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Abstract

In 2012, Dales and Polyakov introduced the concepts of multi-norms and dual multi-norms
based on a Banach space. Particular examples are the lattice multi-norm (| -||%) and the dual
lattice multi-norm (|| -||2*) based on a Banach lattice. Here we extend these notions to cover
‘p—multi-norms’ for 1 < p < 00, where co—multi-norms and 1-multi-norms correspond to multi-
norms and dual multi-norms, respectively. We shall prove two representation theorems. First we
modify a theorem of Pisier to show that an arbitrary multi-normed space can be represented as
(Y™, |-I%) : n € N), where Y is a closed subspace of a Banach lattice; we then give a version for
certain p—multi-norms. Second, we obtain a dual version of this result, showing that an arbitrary
dual multi-normed space can be represented as (((X/Y)", |- [2%) : n € N), where Y is a closed
subspace of a Banach lattice X; again we give a version for certain p—multi-norms.

We shall discuss several examples of p—multi-norms, including the weak p—summing norm
and its dual and the canonical lattice p—multi-norm based on a Banach lattice. We shall deter-
mine the Banach spaces E such that the p—sum power-norm based on F is a p—multi-norm. This
relies on a famous theorem of Kwapieri; we shall present a simplified proof of this result. We
shall relate p—multi-normed spaces to certain tensor products.

Our representation theorems depend on the notion of ‘strong’ p—multi-norms, and we shall
define these and discuss when p—multi-norms and strong p—multi-norms pass to subspaces, quo-
tients, and duals; we shall also consider whether these multi-norms are preserved when we
interpolate between couples of p—multi-normed spaces. We shall discuss multi-bounded oper-
ators between p—multi-normed spaces, and identify the classes of these spaces in some cases,
in particular for spaces of operators between Banach lattices taken with their canonical lattice
p—multi-norms.
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1. Introduction

1.1. Multi-norms and dual multi-norms. A theory of multi-norms based on a
normed space was introduced by Dales and Polyakov in [20]. The study of multi-norms
and dual multi-norms was continued in [8, 18, 19], and there is a survey in [16]; a recent
contribution is [7]. We recall the basic definitions of this theory.

We write N for the set of natural numbers; for n € N, the collection of permutations of
the set N, = {1,...,n} is denoted by &,,. The underlying field T of a linear space is either
the real field R or the complex field C. As in the earlier papers, E™ denotes the n-fold
Cartesian power of a linear space F, taken with the coordinatewise linear operations.

The first definition that we give brings in a new term, ‘power-norm’; the word ‘special-
norm’ was used in [20, §2.2.1] and [52]. Thus a ‘power-norm’ is a sequence of norms defined
on the powers of F.

DEFINITION 1.1. Let E be a linear space over F. A power-norm based on E is a sequence
(I -1l,, : » € N) such that | - ||,, is a norm on E™ for each n € N and such that the following
Axioms (A1)-(A3) are satisfied for each n € N and « = (z1,...,2,) € E™

(A1) [(@o@)s - Zom) ], = 2], (0€6&n);

(A2) (11, ..., 0nzy)|,, < (maxi—1,. n o)) ||, (ca,...,a, € F);
(A3) (1, - s, 0) 41 = N,
In this case, (E™, |- ],) = (E™,|-],) : » € N) is a power-normed space.
The power-norm is a multi-norm and (E™,||-|,) is a multi-normed space if, in addition
to (A1)-(A3), we have
(A4) ”(3:17 s Tp—1,Tn, xn)“n-q-l = H(xla s 7:1771)Hn
for each ne N and z4,...,2, € E.
The power-norm is a dual multi-norm and (E™, |- |,,) is a dual multi-normed space if, in
addition to (A1)-(A3), we have
(B4) H(:Ch cees Tp—1, T,y xn)‘|n+1 = H('rla sy Tn—1, an)Hn
for each n e N and z1,...,2, € E.
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Let (E™,|-l,,) be a power-normed space. Then, in particular, (E, | -||;) is a normed
space; we shall usually write |z| for ||(z)||, for z € E, so giving the base norm on E.
The power-norm is based on E. In the case where (E, || - |) is a Banach space, each space
(E™, |-, is also a Banach space, and (E™,||-|,,) is termed a power-Banach space, etc.

Many properties of multi-norms and of dual multi-norms were described in [20];
these properties included some strong connections with the theory of absolutely summing
operators and with the theory of tensor norms.

For example, as in [20] and [18], there are a mazimum multi-norm and minimum
multi-norm based on a normed space E; these are denoted by (|- : n € N) and
(- Hzlin : n € N), respectively, and they are defined by the property that
min

|z,

< lzl, <=, (zeE" neN)

for every multi-norm (| -[|,, : » € N) based on E. The formula for |- H;nin is
min

(1

= izrrllaan;viH (x = (x1,...,2,) € E", neN).

By [20, Theorem 3.33], the dual of |- |* is p1.,, the weak 1-summing norm, to be
defined in §1.5, and so

], = Sup{

for each ne N and ¢ = (z1,...,2z,) € E™.
There are also maximum and minimum dual multi-norms based on a normed space

D Aoy

i=1

Z)\l,...,)\nEEly ﬂl,n()\lw‘w)‘n) < 1}

E; the maximum dual multi-norm is the sequence (|- |,,) defined by
n

ol = S lail (@ = (z1,...,20) € B™, neN).
i1

See [20, p. 59].

In fact, in this work, we shall refer to ‘co-multi-norms’ and ‘1-multi-norms’ for ‘multi-
norms’ and ‘dual multi-norms’, respectively, as special cases of ‘p—multi-norms’; see the
definitions in §2.2.

1.2. Description of the main results. Our aim in this memoir is to generalize the
notions of multi-norms and dual multi-norms to that of a p—multi-norm for 1 < p < o0;
in the cases where p = 0 and p = 1, we shall recover the classes of multi-norms and dual
multi-norms, respectively. A p—multi-norm is a power-norm with an additional property;
the precise definition will be given in §2.2.

Again p—multi-norms have a strong connection with certain cross-norms defined on
tensor products. The study of p—multi-norms involves consideration of the normed space
on which the p—multi-norm is based, and we shall obtain new results in this direction,
especially involving ‘p—spaces’.

A key example of a p-multi-norm is that of the canonical lattice p—multi-norm defined
on a real or complex Banach lattice: this p-multi-norm will be defined in Definition 4.22.
There is a sense in which this p—multi-norm is generic. Indeed, our main representation
theorem is Theorem 5.7, which roughly says the following. Take p with 1 < p < 0. Then a
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p—multi-norm based on a Banach space and satisfying extra conditions is the same as the
canonical lattice p—multi-norm defined on a closed subspace of a certain Banach lattice.
The analogous result for multi-norms themselves is Theorem 5.5: a multi-norm based on a
Banach space is the same as the canonical Banach-lattice multi-norm defined on a closed
subspace of a certain Banach lattice. This latter theorem is a result of Pisier, stated as
[45, Théoreme 2.1]. The analogous result for certain dual multi-norms is Theorem 5.6.

Our generalization of Pisier’s theorem to p—multi-norms requires, in fact, that the
p—multi-norm be a ‘strong’ p—multi-norm that is ‘p—convex’. We shall explain these extra
terms in §2.5 and §2.6, respectively. In §2.5, we shall show that each p—multi-norm based
on a Banach space is a strong p—multi-norm whenever p is equal to 2 or o0 and that, for
every other value of p with 1 < p < o, there is a Banach space E and a p—multi-norm
based on E that is not a strong p—multi-norm; we shall give a number of examples of
p—multi-norms that are and are not strong p—multi-norms.

There is a dual representation theorem, given as Theorem 5.10; it shows that certain
p—multi-norms, including dual multi-norms, based on a Banach space are the same as the
quotient p—multi-norm based on a space X /Y, where Y is a closed subspace of a Banach
lattice X and we take the canonical lattice p—-multi-norm based on X.

Throughout we shall consider when properties of p—multi-norms based on Banach
spaces pass to the corresponding power-norms based on subspaces, on quotients, on dual
spaces, and on spaces that are the intermediate space formed by complex interpolation
between a compatible couple of Banach spaces. Most of these results are not needed for
the main representation theorems of Chapter 5.

