient to show that if \mathcal{L} is a subspace of $M_{n}(\mathbb{F})$ such that for every invertible matrix $A \in M_{n}(\mathbb{F})$ either $A \in \mathcal{L}$ or $A^{-1} \in \mathcal{L}$, then $\mathcal{L}=M_{n}(\mathbb{F})$. Therefore, \mathcal{L} contains all the involutions. In particular, $I \in \mathcal{L}$. Note that V is an involution if and only if $(V+I)^{2}=0$, it follows that every square-zero matrix is in \mathcal{L}. Denote by $E_{i j}$ the standard basis matrix $e_{i} e_{j}^{T}$. Let $\mathcal{S}_{1}=\left\{E_{i j} \mid i \neq j\right\}$ and $\mathcal{S}_{2}=\left\{E_{11}+E_{1 i}+E_{i 1}+E_{i i} \mid 1<i \leqslant n\right\}$. Then \mathcal{S}_{1} and \mathcal{S}_{2} consist of square-zero matrices, so that $\mathcal{S}_{1} \cup \mathcal{S}_{2} \subset \mathcal{L}$. Furthermore, $\mathcal{S}_{1} \cup \mathcal{S}_{2}$ is linearly independent and has $n^{2}-1$ elements. Note also, that all the elements of $\mathcal{S}_{1} \cup \mathcal{S}_{2}$ have zero trace. If n is odd, then $\operatorname{tr} I=1$ so that I is linearly independent of $\mathcal{S}_{1} \cup \mathcal{S}_{2}$. It follows that $\mathcal{S}_{1} \cup \mathcal{S}_{2} \cup\{I\}$ spans M_{n}, hence $\mathcal{L}=M_{n}$. Suppose that n is even. Let $A=I+E_{12}+E_{21}-E_{22}$, then $A^{-1}=I+E_{12}+E_{21}-E_{11}$. Then $\operatorname{tr} A=\operatorname{tr} A^{-1}=1$ yields that both A and A^{-1} are linearly independent of $\mathcal{S}_{1} \cup \mathcal{S}_{2}$. Since either A or A^{-1} is in \mathcal{L} then $\operatorname{dim} \mathcal{L}=n^{2}$, hence $\mathcal{L}=M_{n}$ 。

In the case $k=n$ and $P=I$, Lemma 7 yields the following.
Corollary 9. M_{n} contains no proper n-semitransitive subspaces.
Lemma 10. Suppose that \mathcal{L} is a k-semitransitive subspace of M_{n} for some $k \leqslant n$, and $T \in M_{n}$ such that $\operatorname{rank} T \leqslant k$ and $\mathcal{L} \perp T$. Then $T^{2}=0$.

Proof. Without loss of generality (up to a unitary similarity) we can assume that T is of the form $\left(\begin{array}{cc}R & 0 \\ S & 0\end{array}\right)$, where R is $k \times k$. Let P be the projection on the first k coordinates. By Lemma $7, \mathcal{L} P$ contains all the matrices of the form $\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)$ for all $A \in M_{k}$. Since T is orthogonal to \mathcal{L}, it follows that $R=0$, so that $T^{2}=0$.

Theorem 11. Suppose that \mathcal{L} is a $(k+1)$-semitransitive subspace of M_{n} for some $k<n$. Then \mathcal{L} is k-transitive.

Proof. Suppose that \mathcal{L} is not k-transitive. It follows from Lemma 5 that there is a non-zero $T \in M_{n}$ with $\mathcal{L} \perp T$ and $\operatorname{rank} T \leqslant k$. Since \mathcal{L} is $(k+1)$-semitransitive and, therefore, k-semitransitive, Lemma 10 yields $T^{2}=0$.

Let $m=\operatorname{rank} T$. Since T is nilpotent, we may assume without loss of generality (up to a similarity) that T is in Jordan form, no matter what the underlying field may be. Since $T^{2}=0$, it follows that all the non-zero Jordan blocks of T are of the form $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Let $\left(t_{i j}\right)$ be the matrix of T. Then $t_{2 i-1,2 i}=1$ for all $i=1, \ldots, m$, and all the other entries of the matrix are zero.

