A REMARK ON INVARIANT SUBSPACES OF POSITIVE OPERATORS

VLADIMIR G. TROITSKY

Abstract

If S, T, R, and K are non-zero positive operators on a Banach lattice such that $S \leftrightarrow T \leftrightarrow R \leqslant K$, where " \leftrightarrow " stands for the commutation relation, T is non-scalar, and K is compact, then S has an invariant subspace.

Throughout this note, X is a (real or complex) Banach lattice. For two operators S and T on X, the notation $S \leftrightarrow T$ means that S and T commute. A (norm closed) subspace Y of X is said to be invariant under an operator T in $L(X)$ if $\{0\} \neq Y \neq X$ and $T Y \subseteq Y$. We follow the notations and terminology of [AA02].

There have been many extensions of Lomonosov's theorem [Lom73] to positive operators; see Chapter 10 of [AA02] for a review of the subject. In particular, if $T \leftrightarrow R \geqslant K$ for some positive non-zero operators T, R, and K with T quasinilpotent and K compact, then T has an invariant subspace (even an invariant closed ideal). The condition $T \leftrightarrow R \geqslant K$ can be replaced with $T \leftrightarrow R \leqslant K$ or, even more generally, with $T \leftrightarrow R \geqslant C \leqslant K$ for some non-zero positive operator C; in the latter case, T is said to be compact friendly. There have been several more recent similar extensions of Lomonosov's theorem to positive quasinilpotent operators: [Drn01, IM04, AT05, ÇE07, FTT08, PT09, Ges09, FV09, DK11]. In this note we do not require that T be quasinilpotent. Our result was motivated by Theorem 3.5 of [ÇM11], where quasinilpotence is not required either.

Theorem 1. Suppose that S, T, R, and K are non-zero positive operators on a Banach lattice such that $S \leftrightarrow T \leftrightarrow R \leqslant K$, T is non-scalar, and K is compact. Then S has an invariant subspace.

Proof. Suppose that S has no invariant subspaces. Let $\widetilde{S}=\sum_{n=0}^{\infty} t^{n} S^{n}$ where t is a positive real such that series converges. Then $\widetilde{S} \geqslant I, \widetilde{S} \geqslant t S$, and \widetilde{S} commutes with T.

Date: February 19, 2012.
2010 Mathematics Subject Classification. Primary: 47B65. Secondary: 47A15.
Key words and phrases. positive operators, invariant subspaces.
The author was supported by NSERC.

Claim: for every $x>0$, the vector $\widetilde{S} x$ is quasi-interior, that is, the order ideal J generated by $\widetilde{S} x$ is dense in X. Indeed, $\widetilde{S} x \geqslant x>0$, so that $J \neq\{0\}$. Note that J is invariant under S because for every $z \in J$ we have $|z| \leqslant \lambda \widetilde{S} x$ for some $\lambda>0$, so that

$$
|S z| \leqslant S|z| \leqslant \lambda S \widetilde{S} x=\lambda \sum_{n=0}^{\infty} t^{n} S^{n+1} x=\frac{\lambda}{t} \sum_{n=0}^{\infty} t^{n+1} S^{n+1} x \leqslant \frac{\lambda}{t} \widetilde{S} x
$$

Since S has no invariant subspaces, J has to be dense in X. This proves the claim.
Since $R \neq 0$, there exists $x_{0}>0$ such that $R x_{0}>0$. By the claim, $\widetilde{S} R x_{0}$ is quasi-interior. Since R is positive and non-zero, it cannot vanish on a quasi-interior vector, hence $R \widetilde{S} R x_{0}>0$. Iterating this step, we get $R \widetilde{S} R \widetilde{S} R x_{0}>0$. It follows that $R \widetilde{S} R \widetilde{S} R \neq 0$. Since $\widetilde{S} R \leqslant \widetilde{S} K$ and the latter operator is compact, $R \widetilde{S} R \widetilde{S} R$ is compact by Aliprantis-Burkinshaw's Cube Theorem [AA02, Theorem 2.34]. Hence, T commutes with a non-zero compact operator. Therefore, T has a hyperinvariant subspace: in case of a complex Banach lattice this follows from Lomonosov's Theorem, while in the case of a real Banach lattice we use Corollary 2.4 of [Sir05].

Remark 2. We have, actually, proved more than stated: we proved that either S has an invariant closed ideal or T commutes with a non-zero compact operator and, therefore, has a hyperinvariant subspace. We would also like to point out that the assumption that T is positive is not really needed.

To put Theorem 1 in perspective, note that, under the assumptions of the theorem, the following facts are well known.

- If both X and X^{*} have order continuous norm, then R is compact by DoddsFremlin Theorem [AA02, Theorem 2.38], so that T has a hyperinvariant subspace by Lomonosov's Theorem.
- Note that R^{3} is always compact by the Cube Theorem, and $T \leftrightarrow R^{3}$. Thus, if $R^{3} \neq 0$ then it follows immediately from Lomonosov's Theorem that T has a hyperinvariant subspace. On the other hand, if $R^{3}=0$ then ker R is a nontrivial subspace invariant under T. Hence, in any case, T has an invariant subspace.
- Note that T is compact-friendly. Therefore, if T is quasinilpotent at a positive vector then Theorem 10.55 of [AA02] guarantees that S has an invariant closed ideal. The following result is an analogue of Theorem 10.55 in our setting.

Theorem 3. Suppose that T, R, and K are non-zero positive operators on a Banach lattice X such that $T \leftrightarrow R \leqslant K, T$ is non-scalar, and K is compact. If $\left(S_{n}\right)$ is a sequence of positive operators commuting with T then there is a subspace invariant under T, R, and all S_{n} 's.

Proof. Let $S=T+R+\sum_{n=1}^{\infty} a_{n} S_{n}$, where $\left(a_{n}\right)$ is a sequence of positive reals such that the series converges. Observe that S is a positive operator commuting with T. If S has an invariant closed ideal then this ideal remains invariant under T, R, and each S_{n} because these operators are dominated by S. However, if S has no invariant closed subspaces, then T has a hyperinvariant subspace by Remark 2 .

Example 4. $0 \leqslant R \leqslant K$, K is compact, R is not compact, and $R^{2}=0$.
This is the case in Example 5.19 of [AB06]; it is one of the few classical examples showing that Dodds-Fremlin Theorem may fail when X^{*} is not order continuous. Here is the example. Put $X=\ell_{1} \oplus L_{2}$. Let $\left(e_{i}\right)_{i=1}^{\infty}$ stand for the unit vector basis of ℓ_{1}, $\left(r_{i}\right)_{i=1}^{\infty}$ stand for the sequence of the Rademacher functions in L_{2}, and $r_{0}=\mathbb{1}$ stand for the constant one function in L_{2}. Recall that the sequence $\left(r_{i}\right)_{i=0}^{\infty}$ is an orthonormal sequence in L_{2}. Note also that $r_{i}^{+}=\frac{1}{2}\left(r_{i}+\mathbb{1}\right)$ for all i. We define $R_{0}, K_{0}: \ell_{1} \rightarrow L_{2}$ via $K_{0} e_{i}=\mathbb{1}$ and $R_{0} e_{i}=r_{i}^{+}$for all $i \geqslant 1$. It is easy to see that the both operators are bounded, K_{0} is compact, R_{0} is not compact, and $0 \leqslant R_{0} \leqslant K_{0}$. Now put $R=\left[\begin{array}{cc}0 & 0 \\ R_{0} & 0\end{array}\right]$ and $K=\left[\begin{array}{cc}0 & 0 \\ K_{0} & 0\end{array}\right]$. Then R and K are two operators on X with $0 \leqslant R \leqslant K, K$ is compact, R is not compact, and $R^{2}=0$.