Chapter 1 gives background, mainly in the theory of Banach spaces; a reader may
wish to skim the results of this chapter and return to consult it when the particular
background is relevant.

For example, we shall recall in Chapter 1 some standard theory of tensor products of
Banach spaces, concentrating on the projective and injective tensor products. In §1.3, we
shall define the p—sum norm based on a normed space, and, in §1.5, we shall introduce
weak p—summing norms and their duals; these are examples of power-norms. A source
of examples for us will be spaces in the class SQ(p), where 1 < p < o0; these are Banach
spaces that are isometrically isomorphic to closed subspaces of quotients of LP-spaces,
and we shall introduce this class in §1.6. In §1.7, we shall use an example of Schechtman
to exhibit a space S, for 1 < p < 2 that is isomorphic to a member of the class SQ(p),
but not isomorphic to a closed subspace of LP(£2) for any measure space 2. Some results
here may be new.

The p-spaces of Herz are introduced in §1.8. Spaces in the class SQ(p) are, by a theo-
rem of Kwapien, exactly these p—spaces; the theorem of Kwapient seems to be important,
and we shall present a proof of this result in §1.9. Finally, in §1.10, we shall recall some
theory of complex interpolation spaces between compatible couples of Banach spaces.

In Chapter 2, we shall begin our study of p—multi-norms, which are special types of
power-norms, giving the definition and various examples. In Theorem 2.8, we shall relate
p—multi-norms to the p—spaces of Herz; indeed, we shall show that, for p with 1 < p < o0,
the p—sum norm based on a Banach space FE is a p—multi-norm if and only if E is a p—space
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if and only if E belongs to the class SQ(p). Suppose that there are pp—multi-norms and
p1—multi-norms based on Banach spaces Ey and F1, respectively. In §2.3, we shall discuss
when there is a p—multi-norm based on suitable intermediate spaces between Ey and
FE;. In §2.4, we shall characterize p—multi-norms in terms of certain tensor products of
Banach spaces, thus showing that our theory can be regarded as belonging to the latter
subject. We shall also introduce, in §2.5 and §2.6, two strengthenings of the notion of
a p—multi-norm to give strong p—multi-norms and p—convex and p—concave multi-norms,
respectively; we shall give a variety of examples that show that, in various settings, there
are p—multi-norms that are not strong p—multi-norms. Throughout the chapter, we shall
explain when p-multi-norms and their strengthened versions based on Banach spaces
pass to closed subspaces, to quotient spaces, to dual spaces, and to interpolation spaces.

The natural morphisms in the category of multi-normed spaces are the multi-bounded
maps, and these are introduced in Chapter 3; we shall give various examples, and define
p—multi-norms on spaces of multi-bounded operators.

In Chapter 4, we shall turn to our main topic, that of p—multi-norms in the setting
of Banach lattices, in particular introducing in §4.3 the canonical lattice p—multi-norm
based on a Banach lattice. In §4.1 and §4.2, we shall recall and somewhat extend some
background on Banach lattices and regular and order-bounded operators between Banach
lattices, in particular discussing pre-regular operators. In §4.4, we shall show that complex
interpolation between Banach lattices gives a Banach lattice and that two canonical
lattice pg— and p;—multi-norms on a Banach lattice produce a canonical lattice p—multi-
norm for an appropriate value of p. In §4.5, we shall show how spaces of p—multi-bounded
operators between Banach lattices with their respective canonical lattice p—multi-norms
are related to spaces of pre-regular operators.

Finally, in Chapter 5, we shall give our representation theorems, together with some
examples that show their limits.

1.3. Notation and terminology. First, we recall some standard definitions and nota-
tions primarily involving normed and Banach spaces that we shall use.

The cardinality of a set S is |S|. The closed unit interval [0, 1] is denoted by I. The
conjugate index of p € [1,00] is denoted by p’, so that 1/p + 1/p’ = 1; we shall often set
q = p’. Throughout we shall interpret the expression

n 1/p
(&)
i=1

where a1,...,a, =0 and n € N, as max{as,...,a,} when p = c0.

Let E be a linear space over a field F (always R or C). Then we write I for the
identity operator on FE. However the identity on F" is usually denoted by I,, for each
n € N. The linear span of a subset S of F is denoted by

linS.

