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Abstract. Let T : `1 → `1 be the quasinilpotent operator without an invariant subspace
constructed by C. J. Read in [R3]. We prove that the modulus of this operator has an invari-
ant subspace (and even an eigenvector). This answers a question posed by Y. Abramovich,
C. Aliprantis and O. Burkinshaw in [AAB1, AAB3].

During the last several years there has been a noticeable increase of interest in the in-

variant subspace problem for positive operators on Banach lattices. A rather complete and

comprehensive survey on this topic is presented in [AAB3], to which we refer the reader for

details and for an extensive bibliography. In particular, the following theorem was proved

in [AAB1].

Theorem 1 ([AAB1, AAB3]). If the modulus of a continuous operator T : `p → `p (1 6 p <

∞) exists and is quasinilpotent, then T has a non-trivial closed invariant subspace which is

an ideal.

It follows that each positive quasinilpotent operator on `p (1 6 p < +∞) has a nontrivial

closed invariant subspace. In the same papers the authors posed the following problem.

Problem. Does every positive operator on `1 have an invariant subspace?

Keeping in mind that each operator on `1 has a modulus and that C. J. Read in [R1, R2,

R3] has constructed several operators on `1 without invariant subspaces, it was suggested

in [AAB1, AAB3] that the modulus of some of these operators might be a natural candidate

for a counterexample to the above problem. Following this suggestion, we will be dealing in

this paper with the modulus of the quasinilpotent operator T constructed in [R3]. It turns

out, quite surprisingly, that not only does |T | have an invariant subspace but it even has a

positive eigenvector. This result increases the chances for an affirmative answer to the above

problem.

The paper is organized as follows. After introducing some necessary notation and termi-

nology we prove a general theorem on the existence of an invariant subspace for the modulus
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of a quasinilpotent operator. The rest of the paper will be devoted to the verification that

C. J. Read’s operator, constructed in [R3], satisfies all the hypotheses of this theorem and

so its modulus does have an invariant subspace.

For terminology and notation regarding operators and Banach lattices we refer to [AB,

Sch]. All operators considered in this work are linear and continuous. The space of all

operators on a Banach space X is denoted by B(X), while K(X) stands for the subspace of

all compact operators. A linear operator on a Banach lattice is said to be positive if it maps

positive vectors to positive vectors. By an invariant subspace (invariant ideal) of an operator

we mean a closed nontrivial subspace (resp. closed nontrivial ideal) which is invariant under

the operator.

Together with the usual operator norm ‖S‖ of an operator S : X → X on a Banach space,

we will also consider the (essential) seminorm ‖S‖e given by

‖S‖e = inf{ ‖S −K‖ : K ∈ K(X) }.
The essential spectral radius of S is computed via the formula re(S) = limn

n
√
‖Sn‖e. This,

of course, is an analogue of the familiar formula for the usual spectral radius r(S) =

limn
n
√
‖Sn‖.

It is obvious that ‖S‖e 6 ‖S‖ and re(S) 6 r(S). It is known that if re(S) = 0, then

every nonzero point of σ(S) is an eigenvalue. Further details on essential spectral radius can

be found in [N1, CPY]. We will use the following important version of the Krein-Rutman

theorem established by R. Nussbaum.

Theorem 2. [N2, Corollary 2.2] Let S be a positive operator on a Banach lattice such that

re(S) < r(S), then r(S) is an eigenvalue of S corresponding to a positive eigenvector.1

We use this fact in the proof of the following simple but rather unexpected result.

Theorem 3. Suppose that a quasinilpotent operator S on `p has no invariant ideals and S−

is compact. Then r(|S|) is a positive eigenvalue of |S| corresponding to a positive eigenvector.

In particular, |S| has an invariant subspace.

Proof. First observe that the operator |S| cannot be quasinilpotent. Indeed, if it were, then

by Theorem 1 the operator S itself would have an invariant closed ideal contrary to our

hypothesis. Thus, r(|S|) > 0.

Next we claim that re(|S|) = 0. To prove this, notice that |S| = S + 2S−, and so

|S|n = (S + 2S−)n = Sn + RS−,

1In [N2] a more general form of this theorem is given which is valid for ordered Banach spaces.
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where R is some polynomial in S and S−. Hence RS− is compact, whence

‖|S|n‖e = ‖Sn + RS−‖e 6 ‖Sn‖,
and consequently

re(|S|) 6 lim
n→∞

n
√
‖Sn‖ = r(S) = 0.

An application of Theorem 2 finishes the proof. ¤

Corollary 4. Under the hypotheses of the above theorem the operator S+ also has a nontrivial

closed invariant subspace.