Example 5. With R and K as in Example 4, we will construct T such that T commutes with R but not with K. Put $T=\left[\begin{array}{ll}P & 0 \\ 0 & Q\end{array}\right]$ where $P: \ell_{1} \rightarrow \ell_{1}$ is the left shift: $P e_{i}=e_{i-1}$ if $i>1$ and $P e_{1}=0$; and $Q: L_{2} \rightarrow L_{2}$ is defined as follows. Put $Q \mathbb{1}=\mathbb{1}, Q r_{1}=-\mathbb{1}$, $Q r_{i}=r_{i-1}$ for $i>1$ and define Q arbitrarily on the orthogonal complement of the closed span of $\left(r_{i}\right)_{i=0}^{\infty}$ in L_{2}. Using the fact that $r_{i}^{+}=\frac{1}{2}\left(r_{i}+\mathbb{1}\right)$ we see that Q acts as a left shift on the sequence $\left(r_{i}^{+}\right)_{i=1}^{\infty}$. It is easy to see that T commutes with R because for every $\sum_{i=1}^{\infty} \alpha_{i} e_{i}$ in ℓ_{1} and every $f \in L_{2}$ we have $T R\left(\sum_{i=1}^{\infty} \alpha_{i} e_{i}, f\right)=\left(0, \sum_{i=1}^{\infty} \alpha_{i+1} r_{i}^{+}\right)=$ $R T\left(\sum_{i=1}^{\infty} \alpha_{i} e_{i}, f\right)$. However, T does not commute with K because $T K\left(e_{1}, 0\right)=(0, \mathbb{1})$ while $K T\left(e_{1}, 0\right)=(0,0)$. Note that T is not positive.

Example 6. We construct three non-zero positive operators T, R, and K such that $0 \leqslant R \leqslant T, K$ is compact, R is not compact, and T commutes with R but not with
K. In particular, the operators K, R, and T, together with any positive operator S which commutes with T satisfy the assumptions of Theorem 1.

We construct R and K similarly to Example 4. We again put $X=\ell_{1} \oplus L_{2}$, but this time we consider ℓ_{1} indexed by $\mathbb{N} \cup\{0\}$, so that the unit basis now starts with e_{0}. Again, we define $R=\left[\begin{array}{cc}0 & 0 \\ R_{0} & 0\end{array}\right]$ and $K=\left[\begin{array}{cc}0 & 0 \\ K_{0} & 0\end{array}\right]$ where $R_{0} e_{i}=r_{i}^{+}$and $K_{0} e_{i}=\mathbb{1}$ for all $i=0,1,2, \ldots$ (recall that $r_{0}=\mathbb{1}$). We still have $0 \leqslant R \leqslant K, K$ is compact, R is not compact, and $R^{2}=0$. Put $T=\left[\begin{array}{ll}P & 0 \\ 0 & Q\end{array}\right]$ where $P: \ell_{1} \rightarrow \ell_{1}$ and $Q: L_{2} \rightarrow L_{2}$ are defined as follows. Fix a positive real parameter α. For $f \in L_{2}$, put

$$
(Q f)(t)=f\left(\frac{t}{2}\right)+2 \alpha \int_{\frac{1}{2}}^{1} f, \quad t \in[0,1]
$$

It is easy to see that $Q \mathbb{1}=(1+\alpha) \mathbb{1}, Q r_{1}=(1-\alpha) \mathbb{1}$, and $Q r_{i}=r_{i-1}$ for $i>1$. It follows from $r_{i}^{+}=\frac{1}{2}\left(r_{i}+\mathbb{1}\right)$ that $Q r_{1}^{+}=\mathbb{1}$ and $Q r_{i}^{+}=r_{i-1}^{+}+\frac{\alpha}{2} \mathbb{1}$ whenever $i>1$. Now we define P so that the action of P on $\left(e_{i}\right)_{i=0}^{\infty}$ matches the action of Q on $\left(r_{i}^{+}\right)_{i=0}^{\infty}$, namely,

$$
P e_{i}= \begin{cases}(1+\alpha) e_{0} & i=0 \\ e_{0} & i=1 \\ e_{i-1}+\frac{\alpha}{2} e_{0} & i>1\end{cases}
$$

Clearly, Q and P are positive, hence so is T. It is easy to verify that T commutes with R. However, T does not commute with K as $T K\left(e_{1}, 0\right)=T(0, \mathbb{1})=(0,(1+\alpha) \mathbb{1})$, while $K T\left(e_{1}, 0\right)=K\left(e_{0}, 0\right)=(0, \mathbb{1})$.