It follows from $m \leqslant k$ that \mathcal{L} is $(m+1)$-semitransitive. Apply the definition of ($m+1$)-semitransitivity to the following $(m+1)$-tuples:

$$
\left(e_{1}, e_{2}, e_{4}, e_{6}, \ldots, e_{2 m}\right) \quad \text { and } \quad\left(e_{2}, e_{1}, e_{4}, e_{6}, \ldots, e_{2 m}\right)
$$

Hence there exists $A \in \mathcal{L}$ such that $A e_{2}=e_{1}$ and $A e_{2 i}=e_{2 i}$ for $i=2, \ldots, m$. Let $\left(a_{i j}\right)$ be the matrix of A, then $a_{1,2}=1$ and $a_{2 i-1,2 i}=0$ for $i=2, \ldots, m$. It follows that $\langle A, T\rangle=1$, which contradicts $\mathcal{L} \perp T$.

5. When a k-SEmitransitive subspace is k-TRANSITIVE

Proposition 12. Suppose that \mathcal{L} is a k-semitransitive subspace of M_{n} for some $k \leqslant n$. If \mathcal{L} is not k-transitive then there exists $T \in M_{n}$ such that $\mathcal{L} \perp T$, $\operatorname{rank} T=k$, and $T^{2}=0$.

Proof. Suppose that \mathcal{L} is a k-semitransitive subspace of M_{n} for some $k \leqslant n$, and \mathcal{L} is not k-transitive. By Lemma 5 there exists a non-zero $T \in M_{n}$ such that $\mathcal{L} \perp T$ and $\operatorname{rank} T \leqslant k$. If $k>1$ then Theorem 11 asserts that \mathcal{L} is $(k-1)$-transitive, so that Lemma 5 yields $\operatorname{rank} T>k-1$, hence $\operatorname{rank} T=k$. If $k=1$ then we still have $\operatorname{rank} T=k$ as $T \neq 0$. Finally, it follows from Lemma 10 that $T^{2}=0$.

Combining Proposition 12 with Lemma 5, we obtain the following characterization.
Corollary 13. Suppose that \mathcal{L} is a k-semitransitive subspace of M_{n} for some $k<n$. Then \mathcal{L} is k-transitive if and only if \mathcal{L}^{\perp} contains no operator of rank k with zero square.

This also allows us to improve the result of Theorem 11 when $k>\frac{n}{2}$.
Corollary 14. If $2 k>n$ then every k-semitransitive subspace of M_{n} is k-transitive.

Proof. Suppose that $2 k>n$ and observe that no operator of rank k has zero square. Indeed, let $T \in M_{n}$ be such that $\operatorname{rank} T=k$. Then $\operatorname{dim} \operatorname{Range} T=k$ while $\operatorname{dim} \operatorname{ker} T=$ $n-k>k$, so that Range T is not contained in $\operatorname{ker} T$, hence $T^{2} \neq 0$. Therefore, the result follows from Proposition 12.

The following result is, in a sense, a complement to Corollary 14. We show that if $2 k \leqslant n$ then there exists a k-semitransitive subspace of M_{n} that is not k-transitive.

Proposition 15. Let $T \in M_{n}$ such that $\operatorname{rank} T=k$ and $T^{2}=0$. Then $\{T\}^{\perp}$ is k semitransitive, but not k-transitive.

Proof. Let $\mathcal{L}=\{T\}^{\perp}$. Observe that \mathcal{L} is not k-transitive by Lemma 5. On the other hand, since \mathcal{L}^{\perp} consists of multiples of T only, no non-zero matrix of rank less than k is orthogonal to \mathcal{L}, so that Lemma 5 yields that \mathcal{L} is $(k-1)$-transitive.