Let E and F be linear spaces. Then E@ F is the direct sum of E and F, and L(E, F)
is the linear space (over ) of F-linear maps from E into F.
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DEFINITION 1.2. Let E and F be linear spaces, and take n € N. The n* amplification
of T € L(E, F) is given by

T . (1,...,xp) = (Tx1,...,Txy), E"—> F". (1.3.1)
Let T € L(E, F), and take n € N. Then the mapping T(™ is clearly also linear, and

it is injective or surjective if and only if T" has the corresponding property. We may write
equation (1.3.1) as:

T g TMWg, E™ > F™.
Let E be a linear space, and take S,T € L(E). Then clearly
(S oT)™ =850 o 7™ e £(E") (neN). (1.3.2)

The action of a linear functional A on an element z of a linear space F is usually denoted
by {(z, A), so that the n*® amplification of A is the linear map A", which is defined on
E™ by

A (@, my) o (@, A (B, A)) = (2, A, B T (1.3.3)
where @ = (z1,...,2,).
Take m,n € N. For elements = (z1,...,Zy) € E™ and y = (y1,...,Yn) € E™, we

write
(a:vy) = ($17"'axﬂ17y1a"'ayn) € Em+n;
this is called the concatenation of x and y.
Suppose that F' is a linear subspace of a linear space E. Then we shall often write

Jp:F—>E and Qp:E— E/F (1.3.4)

for the natural embedding and the quotient map, respectively. Take n € N. Then F™ is
a linear subspace of E", and we identify (E/F)™ with the quotient space E™/F™ via

(xt1+F,...;on+ F)=x+ F" (x=(x1,...,2,) € E"). (1.3.5)

Consequently, the quotient map Qpn» : E™ — E™/F" is identified with the n'® amplifi-
cation Q%n) of the quotient map Qp : E — E/F.

Let E and F be linear spaces. A bijection in L(E, F) is a linear isomorphism. Take
T e L(E,F). Then T induces a linear map

T:x+kerTw— Tx, FE/kerT — F. (1.3.6)

Of course, T is a linear isomorphism from E/kerT onto T(E); this is the fundamental
isomorphism theorem. For n € N, we have ker ™) = (ker T')", and the identification of
E"/ker T™ with (E/kerT)™ implies that the induced map T is identified with the
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n'™ amplification 7™ of T, as the following diagram illustrates:

E"/ker T (1.3.7)

V¥

(E/ker T)™

Let E and F be linear spaces, and take n € N. For Ty,...,T,, € L(E,F), define
A(Tl,...,Tn) € L(E,F™) and E(Tl,...,Tn) e L(E",F) by

Ay, (@) = (The,..., Thx) (ze€E) (1.3.8)

and
S,y (@, mn) =Ty + -+ Tawy (21,000 ,2, € E), (1.3.9)

respectively.

Take m,n € N. Then M,,, ,, = M, ,,(F) denotes the space of all m x n matrices over F,
with M, for M, ,,; we shall write T' € M,,, ,, as (T} ;). The transpose of T = (T; ;) € M, ,,
is the matrix T = (Tj;) € M, m. A matrix T € M,,,, is row-special (respectively,
column-special) if it has at most one non-zero entry in each row (respectively, column);
T is special if it has at most one non-zero entry in each row and in each column. Suppose
that E is a linear space over F. Then we further regard a matrix in M,, ,,(F) as defining
a linear map from E™ to E™ in the obvious way.

Now let (E, | -|) be a normed space over a field F. We write
BE y B% s and SE

for the closed unit ball, the open unit ball, and the unit sphere of E, respectively. The
dual space of E (consisting of all continuous linear functionals on F) is denoted by F’,
and the duality is implemented by the bilinear map

(x, \) = {z, Ny, ExE —>TF;

the dual norm to |- | on E’ is often denoted by | - |. The weak topology on E is o(E, E)
and the weak™® topology on E’ is o(E’', E). The bidual of E is E” = (E'), and the
canonical embedding of E into E” is kg; we shall usually identify E with xg(E) and
sometimes write Z for kg (x), where z € E.

Let E be a normed space, take n € N, and let |-, be a norm on E™ defining the
product topology. Suppose that F' is a closed linear subspace of E. Then F™ is a closed
linear subspace of (E™,|-|,)), and using the identification (1.3.5) we obtain a norm
on (E/F)* = E™/F™ that is given by the following explicit formula:

le+ F*|, = |[(z1+ F,...,zn + F)| = , inf [(z1+ Y15 T+ Yn)|n  (1.3.10)

15--Yn

for ¢ = (x1,...,2,) € E™.
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Suppose that E and F' are normed spaces, and take p with 1 < p < c0. Then we write
Ee, F
for the direct sum E @ F, taken with the norm given by |z +y| = (|z[|” + |y|*)"/? for
z € E and y € F. The dual space of E @, F is identified with E' @, F'.

Suppose that F and F are normed spaces. Then we write B(E, F') for the normed
space (with respect to the operator norm) of all bounded linear operators from E to F,
with B(E) for B(E, E). The space B(FE, F') is a Banach space whenever F is a Banach
space, and B(F) is a unital Banach algebra when F is Banach. For details on Banach

algebras, see [15]. An operator of norm at most 1 is a contraction. For T € B(E, F), we
write 7' € B(F', E') for the dual of T, so that T" is defined by the formula

(e, T'X\y =(Tx, \y (xreE, \eF');
of course, |T’|| = |T'||. For y € F and X € F’, set
(@A) (z) ={z, N\y (zeE). (1.3.11)
Then y ® A € B(E, F') with [y ® A| = |y| |All, and
F(E,F)=lin{y®\:ye F, \e E'}

is the subspace in B(FE, F') consisting of the finite-rank operators. Let T € B(E, F), take
n € N, and suppose that | - | and ||| - ||| are norms on E™ and F™, respectively, defining the
product topologies. Then T : (E™, | -||) — (F™,]||-]||) is a bounded linear operator. A
bijection T' € B(E, F) such that T—! € B(F, E) is an isomorphism; the spaces E and F
are isomorphic, written

E~F,

when there is such an isomorphism from E onto F. Take C > 1. Then E and F are
C~isomorphic when there is an isomorphism T € B(E, F) with |T| [T!| < C; in this
case, we write
E~F.
c

In the case where E and F' are Banach spaces, it is of course immediate from Banach’s
isomorphism theorem that each bijection T' € B(E, F') is an isomorphism.

Suppose that F and F' are isomorphic normed spaces. Then the Banach—-Mazur dis-
tance from E to F is

d(E,F) = inf{|T| HT*1H :T e B(E,F) is an isomorphism} ;

the spaces E and F' are almost isometric if d(E, F) = 1. The infimum in the definition
of d(E, F) is attained when F and F are both finite-dimensional spaces, but this is not
true in general. We have d(E, F)) < C whenever F > F. Clearly

d(E,G) < d(E,F)d(F,G) (1.3.12)

for three normed spaces E, F', and G such that £ ~ F ~ G.
The following definition is taken from [2, Definition 11.1.1].
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DEFINITION 1.3. Let E and F be infinite-dimensional Banach spaces. Then F is finitely
representable in F' if, for each finite-dimensional subspace X of E and each € > 0, there
is a finite-dimensional subspace Y of F' with dimY = dim X such that d(X,Y) <1 +e.

Let E, F, and G be infinite-dimensional Banach spaces, and suppose that F is finitely
representable in F' and that F is finitely representable in G. Then it is noted in [2,
Proposition 11.1.4] that E is finitely representable in G. Examples of spaces that are
finitely representable in other spaces will be given in §1.6.

Let E and F be normed spaces. An operator T € B(E, F) is an embedding if it is an
isomorphism onto a subspace of F' (where the subspace has the relative norm from F),
and E embeds in F if there is such an embedding. Thus T' € B(E, F) is an embedding if
and only if there exists ¢ > 0 such that |Tx| = c|z| (z € E). We define the embedding
constant of T € B(E, F) by the formula:

B(T)=p(T:E— F)=iif{|Tz| : v € Sg},
so that S(T) > 0 when T is an embedding. When we consider an embedding T': E — F'
as an isomorphism onto its range, we see that T has an inverse T~! : T(E) — E and
that
|T~':T(E)— E| =1/8(T).