Proof. There are two possibilities: either S+ is quasinilpotent or it is not. If S+ is quasinilpo-

tent, then applying Theorem 1 again, we see that S+ has an invariant ideal.

Assume that S+ is not quasinilpotent. Since S+ = S + S−, the same argument as in the

proof of Theorem 3 shows that re(S
+) = 0 and we can again apply Theorem 2. ¤

Theorem 3 is strong enough to enable us to prove Corollary 7 about the modulus of

C. J. Read’s operator. But first we would like to mention a nice generalization of Theorem 3.

Recall that a positive operator on a Banach lattice is called compact-friendly if it commutes

with another positive operator which dominates some non-zero operator which in turn is

dominated by a positive compact operator. The class of compact-friendly operators was

introduced and studied by Abramovich, Aliprantis, and Burkinshaw in [AAB2]. This class

includes positive operators that dominate or are dominated by a non-zero compact operator,

or commute with a non-zero compact operator. Also, every positive operator on any discrete

Banach lattice and every positive kernel operator is compact-friendly. It follows from [AAB3,

Theorem 11.2] that if a positive compact-friendly operator is quasinilpotent, then it has an

invariant ideal. Mimicking the proof of Theorem 3 we can obtain the following theorem.

Theorem 5. Let B be a compact-friendly operator with re(B) = 0. Then B has a nontrivial

invariant subspace.

To illustrate this theorem we mention the following result: If S is a quasinilpotent kernel

operator and S− (resp. S+) is compact, then |S| and S+ (resp. S−) have invariant subspaces.

Recall that an operator S : X → Y between two Banach spaces is called nuclear if it can

be written in the form S =
∑∞

i=0 x∗i ⊗ yi with x∗i in X∗, yi in Y and
∑∞

i=0‖x∗i ‖‖yi‖ < ∞.

Here, as usual, the elementary tensor x∗⊗ y : X → Y is given by (x∗⊗ y)(x) = x∗(x)y. The

nuclear norm ν(S) is defined by ν(S) = inf
∑∞

i=0‖x∗i ‖‖yi‖, where the infimum is taken over

all nuclear representations of S. For a nuclear operator S we have ‖S‖ 6 ν(S). This implies
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in particular that every nuclear operator can be approximated by finite-rank operators and,

therefore, is compact.

Following [R1, R2, R3] we denote the standard unit vectors of `1 by (fi)
∞
i=0. It is well known

that we can consider each S ∈ B(`1) as an infinite matrix S = (sij)
∞
i,j=0. Let S(i) denote the

i-th row of this matrix. If x ∈ `1, then (Sx)i = 〈S(i), x〉, so that Sx =
∑∞

i=0〈S(i), x〉fi. This

gives a nuclear representation S =
∑∞

i=0 S(i) ⊗ fi, where the rows S(i) of S are considered as

linear functionals on `1. It follows that

ν(S) 6
∞∑
i=0

‖S(i)‖∞‖fi‖1 =
∞∑
i=0

‖S(i)‖∞,

so that S is nuclear if the last sum is finite.

In spite of the fact that the construction of a quasinilpotent operator on `1 without an

invariant subspace in [R3] is far from being simple, the presentation in [R3] is very clearly

structured. In Sections 2 and 3 of [R3] C. J. Read presents the construction of operator

T , and in the rest of the paper he proves that T is bounded (Lemma 5.1), quasinilpotent

(Theorem 6.5), and has no invariant subspaces (Theorem 7). In what follows we will restate

(practically verbatim and retaining the notation) the definition of T . In the proof of [R3,

Lemma 5.1] C. J. Read reveals a lot of information about the structure of the infinite matrix

of T . Since we also are interested in this structure, we incorporate some fragments of the

proof of [R3, Lemma 5.1] in our proof of Lemma 6.

The symbol F denotes the linear subspace of `1, spanned by fi’s, and thus, F is dense

and consists of all eventually vanishing sequences. Let d = (a1, b1, a2, b2, . . .) be a strictly

increasing sequence of positive integers. Also let a0 = 1, v0 = 0, and vn = n(an + bn) for

n > 1. Then there is a unique sequence (ei)
∞
i=0 ⊂ F with the following properties:

0) f0 = e0;

A) if integers r, n, and i satisfy 0 < r 6 n, i ∈ [0, vn−r] + ran, then fi = (nranei −
ei−ran)(n− r)i−ranan−r;

B) if integers r, n, and i satisfy 0 < r < n, i ∈ (ran + vn−r, (r + 1)an), (respectively,

1 6 n, i ∈ (vn−1, an)), then fi = ni2(h−i)/
√

anei, where h = (r + 1
2
)an (respectively,

h = 1
2
an);

C) if integers r, n, and i satisfy 0 < r 6 n, i ∈ [r(an + bn), nan + rbn], then fi =

niei − bnn
i−bnei−bn ;

D) if integers r, n, and i satisfy 0 6 r < n, i ∈ (nan + rbn, (r + 1)(an + bn)), then

fi = ni2(h−i)/
√

bnei, where h = (r + 1
2
)bn.
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Indeed, since fi =
∑i

j=0 λijej for each i > 0 and λii is always nonzero, this linear relation

is invertible. Further,

lin{ei : i = 1, . . . , n} = lin{fi : i = 1, . . . , n} for every n > 0.