We claim that \mathcal{L} is k-semitransitive. Suppose not. Let $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(y_{1}, \ldots, y_{k}\right)$ be two k-tuples, each linearly independent, such that no matrix in \mathcal{L} takes all x_{i} 's into the corresponding y_{i}^{\prime} 's or vice versa. Let $H=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$ and put $Z=H^{\perp}$. Let $A: H \mapsto X$ be such that $A x_{i}=y_{i}$ as $i=1, \ldots, k$. Choose an orthonormal basis e_{1}, \ldots, e_{k} of H and an orthonormal basis e_{k+1}, \ldots, e_{n} of Z, so that e_{1}, \ldots, e_{n} is an orthonormal basis of X. In these bases we can view A as an $n \times k$ matrix. Let $\left(t_{i j}\right)_{i, j=1}^{n}$ be the matrix of T relative to the basis e_{1}, \ldots, e_{n}. Let T_{H} and T_{Z} be the matrices consisting of the first k and of the last $(n-k)$ columns of $\left(t_{i j}\right)_{i, j=1}$ respectively, so that $T=\left(T_{H} T_{Z}\right)$. For every $F \in M_{n, n-k}$ we have $(A F) \in M_{n}$ and $(A F) x_{i}=A x_{i}=y_{i}$ for $i=1, \ldots, k$, so that $(A F) \notin \mathcal{L}$. It follows that $0 \neq\langle(A F), T\rangle=\left\langle A, T_{H}\right\rangle+\left\langle F, T_{Z}\right\rangle$. Since F was chosen arbitrarily, it follows that $T_{Z}=0$, so that $Z \subseteq \operatorname{ker} T$. Since $\operatorname{dim} \operatorname{ker} T=n-k=\operatorname{dim} Z$, we have $Z=\operatorname{ker} T$. Therefore, $\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}=$ $(\operatorname{ker} T)^{\perp}$. Since $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(y_{i}, \ldots, x_{i}\right)$ could be interchanged in the construction, it follows that $\operatorname{span}\left\{y_{1}, \ldots, y_{k}\right\}=(\operatorname{ker} T)^{\perp}=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}=H$. It follows that Range $A \subseteq H$, so that $A=\binom{B}{0}$ for some $B \in M_{k}$. Let $C=\left(\begin{array}{cc}B & 0 \\ 0 & 0\end{array}\right)$, then $C x_{i}=y_{i}$ as $i=1, \ldots, k$, so that $C \notin \mathcal{L}$.

We know that $T=\left(T_{H} 0\right)=\left(\begin{array}{cc}R & 0 \\ S & 0\end{array}\right)$ for some $R \in M_{k, k}$ and $S \in M_{n-k, k}$. Since $T^{2}=0$, it follows that Range $T \subseteq \operatorname{ker} T=Z$. In particular, $T(H) \subseteq Z$, so that $R=0$. Thus,

$$
\langle C, T\rangle=\left\langle\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
S & 0
\end{array}\right)\right\rangle=0
$$

contradiction.
Corollary 16. For every $k \leqslant \frac{n}{2}$ there exists a k-semitransitive subspace of M_{n} which fails to be k-transitive.

Proof. Let $T \in M_{n}$ be as follows: let $t_{2 i-1,2 i}=1$ as $i=1, \ldots, k$, and let all other entries of the matrix of T be zeros. Then $\operatorname{rank} T=k$ and $T^{2}=0$. Now the conclusion follows from Proposition 15.

Next, we show that k-transitivity does not imply $(k+1)$-semitransitivity.
Proposition 17. Suppose that \mathcal{L} is a subspace of M_{n} and $1<k \leqslant n$ such that \mathcal{L} is $(k-1)$-transitive but not k-transitive. Then there exist unitaries $U, V \in M_{n}$ such that $U \mathcal{L}$ and $\mathcal{L} V$ are $(k-1)$-transitive but not k-semitransitive.

Proof. If \mathcal{L} is not k-semitransitive then we are done. Suppose that \mathcal{L} is k-semitransitive. Then by Proposition 12 there exists $T \in \mathcal{L}^{\perp}$ with $\operatorname{rank} T=k$ and $T^{2}=0$. Choose a unitary $U \in M_{n}$ so that $(U T)^{2} \neq 0$. Observe that $\operatorname{rank} U T=k$ and $U T \in(U \mathcal{L})^{\perp}$. It follows from Lemma 5 that $U \mathcal{L}$ is not k-transitive. Since $(U T)^{2} \neq 0$, Lemma 10 yields that $U \mathcal{L}$ is not k-semitransitive. The existence of V is proved in a similar fashion.

Corollary 18. If $1<k \leqslant n$ then there exists a subspace of M_{n} that is ($k-1$)-transitive but not k-semitransitive.

Proof. Let $T \in M_{n}$ with $\operatorname{rank} T=k$, and let $\mathcal{L}=\{T\}^{\perp}$. Lemma 5 yields that \mathcal{L} is ($k-1$)-transitive but not k-transitive. Proposition 17 completes the proof.

We conclude this section with a few examples.
Example. Recall that a matrix $A=\left(a_{i, j}\right)$ in M_{n} is Toeplitz if $a_{i, j}=a_{i+1, j+1}$ for all $i, j<n$. Let \mathcal{L} be the subspace of all Toeplitz matrices in M_{n}. It is known and easy to prove (see, e.g., $[\mathrm{Az}]$) that \mathcal{L} is a transitive subspace. We claim that it is not 2 semitransitive. Consider the following two pairs: $\left(e_{1}, e_{2}\right)$ and $\left(e_{1}+e_{2}, e_{1}-e_{2}\right)$. Suppose first that there is $A \in \mathcal{L}$ such that $A e_{1}=e_{1}+e_{2}$, and $A e_{2}=e_{1}-e_{2}$. But since A is Toeplitz, then $A e_{1}=e_{1}+e_{2}$ implies $A e_{2}=e_{2}+e_{3}$, contradiction. On the other hand, suppose that there is $A \in \mathcal{L}$ such that $A\left(e_{1}+e_{2}\right)=e_{1}$, and $A\left(e_{1}-e_{2}\right)=e_{2}$. Then

$$
\begin{equation*}
A e_{1}=A\left(\frac{e_{1}+e_{2}}{2}+\frac{e_{1}-e_{2}}{2}\right)=\frac{1}{2}\left(e_{1}+e_{2}\right) . \tag{1}
\end{equation*}
$$

Again, since A is Toeplitz, it follows that $A e_{2}=\frac{1}{2}\left(e_{2}+e_{3}\right)$. However, as in (1), we have $A e_{2}=\frac{1}{2}\left(e_{1}-e_{2}\right)$, contradiction. Therefore, \mathcal{L} is not 2 -semitransitive.

Example. Let $\mathcal{L}=\left\{A \in M_{3} \mid \operatorname{tr}(A)=0\right\}$. It is easy to see that \mathcal{L} is 2-transitive but not 3 -transitive. Observe that $\mathcal{L}=\{I\}^{\perp}$. Lemma 10 implies that \mathcal{L} is not 3 -semitransitive. Example. Fix $t \neq 0$ and let \mathcal{L} be the set of all the matrices in M_{2} of the form $\left(\begin{array}{cc}\alpha & \beta \\ 0 & t \alpha\end{array}\right)$. Then \mathcal{L} is a two-dimensional semitransitive subspace of M_{2}.

6. More on the infinite-Dimensional case

In this section we show that some of the results of Section 4 remain valid in the infinite-dimensional setting. Namely, we present infinite-dimensional analogues of Lemmas 5 and 7, and of Theorem 11. Note that these results still hold if X is just a vector space, and bounded maps are replaced with linear maps.

The following generalization of Lemma 5 can be easily deduced from the definition of strict k-transitivity.

Lemma 19. Suppose that \mathcal{L} is a linear subspace of $L(X)$. Then \mathcal{L} is strictly k transitive if and only if $\mathcal{L} P=L(X) P$ for every projection $P \in L(X)$ with rank $P \leqslant k$.

Lemma 20. Suppose that \mathcal{L} is a strictly k-semitransitive subspace of $L(X)$, and $P \in$ $L(X)$ is a projection with $\operatorname{rank} P \leqslant k$. Then $P L(X) P \subseteq \mathcal{L} P$

Proof. Let $Y=$ Range P. Let e_{1}, \ldots, e_{m} be a basis of Y. Note that $m \leqslant k$. Relative to this basis, any $m \times m$ matrix A can be viewed as a bounded operator from Y to Y or from Y to X; then $A P=P A P \in L(X)$. Also, $P L(X) P$ can be identified with M_{m}. Let V be an $m \times m$ involution. Put $y_{i}=V e_{i}$ for $i=1, \ldots, m$; they are linearly independent since V is invertible. Note that \mathcal{L} is strictly m-semitransitive, hence there exists $A \in \mathcal{L}$ which either takes all e_{i} 's into y_{i} 's, or vice versa. Suppose that for each $i=1, \ldots, m$ we have $A e_{i}=y_{i}$. Then $A P e_{i}=y_{i}$. It follows that $A P=V$, so that $V \in \mathcal{L} P$. On the other hand, suppose that for each $i=1, \ldots, m$ we have $A y_{i}=e_{i}$. Then $A P y_{i}=e_{i}$, so that $A P=V$, so again $V \in \mathcal{L} P$. Lemma 6 now yields that $M_{m} \subseteq \mathcal{L} P$.

Theorem 21. If \mathcal{L} is a strictly $(k+1)$-semitransitive subspace of $L(X)$ for some finite k, then \mathcal{L} is strictly k-transitive.

Proof. Suppose that \mathcal{L} is not strictly k-transitive. Lemma 19 yields that there is a projection $P \in L(X)$ with $m:=\operatorname{rank} P \leqslant k$ such that $\mathcal{L} P$ is contained in $L(X) P$. On the other hand, since \mathcal{L} is strictly k-semitransitive, Lemma 20 yields $P L(X) P \subseteq \mathcal{L} P$. It follows that there exists $D \in L(X)$ such that $D P \notin \mathcal{L} P$ while $P D P \in \mathcal{L} P$, hence $(I-P) D P \notin \mathcal{L} P$.

Let $Y=$ Range P. Let e_{1}, \ldots, e_{m} be a basis of Y. Let $z_{i}=(I-P) D P e_{i}$. Then $z_{i} \in \operatorname{Range}(I-P)$.

Using strict k-semitransitivity of \mathcal{L} on the k-tuples $\left(e_{1}, \ldots, e_{m}\right)$ and $\left(e_{1}, \ldots, e_{m}\right)$ we conclude that there exists $B \in \mathcal{L}$ such that $B e_{i}=e_{i}$ for $i=1, \ldots, m$.

Applying strict $(k+1)$-semitransitivity of \mathcal{L} to the $(k+1)$-tuples

$$
\left(z_{1}, e_{1}, e_{2}, e_{3}, \ldots, e_{m}\right) \text { and }\left(e_{1}, z_{1}, e_{2}, e_{3}, \ldots, e_{m}\right)
$$

we conclude that there exists $C_{1} \in \mathcal{L}$ such that $C_{1} e_{i}=e_{i}$ for $i=2, \ldots, m$ and $C_{1} e_{1}=z_{1}$. Similarly, for each $j=1, \ldots, m$ we find $C_{j} \in \mathcal{L}$ such that $C_{j} e_{i}=e_{i}$ if $i \neq j$ and $C_{j} e_{j}=z_{j}$. Let $A=C_{1}+\cdots+C_{m}-(m-1) B$. Observe that $A \in \mathcal{L}$, hence $A P \in \mathcal{L} P$. On the other hand, $A e_{i}=z_{i}$ for all $i=1, \ldots, m$, so that $A P=(I-P) D P$, contradiction.

7. More on 2-SEmitransitivity

In this section the vector spaces are finite or infinite dimensional. The following two results concern rings of linear transformations on a vector space over an arbitrary underlying field.

Proposition 22. Let \mathcal{R} be a ring of linear transformations on a vector space. Then \mathcal{R} is strictly 2-semitransitive if and only if it is strictly 2-transitive.

Proof. Obviously, if \mathcal{R} is strictly 2 -transitive then it is strictly 2 -semitransitive. Suppose that \mathcal{R} is strictly 2 -semitransitive. Take two linearly independent vectors x and y, and two vectors u and v. We show that there is $R \in \mathcal{R}$ such that $R x=u$ and $R y=v$.

If $u=v=0$ then $R=0$ will do the job. Thus, we can assume that either $u \neq 0$ or $v \neq 0$. Note that given any two linearly independent vectors a and b, applying the definition of strict 2-semitransitivity to the pairs (a, b) and (b, a) one can find an operator $D_{(a, b)} \in \mathcal{R}$ such that $D_{(a, b)} a=b$ and $D_{(a, b)} b=a$.

Suppose first that the underlying field has characteristic different from 2. Applying the definition of strict 2 -semitransitivity to the following pairs of pairs: (x, y) and (x, y), and to (x, y) and $(x,-y)$, we obtain operators J and A in \mathcal{R} such that $J x=x$, $J y=y, A x=x$, and $A y=-y$. Put $B=J+A$ and $C=J-A$, then

$$
B x=2 x, \quad B y=0, \quad C x=0, \quad \text { and } \quad C y=2 y .
$$

Suppose that $u \neq 0$. We find $S \in \mathcal{R}$ such that $S x=u$ and $S y=0$ as follows. If x and u are linearly independent, we take $S=D_{(2 x, u)} B$. Otherwise, y and u have to be linearly independent, in which case we take $S=D_{(2 y, u)} C D_{(x, y)}$. Similarly, if $v \neq 0$ then there exists $T \in \mathcal{R}$ such that $T x=0$ and $T y=v$. Finally, if both u and v are non-zero, then we find S and T as before and put $R=S+T$. Clearly, $R x=u$ and $R y=v$.

Now suppose that the underlying field is of characteristic 2 . As before, we can find $J \in \mathcal{R}$ such that $J x=x$ and $J y=y$. Observe that

$$
D_{(x, x+y)} y=D_{(x, x+y)}((x+y)+x)=x+(x+y)=y .
$$

Let $B=D_{(x, y)}\left(J+D_{(x, x+y)}\right)$, then $B x=x$ and $B y=0$. Clearly, $B \in \mathcal{R}$. Similarly, one can find $C \in \mathcal{R}$ such that $C x=0$ and $C y=y$. The rest of the proof is similar to the first case.

It follows, in particular, under the hypotheses of Proposition 22, that if \mathcal{R} is strictly 2-semitransitive then it is strictly transitive. Jacobson's Theorem [Jac] asserts that if \mathcal{R} is strictly 2 -transitive, then it is strictly dense, i.e., strictly n-transitive for every n. Together with Proposition 22 it yields the following extension.

Corollary 23. Let \mathcal{R} be a unital ring of linear transformations on a vector space. If \mathcal{R} is strictly 2-semitransitive, then it is strictly dense.

Let X be a Banach space, \mathcal{S} a subset of $L(X)$, and T a closed operator defined on a linear subspace of X. We say that T commutes with \mathcal{S} if dom T is invariant under every operator $A \in \mathcal{S}$ and $A T x=T A x$ for every $x \in \operatorname{dom} T$.

Proposition 24. Suppose that X is a Banach space, \mathcal{S} is a topologically 2-semitransitive subset of $L(X)$, and T is a closed operator defined on a linear subspace of X. If \mathcal{S} commutes with T then T is a multiple of the identity operator.

Proof. Suppose not. Then there exists $x \in \operatorname{dom} T$ such that x and $T x$ are linearly independent. Apply the definition of topological 2-transitivity of \mathcal{S} to the pairs $(x, T x)$ and $(x, 2 T x)$. Suppose first that there is a sequence of operators $\left(A_{n}\right)$ in \mathcal{S} such that $\left\|A_{n} x-x\right\| \rightarrow 0$ and $\left\|A_{n}(T x)-2 T x\right\| \rightarrow 0$. Since T is closed, this implies $T x=2 T x$, contradiction. On the other hand, suppose that there is $\left(A_{n}\right)$ in \mathcal{S} such that $\left\|A_{n} x-x\right\| \rightarrow 0$ and $\left\|A_{n}(2 T x)-T x\right\| \rightarrow 0$, so that $T x=\frac{1}{2} T x$, contradiction.

Corollary 25. If X is Banach space, then no commutative subset of $L(X)$ is topologically 2-semitransitive.

Suppose that T is an operator on a Banach space X such that T has no invariant subspaces. Let \mathcal{A} be the subalgebra of $L(X)$ generated by T. Then, clearly, \mathcal{A} is topologically transitive. On the other hand, Corollary 25 implies that \mathcal{A} is not topologically 2-semitransitive.

References

[Az] E. Azoff, On finite rank operators and preannihilators. Mem. Amer. Math. Soc., 64(1986), no. 357.
[Bled] J. Bernik et al (Semitransitivity Working Group at LAW'05, Bled), Semitransitive subspaces of matrices, Electronic Journal of Linear Algebra, 15 (2006), 225-238.
[BDKKO] J. Bernik, R. Drnovšek, D. Kokol-Bukovšek, T. Košir, and M. Omladič, Reducibility and triangularizability of semitransitive operator spaces, to appear in Houston J. Math.
[BGMRT] J. Bernik, L. Grunenfelder, M. Mastnak, H. Radjavi, and V.G. Troitsky, On semitransitive collections of operators, Semigroup Forum, 70 (2005), no. 3, 436-450.
[DLMR] K. Davidson, R. Levene, L. Marcoux, and H. Radjavi, Transitive subspaces, preprint.
[Jac] N. Jacobson, Structure of rings, Amer. Math. Soc., Providence, R.I., 1964.
[RR] H. Radjavi, P. Rosenthal, Simultaneous triangularization, Springer 2000.
[RT] H. Rosenthal and V.G. Troitsky, Strictly semi-transitive operator algebras, J. of Operator Theory, 53 (2005), no. 2, 315-329.

Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1. Canada.

E-mail address: hradjavi@math.uwaterloo.ca
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1. Canada.

E-mail address: vtroitsky@math.ualberta.ca