Suppose that F, F', G, and H are normed spaces, and take R € B(F,F) to be a

surjection, S € B(F,G), and T € B(G,H). Then TSR € B(E, H) and
BTSR) < B(S) |R|[T] - (1.3.13)
Indeed, take ¢ > 0, and then take y € Sp with |Sy| < B8(S) + €. Since R is a surjection,
there exists x € F with Rx = y, and then 1 < ||R| |z|, so that
|TSRx|
=]

Inequality (1.3.13) follows.

Let E and F be normed spaces, and suppose that T € B(E, F) is an open map, and
hence a surjection. Then we define the modulus of surjectivity of T € B(E, F') by

r(T) =inf{c >0: By c cT(By)} (TeB(E,F)),

B(TSR) < < [T[ Syl IR] < (B(S) + &) [RIT] -

so that r(T) > 0. In this case, the induced map T : E/ker T — F is an isomorphism and
r(T) = HT”H . (1.3.14)
Let E and F be Banach spaces. Then the following are standard results: for each em-
bedding T € B(E, F), the map T is a surjection and r(T") = 1/8(T); for each surjection
T e B(E,F), the map T” is an embedding and B(T") = 1/r(T).
Two normed spaces F and F' are isometrically isomorphic, written
ExF,

when there is a linear isometry from E onto F'; an embedding of F into F' is an isometric
embedding if it is an isometry, and then FE embeds isometrically in F'.

Let E and F be normed spaces, and take T € B(E, F'). Then T is a quotient operator
if T(By) = By and an ezxact quotient operator if T(Bg) = Bp. Each exact quotient
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operator is a quotient operator; the converse is not necessarily true. We shall use the
following standard result [27, p. 333].

PROPOSITION 1.4. Let E and F' be normed spaces, and take T € B(E, F).

(i) The induced operator T: E/ker T — F is an isometric isomorphism if and only
if T is a quotient operator.

(ii) The operator T is an isometric embedding if and only if T' is an exact quotient
operator if and only if T' is a quotient operator. m

Suppose that F' is a closed subspace of a normed space E. Then the annihilator of
F in F’ is the weak *-closed subspace of E’ defined by

Ft={\eFE :{(x,\)=0 (zeF)},
so that F” is identified with E’/F+. Thus J} = Qp1 in the notation of equation (1.3.4).

DEFINITION 1.5. Let F be a normed space. Then a normed space F is a subquotient of
E whenever there is a closed subspace G of F such that F' is isometrically isomorphic to
a subspace of the quotient space E/G.

Equivalently, the normed space F' is a subquotient of a normed space F whenever F
is isometrically isomorphic to a quotient of a subspace of FE.

We shall also use the following result.

PROPOSITION 1.6. Let E, F, and G be normed spaces. Suppose that there are a quotient
operator Q : E — F and a contraction J : E — G such that J(E) is dense in G and
|Qx|| < |Jz| (z € E). Then F is isometrically isomorphic to a quotient of G.

Proof. Take z € J(E). Then there exists x € E with Jx = z; we set Tz = Q. Since
|Qz|| < |Jz|| (z € E), the element Tz is well-defined in F and |Tz| < ||[Jz| = ||z|.
Clearly the map T : J(F) — F is linear. Since J(F) is dense in G, the map T extends to
a contraction T : G — F'. Take y € F with |y| < 1. Since @ is a quotient operator, there
exists ¢ € F with ||z] < 1 and Qx = y. Then ||Jz| < 1 and T(Jx) = y. This shows that
T is a quotient operator, and so the map T : G/ker T — F is an isometric isomorphism
by Proposition 1.4(i). m

Let E be a normed space. A closed subspace F' of E is complemented if there is a
closed subspace G of E such that E = F' @ G; an idempotent in the algebra B(E) is a
projection on E.

Now suppose that E is a Banach space and that F' is a complemented subspace of
E. Then there is a projection P on E with P(E) = F and E = P(FE)® (Ig — P)(E); the
space F is A-complemented (for A > 1) if there is such a projection P with ||P| < A, and
A(F, E), the projection constant of F in E, is the infimum of such numbers .

A Banach space E is injective if, for every Banach space G, every closed subspace
F of G, and every T € B(F, E), there is an extension Te B(G, E) of T; the space E is

A-injective if, further, we can ensure that HJN“H < A||T|. For example, the space £%(S)

of bounded, scalar-valued functions on a non-empty set S is always 1-injective. See [17,
Proposition 2.5.5], for example.
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For p with 1 < p < o0, we write P for the usual Banach space of scalar-valued,
p-summable sequences, with

1/p
()l = (Z I%Ip> <o ((a) €€P);

for n € N, the n-dimensional versions of these spaces are denoted by ¢P. The Banach
space of all scalar-valued null sequences is cg; the linear subspace of sequences which are
eventually 0 is cp, so that cgp is dense in cq and £? for 1 < p < 0.

We shall write §; for the sequence (d;; : j € N) for ¢ € N, where §, ; is the Kro-
necker delta. Later, we shall identify finite sequences (aq, . . ., ay,) in F™ with the element
(a1,...,,,0,0,...) € coo, and regard cqp and £P as subspaces of £P, so that

(P =1lin{d,...,9,} (meN).
For n € N, we write P, : FN — F” for the linear map which is the projection onto the
first n coordinates. Let E = ¢P (for 1 < p < w) or E = ¢g. Then P, | E € B(E) with
|P. | E| = 1in each case; we note that lim,,_,, P,7 = T in (B(E), | - |) for each compact

operator T'on E. We also regard each T' = (T} ;) € M, ,,, where m,n € N, as an operator
on cqg via the formula

Ta=T (Z Oéjéj) = i (i EJOZj) 51 = TPnOz (a = (Oéj) € Coo).

j=1 i=1 \j=1

More generally we have the following definition.

DEFINITION 1.7. Let E be a normed space, and take n € N and p with 1 < p < o0. Define
n 1/p
I2lep (s = (2 |xi|”) (@ = (@1, 20) € E" ,neN). (1.3.15)
i=1

Clearly (E™, || |,z (g)) is a normed space that is a Banach space when E is a Banach
space. The norm |-, p) is called the p-sum norm on F, and we write {}(E) for E"
taken with this norm. Let F' be a closed subspace of E. Then clearly the restriction of
the p—sum norm on E™ to F™ and the quotient of the p—sum norm on (E/F)™ are the
p-sum norms on F" and (E/F)", respectively. The dual space to (P(E) is (2 (E').

Let E be a normed space. We define the following space:

0 1/p
(P(E) = (zn) € BN - [[(@0)ll o) = <Z |93n||p> <00,

n=1

so that ¢P(F) is a normed space; the specified norm on (?(FE) is also called the p—sum
norm. In the case where 1 < p < oo, the dual space to £7(E) is ¥ (E'), and so the dual
of the p—sum norm based on F is the p’~sum norm based on E’.

The following result is easily checked.

PRrROPOSITION 1.8. Let p with 1 < p < o, and take m,n € N.
(i) We have | T : €2 — €2 = HTt NN H (T € Miy.0).
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(if) For each row-special matriz T € M, ,,, we have

1/p
p) 1jeN,
(iii) For each column-special matriz T € M, ,,, we have

1/p’
p) 1e N,

Let I be an index set. Then the space of functions on I' with finite support is denoted
by cgo(T"). Now take p with 1 < p < 00. Then we write £7(T") for the corresponding space,
and define elements 4, in these spaces for v € I by d,(s) = 1 if s = v and d,(s) = 0
if s € I'\{y}. Thus cgo(I) is dense in (€P(I'), || [,5)) for 1 < p < o0. In particular, the
uniform norm |- ||, on a set I is defined by

[l = sup{[f(s)[ : s €T} (f € £7(I)).

Let K be a compact (Hausdorff) space. Then (C(K),|-|,,) is the uniform algebra
(with the pointwise operations and the norm || - || ) of all scalar-valued, continuous func-
tions on K; if it be necessary to specify the scalar field, we shall write C'(K,R) or C(K, C),
as appropriate. For a study of C(K) as a Banach space, see [17], for example.

m
mw#%m=mx<2md
=1

wwﬂwz—mx<2ﬂd
j=1

We shall use the fact that each Banach space E is a quotient of a space ¢1(T) for
some index set I'. