ON QUASI-AFFINE TRANSFORMS OF READ’S OPERATOR
THOMAS SCHLUMPRECHT AND VLADIMIR G. TROITSKY

ABSTRACT. We show that C. J. Read’s example [Read85, Read86] of an operator
T on ¢; which does not have any non-trivial invariant subspaces is not the adjoint
of an operator on a predual of ¢;. Furthermore, we present a bounded diagonal
operator D such that even though D! is unbounded but D~'T'D is a bounded
operator on ¢; with invariant subspaces, and is adjoint to an operator on cg.

1. INTRODUCTION

In this note we deal with the Invariant Subspace Problem, the problem of the
existence of a closed non-trivial invariant subspace for a given bounded operator on a
Banach space. The problem was solved in the positive for certain classes of operators
(see [RR73, AAB9S| for details), however in the mid-seventies P. Enflo [Enf76, Enf87]
constructed an example of a continuous operator on a Banach space with no invariant
subspaces, thus answering the Invariant Subspace Problem for general Banach spaces
in the negative. In [Read85] C. J. Read presented an example of a bounded operator
T on ¢; with no invariant subspace. Recently V. Lomonosov suggested that every
adjoint operator has an invariant subspace. In the first part of this note we show
that the Read operator T is not an adjoint of any bounded operator defined on some
predual of /7.

Suppose that A has a non-trivial invariant (or a hyperinvariant) subspace, and
suppose that B is similar to A, that is, B = CAC~! for some invertible operator C.
Clearly, B also has a non-trivial invariant (respectively hyperinvariant) subspace.
Moreover, it is known (see [RR73, Theorem 6.19]) that if A has a hyperinvariant
subspace and B is quasi-similar to A (that is, CA = BC and AD = DB, where C
and D are two bounded one-to-one operators with dense range), then B also has a
hyperinvariant subspace. To our knowledge it is still unknown whether or not A has
a non-trivial invariant subspace if and only if B has a non-trivial invariant subspace,
assuming A and B are quasi-similar.

Recall (cf. [Sz-NF68]) that an operator A is said to be a a quasi-affine transform of
B if CA = BC, for some injective operator C' with dense range. In the second part of
this paper we construct an injective diagonal operator D on ¢; such that even though
D! is unbounded, the operator S = D~'T'D (T being Read’s operator) is bounded
and has an invariant subspace. Thus, we show that a quasi-affine transform of an
operator with no non-trivial invariant subspace might have a non-trivial invariant
subspace. Furthermore, S is the adjoint of a bounded operator on c¢.
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Although we prove our statement for a specific choice of D), it is true for a much more
general choice, and it seems to be true for any diagonal operator D that S = DT D
has a non-trivial invariant subspace, whenever S is an adjoint of an operator on cg.
More generally, the following question is of interest in view of the above-mentioned
conjecture by V. Lomonosov.

Question. Does every quasi-affine transform of Read’s operator, which is an adjoint
of an operator on ¢y, have a non-trivial invariant subspace?

We introduce the following notations. Following [Read86] we denote by F' the
vector space of all eventually vanishing scalar sequences, and by (f;) the standard
unit vector basis of F. For an x = > a;f; € F, we define the support of x to be the
set {i € N:a; # 0} and denote it by supp(z). The linear span of some subset A of a
vector space is denoted by lin A.

2. READ’S OPERATOR IS NOT ADJOINT

We begin by reminding the reader of the construction of the operator 7" in [Read85,
Read86]. It depends on a strictly increasing sequence d = (aq, by, as, bs, . . .) of positive
integers which has to be chosen to be sufficiently rapidly increasing. Also let ag = 1,
vo = 0, and v, = n(a, + b,) for n > 1.

Read’s operator T is defined by prescribing the orbit (e;);>o of the first basis ele-
ment fj.

