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Abstract. If S, T , R, and K are non-zero positive operators on a Banach lattice
such that S ↔ T ↔ R 6 K, where “↔” stands for the commutation relation, T is
non-scalar, and K is compact, then S has an invariant subspace.

Throughout this note, X is a (real or complex) Banach lattice. For two operators

S and T on X, the notation S ↔ T means that S and T commute. A (norm closed)

subspace Y of X is said to be invariant under an operator T in L(X) if {0} 6= Y 6= X

and TY ⊆ Y . We follow the notations and terminology of [AA02].

There have been many extensions of Lomonosov’s theorem [Lom73] to positive

operators; see Chapter 10 of [AA02] for a review of the subject. In particular, if

T ↔ R > K for some positive non-zero operators T , R, and K with T quasinilpo-

tent and K compact, then T has an invariant subspace (even an invariant closed

ideal). The condition T ↔ R > K can be replaced with T ↔ R 6 K or, even

more generally, with T ↔ R > C 6 K for some non-zero positive operator C; in

the latter case, T is said to be compact friendly. There have been several more re-

cent similar extensions of Lomonosov’s theorem to positive quasinilpotent operators:

[Drn01, IM04, AT05, ÇE07, FTT08, PT09, Ges09, FV09, DK11]. In this note we do

not require that T be quasinilpotent. Our result was motivated by Theorem 3.5 of

[ÇM11], where quasinilpotence is not required either.

Theorem 1. Suppose that S, T , R, and K are non-zero positive operators on a Banach

lattice such that S ↔ T ↔ R 6 K, T is non-scalar, and K is compact. Then S has

an invariant subspace.

Proof. Suppose that S has no invariant subspaces. Let S̃ =
∑∞

n=0 t
nSn where t is a

positive real such that series converges. Then S̃ > I, S̃ > tS, and S̃ commutes with T .
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Claim: for every x > 0, the vector S̃x is quasi-interior, that is, the order ideal J

generated by S̃x is dense in X. Indeed, S̃x > x > 0, so that J 6= {0}. Note that J is

invariant under S because for every z ∈ J we have |z| 6 λS̃x for some λ > 0, so that

|Sz| 6 S|z| 6 λSS̃x = λ
∞∑
n=0

tnSn+1x = λ
t

∞∑
n=0

tn+1Sn+1x 6 λ
t
S̃x.

Since S has no invariant subspaces, J has to be dense in X. This proves the claim.

Since R 6= 0, there exists x0 > 0 such that Rx0 > 0. By the claim, S̃Rx0 is

quasi-interior. Since R is positive and non-zero, it cannot vanish on a quasi-interior

vector, hence RS̃Rx0 > 0. Iterating this step, we get RS̃RS̃Rx0 > 0. It follows that

RS̃RS̃R 6= 0. Since S̃R 6 S̃K and the latter operator is compact, RS̃RS̃R is compact

by Aliprantis-Burkinshaw’s Cube Theorem [AA02, Theorem 2.34]. Hence, T commutes

with a non-zero compact operator. Therefore, T has a hyperinvariant subspace: in case

of a complex Banach lattice this follows from Lomonosov’s Theorem, while in the case

of a real Banach lattice we use Corollary 2.4 of [Sir05]. �

Remark 2. We have, actually, proved more than stated: we proved that either S

has an invariant closed ideal or T commutes with a non-zero compact operator and,

therefore, has a hyperinvariant subspace. We would also like to point out that the

assumption that T is positive is not really needed.

To put Theorem 1 in perspective, note that, under the assumptions of the theorem,

the following facts are well known.

• If both X and X∗ have order continuous norm, then R is compact by Dodds-

Fremlin Theorem [AA02, Theorem 2.38], so that T has a hyperinvariant sub-

space by Lomonosov’s Theorem.

• Note that R3 is always compact by the Cube Theorem, and T ↔ R3. Thus,

if R3 6= 0 then it follows immediately from Lomonosov’s Theorem that T has

a hyperinvariant subspace. On the other hand, if R3 = 0 then kerR is a non-

trivial subspace invariant under T . Hence, in any case, T has an invariant

subspace.

• Note that T is compact-friendly. Therefore, if T is quasinilpotent at a positive

vector then Theorem 10.55 of [AA02] guarantees that S has an invariant closed

ideal. The following result is an analogue of Theorem 10.55 in our setting.
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Theorem 3. Suppose that T , R, and K are non-zero positive operators on a Banach

lattice X such that T ↔ R 6 K, T is non-scalar, and K is compact. If (Sn) is a

sequence of positive operators commuting with T then there is a subspace invariant

under T , R, and all Sn’s.

Proof. Let S = T + R +
∑∞

n=1 anSn, where (an) is a sequence of positive reals such

that the series converges. Observe that S is a positive operator commuting with T . If

S has an invariant closed ideal then this ideal remains invariant under T , R, and each

Sn because these operators are dominated by S. However, if S has no invariant closed

subspaces, then T has a hyperinvariant subspace by Remark 2. �

Example 4. 0 6 R 6 K, K is compact, R is not compact, and R2 = 0.

This is the case in Example 5.19 of [AB06]; it is one of the few classical examples

showing that Dodds-Fremlin Theorem may fail when X∗ is not order continuous. Here

is the example. Put X = `1 ⊕ L2. Let (ei)
∞
i=1 stand for the unit vector basis of `1,

(ri)
∞
i=1 stand for the sequence of the Rademacher functions in L2, and r0 = 1 stand

for the constant one function in L2. Recall that the sequence (ri)
∞
i=0 is an orthonormal

sequence in L2. Note also that r+i = 1
2
(ri + 1) for all i. We define R0, K0 : `1 → L2 via

K0ei = 1 and R0ei = r+i for all i > 1. It is easy to see that the both operators are

bounded, K0 is compact, R0 is not compact, and 0 6 R0 6 K0. Now put R =
[

0 0
R0 0

]
and K =

[
0 0
K0 0

]
. Then R and K are two operators on X with 0 6 R 6 K, K is

compact, R is not compact, and R2 = 0.

Example 5. WithR andK as in Example 4, we will construct T such that T commutes

with R but not with K. Put T =
[
P 0
0 Q

]
where P : `1 → `1 is the left shift: Pei = ei−1

if i > 1 and Pe1 = 0; and Q : L2 → L2 is defined as follows. Put Q1 = 1, Qr1 = −1,

Qri = ri−1 for i > 1 and define Q arbitrarily on the orthogonal complement of the

closed span of (ri)
∞
i=0 in L2. Using the fact that r+i = 1

2
(ri + 1) we see that Q acts as a

left shift on the sequence (r+i )∞i=1. It is easy to see that T commutes with R because for

every
∑∞

i=1 αiei in `1 and every f ∈ L2 we have TR
(∑∞

i=1 αiei, f
)

=
(
0,
∑∞

i=1 αi+1r
+
i

)
=

RT
(∑∞

i=1 αiei, f
)
. However, T does not commute with K because TK(e1, 0) = (0, 1)

while KT (e1, 0) = (0, 0). Note that T is not positive.

Example 6. We construct three non-zero positive operators T , R, and K such that

0 6 R 6 T , K is compact, R is not compact, and T commutes with R but not with
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K. In particular, the operators K, R, and T , together with any positive operator S

which commutes with T satisfy the assumptions of Theorem 1.

We construct R and K similarly to Example 4. We again put X = `1 ⊕ L2, but

this time we consider `1 indexed by N∪ {0}, so that the unit basis now starts with e0.

Again, we define R =
[

0 0
R0 0

]
and K =

[
0 0
K0 0

]
where R0ei = r+i and K0ei = 1 for all

i = 0, 1, 2, . . . (recall that r0 = 1). We still have 0 6 R 6 K, K is compact, R is not

compact, and R2 = 0. Put T =
[
P 0
0 Q

]
where P : `1 → `1 and Q : L2 → L2 are defined

as follows. Fix a positive real parameter α. For f ∈ L2, put

(Qf)(t) = f
(
t
2

)
+ 2α

∫ 1

1
2

f, t ∈ [0, 1].

It is easy to see that Q1 = (1 + α)1, Qr1 = (1 − α)1, and Qri = ri−1 for i > 1. It

follows from r+i = 1
2
(ri + 1) that Qr+1 = 1 and Qr+i = r+i−1 + α

2
1 whenever i > 1. Now

we define P so that the action of P on (ei)
∞
i=0 matches the action of Q on (r+i )∞i=0,

namely,

Pei =


(1 + α)e0 i = 0,

e0 i = 1,

ei−1 + α
2
e0 i > 1.

Clearly, Q and P are positive, hence so is T . It is easy to verify that T commutes with

R. However, T does not commute with K as TK(e1, 0) = T (0, 1) =
(
0, (1 + α)1

)
,

while KT (e1, 0) = K(e0, 0) = (0, 1).

Note that (0, 1) is an eigenvector of T ; it follows that T has a hyperinvariant sub-

space. Also, if α = 1 then T commutes with the compact positive operator C defined

by C(x, f) =
(
0, (
∫ 1

0
f)1
)
. We do not know whether T commutes with a compact

operator when α 6= 1.
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