Note that $(0, \mathbb{1})$ is an eigenvector of T; it follows that T has a hyperinvariant subspace. Also, if $\alpha=1$ then T commutes with the compact positive operator C defined by $C(x, f)=\left(0,\left(\int_{0}^{1} f\right) \mathbb{1}\right)$. We do not know whether T commutes with a compact operator when $\alpha \neq 1$.

References

[AA02] Y.A. Abramovich and C.D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, vol. 50, American Mathematical Society, Providence, RI, 2002. MR 2003h:47072
[AAB93] Y.A. Abramovich, C.D. Aliprantis, and O.Burkinshaw, Invariant subspaces of operators on ℓ_{p}-spaces, J. Funct. Anal. 115 (1993), no. 2, 418-424. MR 94h:47009
[AAB94] , Invariant subspace theorems for positive operators, J. Funct. Anal. 124 (1994), no. 1, 95-111. MR 95e:47006
[AB06] C.D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006, Reprint of the 1985 original. MR 2262133
[AT05] R. Anisca and V.G. Troitsky, Minimal vectors of positive operators, Indiana Univ. Math. J. 54 (2005), no. 3, 861-872. MR 2151236
[ÇE07] M. Çağlar and Z. Ercan, Invariant subspaces for positive operators on locally convex solid Riesz spaces, Indag. Math. (N.S.) 18 (2007), no. 3, 417-420. MR 2373689 (2008k:47012)
[ÇM11] M. Çağlar and T. Misirlioğlu, A note on a problem of Abramovich, Aliprantis and Burkinshaw, Positivity 15 (2011), no. 3, 473-480. MR 2832600
[DK11] R. Drnovšek and M. Kandić, More on positive commutators, J. Math. Anal. Appl. 373 (2011), no. 2, 580-584. MR 2720706 (2011j:47123)
[Drn01] R. Drnovšek, Common invariant subspaces for collections of operators, Integral Equations Operator Theory 39 (2001), no. 3, 253-266. MR 1818060 (2001m:47012)
[FTT08] J. Flores, P. Tradacete, and V.G. Troitsky, Invariant subspaces of positive strictly singular operators on Banach lattices, J. Math. Anal. Appl. 343 (2008), no. 2, 743-751. MR 2401530 (2009c:47008)
[FV09] A. Fernández Valles, Invariant ideals for uniform joint locally quasinilpotent operators, Rocky Mountain J. Math. 39 (2009), no. 5, 1699-1712. MR 2546660 (2010i:47064)
[Ges09] H.E. Gessesse, Invariant subspaces of super left-commutants, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1357-1361. MR 2465659 (2009i:47017)
[IM04] M.C. Isidori and A. Martellotti, Invariant subspaces for compact-friendly operators in Sobolev spaces, Positivity 8 (2004), no. 2, 109-122. MR 2097082
[Lom73] V.I. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator, Funkcional. Anal. i Priložen. 7 (1973), no. 3, 55-56. MR 54:8319
[PT09] A.I. Popov and V.G. Troitsky, A version of Lomonosov's theorem for collections of positive operators, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1793-1800. MR 2470839
[Sir05] G. Sirotkin, A version of the Lomonosov invariant subspace theorem for real Banach spaces, Indiana Univ. Math. J. 54 (2005), no. 1, 257-262. MR 2126724 (2006f:47007)

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1. Canada

E-mail address: troitsky@ualberta.ca