Definition 2.1. There is a unique sequence (¢;):2, C F with the following properties:

(0) fo = eo;

(A) if integers r, n, and ¢ satisfy 0 < r < n, i € [0, v,_,] + ra,, we have

fi = an—r(€i — €ira,);

(B) ifintegers r, n, and i satisfy 1 <r <n, i € (ra,+v,—r, (r+1)a,), (respectively,
1<n, i€ (v,_1,a,)), then

fi = 2=0/Vane,  where h = (r + 3)ay, (respectively, h = 1a,);
(C) if integers r, n, and i satisfy 1 < r < n, i € [r(a, + b,), na, + rb,|, then
fi =€ —bneip,;
(D) if integers r, n, and i satisfy 0 < r <mn, i € (na, +rb,, (r +1)(a, +b,)), then
fi= 2(h’i)/mei, where h = (r + %)bn
Indeed, since f; = Z;':o Aije; for each 7 > 0 and \; is always nonzero, this linear
relation is invertible. Further,
lin{e; |i=1,...,n} =lin{f; |i=1,...,n} for every n > 0.

In particular, all e; are linearly independent and also span F. Then Read defines
T: F' — F to be the unique linear map such that Te; = e;;;. Read proves that T’
can be extended to a bounded operator on ¢; with no invariant subspaces provided
d increases sufficiently rapidly.

Proposition 2.2. T' is not the adjoint of an operator S : X — X where X is a
Banach space whose dual is isometric to (1.
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Proof. Assume that our claim is not true. Then there is a local convex topology 7 on
¢y so that

(a) 7 is weaker than the norm topology of /1;

(b) B(#) is sequentially compact with respect to ;

(c) if (x,) C £ converges with respect to 7 to x, then liminf, . ||z,| = ||z||;
(d) T is continuous with respect to 7.

Note that with respect to any predual X of ¢; the weak* topology has properties
(a)—(d). Let s € N be fixed, and n > s. Then f; s, = as(€(n—s)a, — €0) by (A)
above. It follows that 7" f,_s)a, = as(€(n—s)an+v,+1 — €u,41). Further, it follows
from (B) that eg,—g)a,+v,+1 equals 2(1+“S_%a”)/mf(n,s)an+vs+1 and converges to zero
in norm (and, hence, in 7) as n — oco. Therefore

(1) 7-lim Tvs+1f(n—s)an = —QsCy,41 = TUS+1(_as€O)'

n—oo

Notice that 7% is 7-continuous and one-to-one because its null space is T-invariant.
By sequential compactness of B(/;), the sequence f(,_s)a, must have a T-convergent
subsequence. Then, by (1), the limit point has to be —asey. Since that argument
applies to any subsequence, we deduce that

(2) 7-1im f(n—s)an = —Aaz€yp.
n—oo
Since || f(n—s)a,|| = 1 for each n and s while |laseo| = as > 1, this contradicts (2). [

Remark. The statement of the theorem remains valid if we consider an equivalent
norm on /1. Indeed, suppose + ||| < ||| < K||-|l. Then || fin—s)a. || < K for each n
and s, but since lim,, ., a,, = 00, we can choose a; in (2) so that |aseof > K.

3. AN ADJOINT OPERATOR WITH INVARIANT SUBSPACES
OF THE FORM D~ 'TD

Define a sequence of positive reals (d;) as follows:

p {% if ra,, <1 < ra,, + vy, for some 0 < r < m,
i =

3
3) 1 otherwise.
Let D be the diagonal operator with diagonal (d;), that is, Df; = d;f; for every i.
Define S = D7'TD. Clearly, S is defined on F. Once we write S in matrix form
it will be clear that it is bounded on F' and, therefore, can be extended to ¢;. Let
é; = D7 te;, in particular éy = e5. Then Sé; = D™ 1Te; = é;,1, so that the sequence
(é;) is the orbit of ey under S.

Next, we examine Definition 2.1 to represent the f;’s in terms of é;’s.

(0) fo = eo = éo;

(A) if 7 satisfies i € [0, v,—,] + ra, for some 0 < r < n, then

fi=d;, D7 fi=d;D7! (an—r(ei — ei—ran)) = (8 = €iray);

T

(E) if integers r, n, and i satisfy 1 < r < n,i € (ra,+v,—, (r+1)a,), (respectively,
1<n, i€ (vy_1,a,)), then

fi =d; D7 f; = 2=0/Vang,  where h = (r+ %)an (respectively, h = %an);
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(6) if integers r, n, and i satisfy 1 < r < n, i € [r(a, + b,), na, + rb,], then
fi=diD7 f; = é; — buéip,;
(D) if integers r, n, and i satisfy 0 < r < n, i € (na, + rb,, (r + 1)(a, + b,)), then
fi=d; D7V f; = 200V, yhere b= (r + )b,

)

We see that it differs from Definition 2.1 only in case (X) Now we can actually
write the matrix of S:

(20-300/var f, ifi=0
fit1 if i € [0,v,_) + Tay,
withr=1,2,....n
fir1 if i € [r(a, + byn),na, + rby,),
withr=1,2,...,n
2VVan f, 4 ifi € (ray, +vp_p, (r +1a, — 1),
withr=1,2,....,.n—1
ori € (vp_1,a, — 1)
UV f; ) if i € (na,+rb,,(r+1)(a,+b,)—1)
with r=0,1,...,n—1
an[r (e1firi—e2fon_rt1) if 1 =ra, +v,_,,
where withr=1,2,....n
Sf = 52:2(14-%4—%%—”1)/\/@
g1 =20 4vn—r—50an)/Van if r <n and
g1 = 2(14nan—3b0)/Vbn if r =n,
201=5an)/Van [ f 4 (L] ifi = (r+1)a, — 1
with r=0,1,...,n—1
e1fiv1 — bngafivi-o, it 1 = na,, + b,
where withr=1,2,...,n
£y = 201000 —300)/ Vb
gy = 2(+nan—gbn)/Von if r <n, and
£, = 2ntl=3an41)/yanT ifr=n
9—((r+1)an+5bn—1)/Vbn it = (r+1)(an +by) — 1
'[Z;‘:o Ol fijb+1
"‘b?ﬁﬂ(fo-ir%)} withr =0,1,...,n—1

Inspecting the matrix line by line we observe that, assuming (a,) and (b,) are
increasing sufficiently rapidly, it follows that ||S|| < 2. Again by inspecting each line
of the matrix, we deduce that if f; is the j-th coordinate functional on {1, j = 0, it
follows that lim; ., f7(S(fi)) = 0. In other words, the rows of the matrix converge
to zero. Therefore S is the adjoint of a linear bounded operator on cg.

Theorem 3.1. S has a non-trivial closed invariant subspace.
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We shall show that S has an invariant subspace by producing a vector z,, such that
the linear span of the orbit of x., stays away from eg, hence its closure is a non-trivial
S-invariant subspace.

We will introduce the following notations.

First we choose two sequences of positive integers (m;) and (r;) as follows. Let
mg = 2 be arbitrary, put ro = 1. Once m; and r; are defined, choose r;;1 € N so that

(4) Tiy1 € [Qm,—1 - max [[éf], 1+ ap,—1 - max |[&][]
fg’l}mi71 gvmifl

and let

(5) Mir1 = My + Tijp1.

Define an increasing sequence (j;) of positive integers inductively: pick any

(6) jO S [rﬂamoar0amo + Umo—'r‘o]a

and once j; is defined, put
(7) Jit1 = Ji + Tibm; + Ti+1Qm;qq -

Finally, for each ¢ > 0 define

k=0

. i fz
(9) Zp = fji-i-ribmi + bmifji'f‘(ri_l)bmi oot b::“ lfji—’—bm" + Jz - ’

mi

(10) Tr; = pi—léji-
We note the following easy-to-prove properties for our choices.

Proposition 3.2. For each i > 0 the following statements hold:

(a) jl S [Tiamﬂriami + 'Umz-—ri];

(b) it1 = x; + pizi, and thus z; = éj, + Z;_:lo DPkZk;

(¢) ifi and i+ € both belong to [ray,, ra,+ve—,| or both belong to [r(a,+by), na, +
Tbn]; then Szfz = fi-i-b'

(d) if € < myam, — Ji, then minsupp S*z;, > j; + by, whenever k > i.

Proof. (a) The proof is by induction. For i = 0 the required inclusion follows from
the choice of jgy, and if this condition holds for j;, then

Jiv1 = Ji T Tibm; + Tig1m,
€ [rim, + Tibm, + Tis1@m, s TiGm; + Vmyry + Tibp, + Tig1Gim, ]

- [Ti+1ami+17ri+1ami+l + mi<ami + bmz)] = [Ti+1aMi+1>Ti+1amz‘+1 + ’Umi}'
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~

(b) First note that by using (D) we obtain for a i € [r(a, + b,),na, + rb,|, with
<r < nin N, that

1
(11) € = bnéis, + fi
= b26i—o, + bufiy, + fi

= b €i_pp, + b;_lfi—(r—l)bn + .o+ bnfice, + fi

Note that j; + 70y, € [ri(@m, + bm,); MiGm, + 7iby,]. By using first (A) and then
(11) we obtain
Cjiv1 — eji+'f'ibmi+7'i+1ami
A Tit1
= €jitribm, + fji"‘ribmi +rit1am;
A,
T
__ i o5 ri—1 i+1
= by €5+ b5 fjtbm, T 0w fiit ri— 1), + — Jiitribm;+riziam,
m;

— b 6. .
= by €5, + 2.

Thus, Ti11 = pi€j,,, = Pi—1€j; + Dizi = T + Pizi.
(c) If ¢ and i + ¢ are both in [ra,, ra, + v,—.], it follows from (A) that

Ay R R Ap_—p , . ~
Sg(fi) = %Sg(ei - ei—ran) = T; . (€¢+£ - €i—mn+£) = fi+e-

~

The second part of (¢) can be deduced in a similar way using (C).
(d) First note that for k > i it follows that (recall that my > mg > 2)

Mk, — Tk > (Miy — 1 — L)@, = (Mg—1 — 1)am, = Mp_1Gpm,_, — Ji—1-

We can therefore assume that & = i. Furthermore, note that for any 1 < r < r; it
follows that

and
Tit1my, < Jivl < Jirr T4 < Jigr + MiQm, — Ji

= Tip10myy, + Tibm, + Miam,

< Ti+1ami+1 _I_ Um,-

- Ti+1ami+1 + Umi+1—7"i+1 .
Therefore the claim follows from the definition of z;, (9) and part (c). O

Notice that
T Ty
|2il| = 14 by, + 02, 4 -+ b0 4 L it L
U, U,

7 (3

Further, since p; < br%, we have
my

My Ti+1

_l’_

T °
b, Qb

sz‘ziu <
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The series ) 72 3™
follows from the definition of (r;) that

(b;) increases sufficiently rapidly. Secondly, it

-1 -1 ~
Oy, Tt 1 < amz[l + a1 £<HlaX HeéH]
xXVUm; -1
Thus, again since (b;) is increasing fast enough, it follows that the series

[o¢]
i1

i
im0 dmi b

converges. Therefore the ) >° p;z; converges, and the following definition is justified.
Definition 3.3. Define z, = lim; x; = lim; p;_18;, = €j, + > 5o Pi%i-
Now we can state and prove the key result for proving Theorem 3.1.

Lemma 3.4. There exists a constant C' > 0 such that dist(y, eq) = C' for every i and

every vector of the form y = ;" 7;é;.
Proof. Let C = inf{dist(y, eo) |y = ZT:O;;"O 7jéj}. Since the infimum is taken over a
finite-dimensional set, it must be attained at some yy. However since all ¢; are linear
independent, it follows that C' = dist(yo, eq) > 0.

We shall prove the statement of the lemma by induction on ¢. The way we defined
C guarantees that the base of the induction holds. Suppose y = Zmlaml v;€;. Write
Yy =1+ y2 + y3, where

TiGm; TVm;_q Tam,; +vm; —r mi—1  (r+am,—1
= E '7jej7 Y2 = E E 7]617 and Y3 = E E ’7/]6]
i=Ji r=ri+l  j=ram, r=ri J=T0m;+Um;—r+1

Notice that by (B)

mi—1 (r+1)am,; —

Z Z ~; 27 eIV
r=r; j=Tram,; +Umzfr+1

~

so that suppys C Ufﬁ;l(mmi + U, —ry (1 + 1)@y, ). Furthermore, using (A), we write
Y2 = Y + y where

ram;+Vm;—r Um;—r
/ ~
Yo = E E Yi€i—ram; = E E Yitram, €j
r=ri+l  j=ram, r=r;+1 7=0
m;  Tam;+Vm,—r

and y, = Z Z f]

Ay —
r=ri+l  j=ram, mi—T

Therefore,

Supp(y1 + y2) - [07 T'iQm; + Umi—J U U [Tamﬂ TQm; + Umi—ri]'
r=r;+1

One observes that the vectors y; + y2 and y3 have disjoint supports; it follows that
dist(y, o) = dist(ys + y2, €o).
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Furthermore,
Tam, +Um2—'r Tam, +'Um,b—'r
lyz]l = H Z Z Vi€j—ram, Z Z 751 - k<maX €]l
Um;_q1—
r=ri+l  j=ram, r=ri+l  j=ram,

By choice of (r;) (4), we have max |[|é]] < —%“— < —— when r; < r < m,.

Am;—r;—1 aAm; —r
This yields

XVm; -1

TOm; +Vm;—r

i<y %

r=r;+1 j= Tam,;

=i = lwgl

Qs —r
Since the support of 34 is disjoint from that of y; + ¢4 and doesn’t contain 0, we have
dist(y1, e0) < dist(y1 + ya. €0) + |||
= dist(y1 + v5 + ¥, €0) — W21 + [|9]
< dist(yy + 2, €0) < dist(y, e).

It is left to show that dist(y;,eq) = C. Since j; = riam,, it follows from (A) that
y1 = Yy +yi where

riami+vmi71 Tiami+vmi71
o A "o__ 5T
Y1 = E Vi€j—riam, and y; = E fi-
. . amifri
J=ji J=ji
. S ‘ ) r Um;_q 5. L
Since j; = ji—1 + Ti—1bm,_, + 7i@m,, we have y] = Zj:ji—l‘H"iflbmi,l B;é;, where (3; =

Vj+riam,- N particular this means, that suppy; C [0, Uy, ], while minsuppy) > j; >
Tiam,. Thus, the supports are disjoint, which yields dist(y;,eq) > dist(y], ep).
Split the index set of ¥} into two disjoint subsets: let
mi_1
A= [ji—l +Ti—1bmi_1 ) Umi—l] A U (mi—lami—1 +’rbmi—17 <T+1)(ami—1 +bmi—1))7
r=r;_1
mi—1
B= [ji—l +ri—1bmi—1 ) ,Umi—l] N U [T(a’mi—l +bmi—1)7 My —1Qm,;_, +Tbmi—1} .

r=r;_1
Write ¢} = z, + 2, where z, = Z]EA B;é; and z, = ZjEB Bjé;. For j € A we have

é; = 2((T+1/2)bmi*1_j)/\/bmiflfj, so that suppz, € A. In view of (11) we can write
2y = 2, + 2, where

r—1
- Zzﬁjbmiflfj_kbmi_l a‘nd Z Z/Bj m;_— 163 Tbmz I

jE€B k=0 jeB

We first note that supp z; C B and determine the support of z; as follows. If j € B,
then j = ji—1 + ri-1bm,_, and j € [r(am,_, + b,y ), Mi—1@m,_, + Tby,_,] for some
r € [rici,mi—]. fr =r;_y, then j —rby,, | = ji—1. If r > r;_q, then j — b, , >
Ty > Tim1Gm,_, + Um,_, = ji—1 by (7). We see that z; is a linear combination of
é;’s with j;,_1 < j < m;_1a,;, ,. Hence its support is contained in [0, m;_1a,,, ,]| and,
therefore, is disjoint from that of z, and z;. It follows that dist(y, eg) > dist(y, eo) >
dist(z}, eo). Finally, dist(z},eq) = C by the induction hypothesis. O
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Proof of Theorem 3.1. We will prove that the linear span of the orbit of z, under
S is at least distance C' from eg, hence its closure is a non-trivial invariant subspace
for S. Consider a linear combination Zé\;o @ S*7. Tt follows from (7) that the
sequence (m;a,,, — j;) is unbounded, so that N < m;a,,, — j; for some i > 0. Recall
that zoo = 2; + Y e, Pr2k; then

N N N oo

Z apSia,, = Z apSte; + Z Z agSK(pkzk).

=0 s=0 (=0 k=i
Notice that the two sums have disjoint supports, and the support of the second one
does not contain 0. Indeed, since x; = p;_1€;, then Sy, = Pi—1€j,4¢ for £ =1,... N.
Furthermore,

It follows that Z,]ZVZO Stz; is a linear combination of é;’s with j; < j < mia,,. In
particular, its support is contained in [0, m;a,,,]. On the other hand, Proposition 3.2
(d) implies that

N o
min supp (Z Z Sé(pkzk)) > ji + b,
(=0 k=i
Therefore, by Lemma 3.4

N N
. 7 . L,
dlst< E S xoo,e()) > dlst<;20 S .CEZ,G()) > C.

=0
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