SEMITRANSITIVE SPACES OF OPERATORS
HEYDAR RADJAVI AND VLADIMIR G. TROITSKY

ABSTRACT. A collection S of linear maps on a vector space X is strictly semitransi-
tive if for every two vectors x,y there is A € S such that Az = y or Ay = . There
is also a topological version of this property for bounded maps on a Banach space.
In this paper we discuss semitransitive subspaces of L(X). We also study k-semi-
transitivity, which is the multi-variable version of semitransitivity, the corresponding
weakening of the well-known notion of k-transitivity. We establish, in particular, that
every strictly k-semitransitive subspace is strictly (k — 1)-transitive. We also show
that if 2k > dim X, then every k-semitransitive subspace is k-transitive. Finally, we
extend Jacobson’s theorem to semitransitive rings.

1. INTRODUCTION AND NOTATION

Throughout this paper, X will be a real or complex Banach space, and by L(X)
we denote the space of all continuous linear operators on X. In the finite-dimensional
case we will write M, instead of L(X), where n = dim X. In fact, most of the results
in the finite-dimensional case remain valid for M, (F) where F is an arbitrary field.

A subset S C L(X) is said to be strictly transitive if for every two non-zero
vectors x,y € X there is A € § such that Az = y. We say that S is topologically
transitive if for every two non-zero vectors z,y € X and every € > 0 thereis A € S
such that ||Az — y|| < €. Given a positive integer k, we say that S is strictly (or
topologically) k-transitive if for every linearly independent k-tuple xq, ...,z in X
and for every k-tuple yy, ..., y, in X (and every € > 0) there exists A € S such that for
every i = 1,..., k one has Ax; = y; (respectively, ||Az; —y;|| < €). Clearly, S is strictly
(or topologically) 1-transitive if and only if it is strictly (respectively, topologically)
transitive.

We say that S is strictly semitransitive if for every two non-zero vectors z,y € X
there is A € S such that Az = y or Ay = x. We say that S is topologically
semitransitive if for every two non-zero vectors x,y € X and every € > 0 there
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is A € § such that ||[Az — y|| < € or ||[Ay — z|| < e. Given a positive integer k, we
say that S is strictly k-semitransitive if for every two linearly independent k-tuples
Z1,...,xpand yp, ...,y in X there exists A € S such that Az; = y; foralle =1,... k,
or Ay; = z; for all i = 1,..., k. Topological k-semitransitivity is defined accordingly.

For x € X, we will write Sz for the orbit of x under S, i.e., Sz = {Az | A € S}.
We say that z is strictly cyclic under S if Sx = X, we say that = is topologically
cyclic under S if Sz is dense in X.

For A € L(X), let A® be an element of L(X*) defined by A®(zy,... 1) =
(Azy,. .., Azy). Let S® = {AW | A € S}.

These definitions immediately yield the following characterization. A subset S in
L(X) is strictly (or topologically) k-transitive if and only if every linearly independent
k-tuple in X* is strictly (respectively, topologically) cyclic for S*). That is, if z =
(z1,...,23) is a linearly independent k-tuple, then Sz = X* (respectively, Shg =
X*). Similarly, S is strictly (or topologically) k-semitransitive if and only if for every
two linearly independent k-tuples z and y in X* we have 2 € S®y or y € SWz
(respectively, z € S®Hy or y € S®z).

One usually equips & with some additional structure. It is easy to see that if S
is a group then strict semitransitivity coincides with strict transitivity. For bounded
groups, topological semitransitivity coincides with topological transitivity. There is
extensive literature on topologically transitive and n-transitive algebras, see [RR] for a
survey. Strictly semitransitive algebras of operators on Banach spaces were investigated
in [RT]. It is easy to see that a unital algebra of operators is topologically semitransitive
if and only if it is unicellular; such algebras were studied in [RR]. We refer the reader
to [BGMRT] for a study of strictly semitransitive semigroups and algebras in M,,, and
to [DLMR] for a study of transitive subspaces of M,,. In this paper we will be primarily
interested in semitransitive and k-semitransitive subspaces of M,,. Note that if £ is a
linear (i.e., not necessarily closed) subspace of L(X) then Lx is a linear subspace of X
for every x. Therefore, it follows from the previous paragraph that a linear subspace
of M, is strictly k-semitransitive if and only if it is topologically k-semitransitive as
every linear subspace is closed. Hence, when talking about subspaces of M,, we will be
omitting the adverbs “strictly” or “topologically”.

Starting with [BGMRT], several authors have studied naturally arising semitransi-
tivity questions on finite-dimensional spaces, including reducibility and triangulariz-
ability of semitransitive subspace of M,. We would like to mention the two recent

papers [Bled] and [BDKKO] which contain many new results in this direction.



2. CYCLIC VECTORS OF SEMITRANSITIVE SUBSPACES

Theorem 1. Suppose that X is a separable Banach space and L is a linear subspace
of L(X). Suppose that L is topologically semitransitive. Then it has a topologically
cyclic vector. Moreover, the set of topologically cyclic vectors for L contains a dense
G set.

Proof. Let C' be the set of all topologically cyclic vectors in X. For x € X write
Lor={yeX|ze Ly}

Clearly, topological semitransitivity of £ is equivalent to Lz U L%z = X for every non-
zero © € X. In particular, if € X \ C, then Lz is a proper closed subspace, so that
L°x contains an open dense subset, namely, X \ L.

If C contains a dense open subset, then we are done. Otherwise, the closure of X \ C
contains an open set. Since X is separable, there is a sequence (x;) in X \ C whose
linear span is dense in X. Put G = (2, £°z;; then, by the Baire Category Theorem,
G contains a dense G subset. We show that G C C. Indeed, if y € G, then for every
i we have y € L°;, so that 2; € Ly. Since (z;) spans a dense subspace of X, it follows

that £y = X, hence y is topologically cyclic. 0

Remark 2. We would like to mention here that Corollary 3.10 of [RT] asserts that
if X is a Banach space and A is a strictly semitransitive norm-closed subalgebra of
L(X), then the set of strictly cyclic vectors for A is residual, i.e., its complement is of

first category.
Corollary 3. If L is a semitransitive subspace of M,, then dim L > n.

Proof. By Theorem 1, £ has a cyclic vector. Let x be a cyclic vector for £. Then
dim £ > dim Lx = n. O
3. k-SEMITRANSITIVE SETS

We start with a simple observation that generally k-semitransitivity implies g—tran—

sitivity. We will see later that better estimates hold when S is a subspace or a subring.

Proposition 4. Suppose that X is a Banach space and S is a topologically k-semitran-

sitive subset of L(X) for some even k < dim X. Then S is topologically %-tmnsitz’ve.

Proof. Put m = g Assume that we have linearly independent vectors z1, ..., z,, in X,

arbitrary vy, ...,y in X, and an arbitrary € > 0. For every ¢ = 1,...,m one can find
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Ui, Um such that ||§; —y]| < 5 and so that x1,...,2y,71,...,Un are all linearly

independent. Applying the definition of k-semitransitivity to the k-tuples

(T1y o Ty Uty -+ oy Um) A0 (P1y e vy Uy L1y - v+ L)

we conclude that there is A € S such that || Az; —g;|| < § and, therefore, ||Az; —y;|| < e

foralli=1,...,m. O

If S is strictly k-semitransitive then, by the preceding proposition, S is topologically
k
5.
pendent z € X™. We claim that if, in addition, S is convex then Stz = X for every

m-transitive for every m < Hence, Sz is dense in X™ for every linearly inde-
such z, so that § is strictly m-transitive. Indeed, let x € X be linear independent
and y € X™ be arbitrary. Choose z € X™ so that the 2m-tuple (z,z) is linearly
independent. Then (z,ey + 2z) and (z,ey — 2) are still linear independent for some
sufficiently small e. Hence (z,y + e '2) and (z,y — e '2) are linearly independent.
Applying strict 2m-semitransitivity to the following pairs of 2m-tuples: (z,y + ¢ '2)
and (y + e 'z,2), and (z,y —e'2) and (y — e '2,x) we conclude that y + ¢~ 'z and
y — e 'z are both in S™z. Since S is convex, it follows that y € S z.

The following example shows that for arbitrary sets strict k-semitransitivity does

not imply %—transitivity.

FExample. Let S be the subset of M, consisting of all the 2 x 2 matrices except the
matrices of the form (¢%) with |a| > 1. Clearly, if A € M, is invertible then either A
or A~! belongs to S. It follows that S is strictly 2-semitransitive. However, it is not

strictly transitive as no matrix in S takes e; into 2e;.

4. k-SEMITRANSITIVE SUBSPACES

We show in this section that a much stronger result than Proposition 4 holds for
subspaces of M,,. Namely, every k-semitransitive subspace of M,, is (k — 1)-transitive.
Here, again, we will assume that the scalar field is R or C, though many of the proofs
remain valid for arbitrary fields.

Let M, be the space of all n x k matrices. It is well known that M, becomes a
Hilbert space if equipped with scalar product (A4, B) = tr(A*B) = 3, ; a;jbij, where
A = (a;j) and B = (b;;) are two matrices in M,;,. It follows from tr(AB) = tr(BA) for
any A, B € M, that (-,-) is stable under unitary equivalences. That is, if U and V" are
unitaries in M,, and M}, respectively, then (UAV,UBV) = (A, B) for any A, B € M.
If £ is a linear subspace of M, then, clearly, L is proper if and only if £ 1 T for some
T € M.



The following lemma is well known. For completeness, we provide the proof.

Lemma 5. Let L be a subspace of M,, and k < n. Then L is not k-transitive if and
only if there is a nonzero T' € M,, such that rank T < k and £ 1L T.

Proof. For A € M,, and k < n let A denote the matrix in M,,;. composed of the first
k columns of A. Furthermore, if M is a subspace of M,, let M = {A | A € M}.
Clearly, M is a linear subspace of M.

Suppose that £ is not k-transitive. Then there exists a linearly independent k-
tuple (z1,...,x%) and a k-tuple (y1,...,yx) such that no A € L satisfies Ax; = y;
for all « = 1,...,k. Let S be an invertible operator in M, such that Sx; = e; for
i=1,...,k, and put M = SLS™!. Let A be a matrix in M, whose first k& columns
are Syi,...,Sy,. Then ASz; = Ae; = Svy;, so that ST1ASy; = y; for i = 1,... k.
It follows that ST'AS ¢ L so that A ¢ M. Since this is true for every such A, we
have A ¢ Mv , hence Mv is a proper subspace of M,,;. Then there exists Ty € M, such
that M L To in M,y. Extend Ty to a matrix 77 in M, that is 77 = (T 0). Clearly,
rank T} < kand M L T;. Let T = S*T;S™'", then rank T < kand £ L T.

Conversely, if a non-zero T' € M, satisfies rankT < k and £ 1L T, we can assume
without loss of generality that RangeT C span{es,...,ex}, so that T = (7p,0) for
some non-zero Ty € M,y,. It follows that L1 Ty, so that Lis a proper subspace of
M. Let Ag € My \ Z, and let vy, ...,y be the columns of Ay, then no matrix in £

sends ey, ..., e into Yy, ..., Y- O

Recall that an operator T is an involution if T? = I.
Lemma 6. The set of all involutions in M, spans M,.

Proof. Tt suffices to find n? linearly independent involutions in M,,. Consider all the
matrices of the following forms:
(i) Diagonal diag{1,...,1,—1,...,—=1},i=1,... n;
—— ——

n—i

(2
(ii) The identity matrix with i-th and j-th rows interchanged and multiplied re-
spectively by 2 and %
It can be easily seen that all these matrices are involutions, they are linearly indepen-

dent, and there are n? of them. O

Lemma 7. Suppose that L is a k-semitransitive subspace of M, for some k < n, and

P is an orthogonal projection of rank k. Then LP contains PM,P.
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Proof. Without loss of generality, up to a unitary equivalence, we can assume that P
is the orthogonal projection onto span{e, ..., ex}. Pick an invertible matrix V' in M,
and let yq, ..., yr be the columns of V' extended by zeros at the end to n-tuples. Since
L is k-semitransitive, there exists A € £ such that either Ae; =y, asi=1,...,k, or
Ay; =e;asi=1,... k. It follows that either A= (Y &) or A= (V;" £) for some R
and S. In particular, for every involution V' in M} there are matrices R and S such
that () #) is in £, hence, (¥ §) is in £LP. Lemma 6 yields that (£9) is in LP for

every B € Mj, but the set of all the matrices of this form is exactly PM, P. O

Remark 8. One can easily verify that the proofs of Lemmas 6 and 7 remain valid for
M, (F) for any field F with charF # 2.

Suppose now that charF = 2. Then (i) and (ii) in the proof of Lemma 6 are not
valid. However, we claim that Lemma 7 remains true in this case. A glance at the
original proof reveals that it is sufficient to show that if £ is a subspace of M, (F)
such that for every invertible matrix A € M, (F) either A € L or A™' € L, then
L = M,(F). Therefore, £ contains all the involutions. In particular, I € L. Note
that V is an involution if and only if (V + I)? = 0, it follows that every square-zero
matrix is in £. Denote by Ej; the standard basis matrix eieJT. Let S ={E;; | i # j}
and So = {E11 + E; + Eq + Eyi | 1 <i < n}. Then §; and S consist of square-zero
matrices, so that S; USy C L. Furthermore, S; U Sy is linearly independent and has
n? —1 elements. Note also, that all the elements of S; US, have zero trace. If n is odd,
then tr I = 1 so that I is linearly independent of S; US,. It follows that S; US, U {I}
spans M,,, hence £ = M,,. Suppose that n is even. Let A = [ + E15 + Ey; — E99, then
Al =T+ Es+ FEy — Ey;. Then tr A = tr A=! = 1 yields that both A and A~! are
linearly independent of S; U S,. Since either A or A™! is in £ then dim £ = n?, hence
L= M,.

In the case k =n and P = I, Lemma 7 yields the following.
Corollary 9. M, contains no proper n-semitransitive subspaces.

Lemma 10. Suppose that L is a k-semitransitive subspace of M, for some k < n, and
T € M,, such that rankT < k and L L. T. Then T? = 0.

Proof. Without loss of generality (up to a unitary similarity) we can assume that T is
of the form (£9), where R is k x k. Let P be the projection on the first k& coordinates.
By Lemma 7, LP contains all the matrices of the form (4 3) for all A € M. Since T
is orthogonal to £, it follows that R = 0, so that T2 = 0. O
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Theorem 11. Suppose that L is a (k + 1)-semitransitive subspace of M, for some
k <n. Then L is k-transitive.

Proof. Suppose that £ is not k-transitive. It follows from Lemma 5 that there is a
non-zero ' € M,, with £ 1. T and rankT < k. Since L is (k + 1)-semitransitive and,
therefore, k-semitransitive, Lemma 10 yields T? = 0.

Let m = rank T'. Since T is nilpotent, we may assume without loss of generality (up
to a similarity) that 7" is in Jordan form, no matter what the underlying field may be.
Since T? = 0, it follows that all the non-zero Jordan blocks of T are of the form (§}).
Let (t;;) be the matrix of 7. Then ty;,_19; = 1 for all ¢ = 1,...,m, and all the other
entries of the matrix are zero.

It follows from m < k that £ is (m + 1)-semitransitive. Apply the definition of
(m 4+ 1)-semitransitivity to the following (m + 1)-tuples:

(e1,€9,€4,€6,...,62m) and (eg,e1,64,€6,...,€Em).

Hence there exists A € £ such that Aes = e; and Aey; = ey; for @ = 2,...,m. Let

(a;j) be the matrix of A, then a0 =1 and ag;_1 9, = 0 for i =2,...,m. It follows that

(A, T) =1, which contradicts £ L T. O

5. WHEN A k-SEMITRANSITIVE SUBSPACE IS k-TRANSITIVE

Proposition 12. Suppose that L is a k-semitransitive subspace of M, for some k < n.
If L is not k-transitive then there exists T € M, such that L 1. T, rankT = k, and
T? = 0.

Proof. Suppose that £ is a k-semitransitive subspace of M,, for some k£ < n, and £
is not k-transitive. By Lemma 5 there exists a non-zero 7" € M,, such that £ 1L T
and rank T < k. If £ > 1 then Theorem 11 asserts that £ is (k — 1)-transitive, so
that Lemma 5 yields rankT > k — 1, hence rankT = k. If £ = 1 then we still have
rankT = k as T # 0. Finally, it follows from Lemma 10 that 7% = 0. U

Combining Proposition 12 with Lemma 5, we obtain the following characterization.

Corollary 13. Suppose that L is a k-semitransitive subspace of M, for some k < n.

Then L is k-transitive if and only if L contains no operator of rank k with zero square.
This also allows us to improve the result of Theorem 11 when k > 7.

Corollary 14. If 2k > n then every k-semitransitive subspace of M, is k-transitive.



8 H. RADJAVI AND V. G. TROITSKY

Proof. Suppose that 2k > n and observe that no operator of rank k has zero square.
Indeed, let T € M,, be such that rankT" = k. Then dim RangeT' = k while dim ker T" =
n — k > k, so that RangeT is not contained in ker 7', hence T2 # 0. Therefore, the

result follows from Proposition 12. O

The following result is, in a sense, a complement to Corollary 14. We show that if

2k < n then there exists a k-semitransitive subspace of M,, that is not k-transitive.

Proposition 15. Let T € M,, such that rankT = k and T? = 0. Then {T}* is k-

semitransitive, but not k-transitive.

Proof. Let £ = {T}*+. Observe that £ is not k-transitive by Lemma 5. On the other
hand, since £ consists of multiples of T only, no non-zero matrix of rank less than k
is orthogonal to £, so that Lemma 5 yields that £ is (k — 1)-transitive.

We claim that £ is k-semitransitive. Suppose not. Let (x1,...,zx) and (y1,...,yx)

be two k-tuples, each linearly independent, such that no matrix in £ takes all z;’s

into the corresponding ;s or vice versa. Let H = span{xy,..., 2} and put Z = H*.
Let A: H — X be such that Az; = y; asi = 1,...,k. Choose an orthonormal basis
e1,...,e, of H and an orthonormal basis ey 1,...,e, of Z, so that e;,...,e, is an

orthonormal basis of X. In these bases we can view A as an n x k matrix. Let ()7,
be the matrix of T relative to the basis e1,...,e,. Let Ty and T be the matrices
consisting of the first k£ and of the last (n — k) columns of (¢;;); j=1 respectively, so that
T = (TyTy). For every F € M, ,,— we have (AF) € M,, and (A F)z; = Ax; = y; for
i=1,...,k so that (AF) ¢ L. It follows that 0 # ((AF),T) = (A, Ty) + (F,Tz).
Since F' was chosen arbitrarily, it follows that 7, = 0, so that Z C kerT. Since
dimkerT = n — k = dimZ, we have Z = kerT. Therefore, span{zy,...,xx} =
(ker T)L. Since (21, ...,xx) and (y;, ..., z;) could be interchanged in the construction,
it follows that span{yi,...,yx} = (ker T)l = span{zy,...,xp} = H. It follows that
Range A C H, so that A = (F) for some B € M. Let C = (£9), then Cz; = y; as
i=1,...,k, sothat C' ¢ L.

We know that T'= (T 0) = (£9) for some R € My, and S € M,y . Since T? = 0,
it follows that Range T C ker T' = Z. In particular, T(H) C Z, so that R = 0. Thus,

en={(2 )¢ )

contradiction. O

Corollary 16. For every k <

)3

there exists a k-semitransitive subspace of M, which

fails to be k-transitive.
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Proof. Let T" € M,, be as follows: let t9;_10; = 1 as ¢ = 1,...,k, and let all other
entries of the matrix of T be zeros. Then rank 7T = k and T? = 0. Now the conclusion

follows from Proposition 15. OJ

Next, we show that k-transitivity does not imply (k + 1)-semitransitivity.

Proposition 17. Suppose that L is a subspace of M, and 1 < k < n such that L is
(k — 1)-transitive but not k-transitive. Then there exist unitaries U,V € M,, such that

UL and LV are (k — 1)-transitive but not k-semitransitive.

Proof. 1f L is not k-semitransitive then we are done. Suppose that L is k-semitransitive.
Then by Proposition 12 there exists 7' € £+ with rankT = k and T? = 0. Choose a
unitary U € M,, so that (UT)? # 0. Observe that rank UT = k and UT € (UL)*. Tt
follows from Lemma 5 that UL is not k-transitive. Since (UT)? # 0, Lemma 10 yields

that UL is not k-semitransitive. The existence of V' is proved in a similar fashion. [J

Corollary 18. If1 < k < n then there ezists a subspace of M, that is (k—1)-transitive

but not k-semitransitive.

Proof. Let T € M, with rankT = k, and let £ = {T}*. Lemma 5 yields that L is

(k — 1)-transitive but not k-transitive. Proposition 17 completes the proof. O

We conclude this section with a few examples.

Example. Recall that a matrix A = (a;;) in M, is Toeplitz if a;; = a;41 ;41 for all
i,7 < n. Let £ be the subspace of all Toeplitz matrices in M,,. It is known and easy
to prove (see, e.g., [Az]) that L is a transitive subspace. We claim that it is not 2-
semitransitive. Consider the following two pairs: (ej, e) and (e; + ey, €1 —e3). Suppose
first that there is A € £ such that Ae; = e; + e, and Aey = e; — 5. But since A is
Toeplitz, then Ae; = e; + e5 implies Aey = ey + e3, contradiction. On the other hand,

suppose that there is A € £ such that A(e; + e3) = ey, and A(e; — e2) = eo. Then
e; + ez e — ey
1 Aey = A(
(1) “ 2 7 )

Again, since A is Toeplitz, it follows that Ae, = %(62 + e3). However, as in (1), we

1
2

= %(61 + 62).

have Aey = 3 (e; — eg), contradiction. Therefore, £ is not 2-semitransitive.

Ezample. Let £ ={A € M | tr(A) = 0}. It is easy to see that L is 2-transitive but not

3-transitive. Observe that £ = {I}*. Lemma 10 implies that £ is not 3-semitransitive.

FExample. Fix t # 0 and let £ be the set of all the matrices in My of the form (8‘ t{i)

Then L is a two-dimensional semitransitive subspace of M.
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6. MORE ON THE INFINITE-DIMENSIONAL CASE

In this section we show that some of the results of Section 4 remain valid in the
infinite-dimensional setting. Namely, we present infinite-dimensional analogues of Lem-
mas 5 and 7, and of Theorem 11. Note that these results still hold if X is just a vector
space, and bounded maps are replaced with linear maps.

The following generalization of Lemma 5 can be easily deduced from the definition

of strict k-transitivity.

Lemma 19. Suppose that L is a linear subspace of L(X). Then L is strictly k-
transitive if and only if LP = L(X)P for every projection P € L(X) with rank P < k.

Lemma 20. Suppose that L is a strictly k-semitransitive subspace of L(X), and P €
L(X) is a projection with rank P < k. Then PL(X)P C LP

Proof. Let Y = Range P. Let ey,...,e, be a basis of Y. Note that m < k. Relative
to this basis, any m X m matrix A can be viewed as a bounded operator from Y to Y
or from Y to X; then AP = PAP € L(X). Also, PL(X)P can be identified with M,,.
Let V be an m x m involution. Put y; = Ve; for ¢« = 1,...,m; they are linearly
independent since V' is invertible. Note that L is strictly m-semitransitive, hence there
exists A € L which either takes all e;’s into y;’s, or vice versa. Suppose that for each
i =1,...,m we have Ae; = y;. Then APe; = y;. It follows that AP = V, so that
V € LP. On the other hand, suppose that for each i = 1,...,m we have Ay; = e;.
Then APy; = e;, so that AP =V, so again V € LP. Lemma 6 now yields that
M,, C LP. O

Theorem 21. If L is a strictly (k + 1)-semitransitive subspace of L(X) for some
finite k, then L is strictly k-transitive.

Proof. Suppose that £ is not strictly k-transitive. Lemma 19 yields that there is a
projection P € L(X) with m := rank P < k such that £P is contained in L(X)P. On
the other hand, since L is strictly k-semitransitive, Lemma 20 yields PL(X)P C LP.
It follows that there exists D € L(X) such that DP ¢ LP while PDP € LP, hence
(I —P)DP ¢ LP.

Let Y = Range P. Let ey,...,e, be a basis of Y. Let z; = (I — P)DPe;. Then
z; € Range(l — P).

Using strict k-semitransitivity of £ on the k-tuples (e, ..., e,) and (e1,...,e,) we
conclude that there exists B € £ such that Be; =¢; fort=1,...,m.
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Applying strict (k 4 1)-semitransitivity of £ to the (k + 1)-tuples
(Zla €1,€2,€3,. .. 7em) and (617 21,€2,€3,. .., em)7

we conclude that there exists C; € L such that Cie; = ¢; for i« = 2,...,m and
Cie; = z;. Similarly, for each j = 1,...,m we find C; € L such that Cje; = ¢; if
i# jand Cje; =z, Let A=Cy+---+ C,, — (m — 1)B. Observe that A € £, hence
AP € LP. On the other hand, Ae; = z; for alli = 1,...,m, so that AP = (I — P)DP,

contradiction. O

7. MORE ON 2-SEMITRANSITIVITY

In this section the vector spaces are finite or infinite dimensional. The following
two results concern rings of linear transformations on a vector space over an arbitrary

underlying field.

Proposition 22. Let R be a ring of linear transformations on a vector space. Then

R is strictly 2-semitransitive if and only if it is strictly 2-transitive.

Proof. Obviously, if R is strictly 2-transitive then it is strictly 2-semitransitive. Sup-
pose that R is strictly 2-semitransitive. Take two linearly independent vectors x and v,
and two vectors u and v. We show that there is R € R such that Rr = v and Ry = v.

If w=v =0 then R =0 will do the job. Thus, we can assume that either u # 0
or v # 0. Note that given any two linearly independent vectors a and b, applying
the definition of strict 2-semitransitivity to the pairs (a,b) and (b,a) one can find an
operator D, € R such that Dy, pa = b and D)0 = a.

Suppose first that the underlying field has characteristic different from 2. Applying
the definition of strict 2-semitransitivity to the following pairs of pairs: (z,y) and
(x,y), and to (z,y) and (z, —y), we obtain operators J and A in R such that Jx = z,
Jy=y, Arx =2, and Ay = —y. Put B=J+ Aand C' = J — A, then

Br=2x, By=0, Cr=0, and Cy=2y.

Suppose that u # 0. We find S € R such that Sx = u and Sy = 0 as follows. If
x and u are linearly independent, we take S = D(9;,)B. Otherwise, y and u have to
be linearly independent, in which case we take S = D gy ,)C Dy ). Similarly, if v # 0
then there exists T' € R such that Tx = 0 and Ty = v. Finally, if both v and v are
non-zero, then we find S and T as before and put R = S + T. Clearly, Rx = u and
Ry = wv.
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Now suppose that the underlying field is of characteristic 2. As before, we can find
J € R such that Jr = x and Jy = y. Observe that

Let B = D(x,y)(J + D(,E,Hy)), then Bx = x and By = 0. Clearly, B € R. Similarly,
one can find C' € R such that Cx = 0 and C'y = y. The rest of the proof is similar to
the first case. ([l

It follows, in particular, under the hypotheses of Proposition 22, that if R is strictly
2-semitransitive then it is strictly transitive. Jacobson’s Theorem [Jac] asserts that
if R is strictly 2-transitive, then it is strictly dense, i.e., strictly n-transitive for

every n. Together with Proposition 22 it yields the following extension.

Corollary 23. Let R be a unital ring of linear transformations on a vector space. If

R is strictly 2-semitransitive, then it is strictly dense.

Let X be a Banach space, S a subset of L(X), and T" a closed operator defined on
a linear subspace of X. We say that T" commutes with § if dom T is invariant under

every operator A € § and ATx = T Ax for every x € domT.

Proposition 24. Suppose that X is a Banach space, S is a topologically 2-semitran-
sitive subset of L(X), and T is a closed operator defined on a linear subspace of X . If
S commutes with T then T is a multiple of the identity operator.

Proof. Suppose not. Then there exists x € dom T such that x and Tz are linearly
independent. Apply the definition of topological 2-transitivity of S to the pairs (z, T'r)
and (x,2Tz). Suppose first that there is a sequence of operators (A4,) in S such
that ||[A,x — z|| — 0 and ||A,(Tz) — 2Tz|| — 0. Since T is closed, this implies
Tx = 2Tx, contradiction. On the other hand, suppose that there is (4,) in S such
that |[A,z — z|| — 0 and ||A,(2T'z) — Tz|| — 0, so that Tz = $T'z, contradiction. [

Corollary 25. If X is Banach space, then no commutative subset of L(X) is topolog-

ically 2-semitransitive.

Suppose that T is an operator on a Banach space X such that 7" has no invariant
subspaces. Let A be the subalgebra of L(X) generated by T'. Then, clearly, A is topo-
logically transitive. On the other hand, Corollary 25 implies that A is not topologically

2-semitransitive.



13

REFERENCES
[Az] E. Azoff, On finite rank operators and preannihilators. Mem. Amer. Math. Soc., 64(1986),
no. 357.
[Bled] J. Bernik et al (Semitransitivity Working Group at LAW’05, Bled), Semitransitive sub-

spaces of matrices, Electronic Journal of Linear Algebra, 15 (2006), 225-238.

[BDKKO] J. Bernik, R. Drnovsek, D. Kokol-Bukovsek, T. Kosir, and M. Omladi¢, Reducibility and
triangularizability of semitransitive operator spaces, to appear in Houston J. Math.

[BGMRT] J. Bernik, L. Grunenfelder, M. Mastnak, H. Radjavi, and V.G. Troitsky, On semitransi-
tive collections of operators, Semigroup Forum, 70 (2005), no. 3, 436-450.

DLMR] K. Davidson, R. Levene, L. Marcoux, and H. Radjavi, Transitive subspaces, preprint.

[

[Jac] N. Jacobson, Structure of rings, Amer. Math. Soc., Providence, R.I., 1964.

[RR] H. Radjavi, P. Rosenthal, Simultaneous triangularization, Springer 2000.

[RT] H. Rosenthal and V.G. Troitsky, Strictly semi-transitive operator algebras, J. of Operator

Theory, 53 (2005), no. 2, 315-329.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ON, N2L 3G1.
CANADA.
E-mail address: hradjavi@math.uwaterloo.ca

DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES, UNIVERSITY OF ALBERTA, ED-
MONTON, AB, T6G 2G1. CANADA.
E-mail address: vtroitsky@math.ualberta.ca