In particular all ei are linearly independent and span F . Then C. J. Read defines T : F → F

to be the unique linear map such that Tei = ei+1, and in Lemma 5.1 he proves that ‖Tfi‖ 6 1

for every i > 0 provided d increases sufficiently rapidly, i. e., satisfies several conditions of

the form

an > G(n, a0, b0, a1, b1, . . . , an−1, bn−1), and

bn > H(n, a0, b0, a1, b1, . . . , an−1, bn−1, an),

where G and H are some positive integer-valued functions. It follows that T can be extended

to a bounded operator on `1. Finally, in Theorems 6.5 and 7, C. J. Read proves that this

extension, which is also denoted by T , is quasinilpotent and has no invariant subspaces,

provided d increases sufficiently rapidly.

Our plan is as follows: we will prove that the negative part of T is nuclear, hence compact.

Then Theorem 3 will imply that r(|T |) is a positive eigenvalue of |T |, corresponding to a

positive eigenvector.

Lemma 6. The operator T− is nuclear, provided d increases sufficiently rapidly.

Proof. Similarly to the proofs of [R3, Lemma 5.1] and [R2, Lemma 6.1] we study the matrices

(tij)
∞
i,j=0 and (t−ij)

∞
i,j=0 of T and T− respectively. Recall that tki = (Tfi)k, so that it suffices

to look at the images of the standard unit vectors under T . We will see that the matrix of T

is quite sparse and has the following structure: every entry on the diagonal right under the

main diagonal is strictly positive, there is no nonnegative entries below this diagonal, and

there are some entries above it. We consider consecutively all the cases mentioned above.

0) Tf0 = e1 = 2(1−a1/2)/
√

a1f1, so that T−f0 = 0.

A) If i < vn−r + ran, i. e. i is not the right end point of the interval [ran, vn−r + ran],

then Tfi = (n− r)−1fi+1, so that T−fi = 0. The only nontrivial case here is when i

is the right end of the interval, i. e. i = vn−r + ran. Then we have

Tfi = an−rn
ran(n− r)vn−re1+ran+vn−r − an−r(n− r)vn−re1+vn−r

= ε1f1+vn−r+ran − ε2f1+vn−r ,

where ε1 > 0 and ε2 is given by

ε2 = (n− r + 1)−1−vn−r2(1+vn−r−an−r+1/2)/
√

an−r+1an−r(n− r)vn−r ,



6 V. G. TROITSKY

so that

T−fvn−r+ran = ε2f1+vn−r . (1)

B) Similarly, if ran + vn−r < i < (r + 1)an − 1 or vn−1 < i < an − 1, then Tfi =

n−121/
√

anfi+1, so that T−fi = 0. If i = (r+1)an−1, then Tfi = ni2(1−an/2)/
√

ane(r+1)an .

To express this in terms of the fi’s, we notice that f(r+1)an = an−r−1(n
(r+1)ane(r+1)an−

e0), which implies

e(r+1)an = n−(r+1)an(a−1
n−r−1f(r+1)an + f0), (2)

In this case T−fi = 0. Analogously, if i = an − 1, then Tfi = ni2(1−an/2)/
√

anean . It

follows from fan = an−1(n
anean − e0) that

Tfi = n−12(1−an/2)/
√

an(a−1
n−1fan + f0),

and again T−fi = 0. Thus, case (B) produces no nontrivial entries in T−.

C) If i is not the right end of the interval, i.e. i < nan + rbn, then Tfi = n−1fi+1, so

that T−fi = 0. If i = nan + rbn, then

Tfi = nnan+rbne1+nan+rbn − bnnnan+(r−1)bne1+nan+(r−1)bn

= ε1f1+nan+rbn − ε2f1+nan+(r−1)bn ,

where ε1 > 0 and ε2 = bnn−12(1+nan−bn/2)/
√

bn . It follows that

T−fnan+rbn = bnn−12(1+nan−bn/2)/
√

bnf1+nan+(r−1)bn . (3)

D) If i < (r + 1)(an + bn) − 1, then Tfi = n−121/
√

bnfi+1, so that T−fi = 0. If i =

(r + 1)(an + bn)− 1 then

Tfi = ni2(−an/2−(r+1)an/2+1)/
√

bne(r+1)(an+bn).

Using (C) inductively we obtain the following identity:

e(r+1)(an+bn) = n−(r+1)(an+bn){f(r+1)(an+bn) + bnf(r+1)an+rbn + . . .

+ nr
nf(r+1)an+bn}+ br+1

n n−(r+1)bne(r+1)an .

Substitute e(r+1)an from (2) and notice that all the the coefficients are positive and,

therefore, T−fi = 0. Thus, case (D) does not produce any nontrivial entries in T−.

Summarizing the calculations, the only nonzero entries of T− are given by (1) and (3):

t−1+vn−r,vn−r+ran
= (n− r + 1)−1−vn−r2(1+vn−r−an−r+1/2)/

√
an−r+1an−r(n− r)vn−r

and

t−nan+(r−1)bn+1,nan+rbn
= bnn−12(1+nan−bn/2)/

√
bn
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for all 0 < r 6 n. To show that T− is nuclear it suffices to show
∑∞

k=0‖T−
(k)‖∞ < +∞. Look

at the rows of T− containing non-zero entries. Notice that

t−1+vn−r,vn−r+ran
6 an−r2

(1+vn−r−an−r+1/2)/
√

an−r+1 6 2−(1+vn−r)

for all 0 < r 6 n provided d increases sufficiently rapidly. It follows that ‖T−
(1+vm)‖∞ 6

2−(1+vm) for every m > 0 and
∞∑

m=0

‖T−
(1+vm)‖∞ 6

∞∑
m=0

2−1−vm < 1.

Further, the entries t−nan+(r−1)bn+1,nan+rbn
do not depend on r, and their contribution to∑∞

k=0‖T−
(k)‖∞ does not exceed the sum of all of them, which can be easily estimated:

∞∑
n=1

n∑
r=1

bnn
−12(1+nan−bn/2)/

√
bn 6

∞∑
n=1

bn2(1+nan−bn/2)/
√

bn 6
∞∑

n=1

2−n = 1,

because bn2(1+nan−bn/2)/
√

bn 6 2−n for all n > 1 provided d increases sufficiently rapidly.

Thus, ν(T−) 6
∑∞

k=0‖T−
(k)‖∞ < 2 provided d increases sufficiently rapidly. ¤

Corollary 7. C. J. Read’s operator T satisfies the following properties, provided d increases

sufficiently rapidly:

(1) |T |, T+, and T− have positive eigenvectors;

(2) Neither |T | nor T+ has an invariant ideal.

Proof. It follows from Theorem 3 and Lemma 6 that |T | has a positive eigenvector. It was

noticed in the proof of Lemma 6 that T−f0 = 0, so that T− also has a positive eigenvector.

To prove (2), assume that J is a closed ideal in `1 invariant under |T | or T+, and that

0 6= x ∈ J , then xk 6= 0 for some k > 0, so that fk ∈ J . It follows from the proof of Lemma 6

that both |T |fi and T+fi have nonzero (i+1)-th component, implying fk+1 ∈ J . Proceeding

inductively, we see that fi ∈ J for all i > k. Further, the proof of Lemma 6 also shows that

(|T |fi)0 6= 0 and (T+fi)0 6= 0 for infinitely many i’s, so that f0 ∈ J . It follows that fi ∈ J

for every i > 0, so that J = `1. In fact, (2) is a manifestation of the fact that a positive

operator S on `p (1 6 p < ∞) has no invariant ideals if and only if there is a path between

every two columns of S (c.f. [AAB3, TV2]).

It follows from (2) and Theorem 1 that T+ cannot be quasinilpotent. On the other hand,

since T+ = T + T− then, analogously to the proof of Theorem 3, we have re(T
+) = 0. Then

by Theorem 2 we conclude that r(T+) is a positive eigenvalue of T+, corresponding to a

positive eigenvector. ¤

The last statement of Corollary 7 emphasizes that the hypothesis of not having invariant

ideals in Theorem 3 is weaker than not having invariant subspaces. We do not know if the

analogues of the results of this paper hold for the operators produced in [R1, R2].
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I would like to thank Prof. Y. A. Abramovich for suggesting this problem to me and for

our many discussions. I am thankful to Professors C. D. Aliprantis, V. J. Lomonosov, and

C. J. Read for their interest in this work.

We remark in conclusion that in [TV1] we use one of C. J. Read’s operators to solve one

more problem related to invariant subspaces. Namely, we construct operators S1, S2, and

K (not multiples of the identity) on `1 such that T commutes with S1, S1 commutes with

S2, S2 commutes with K, and K is compact. This shows that the celebrated Lomonosov

theorem cannot be extended to chains of four operators.
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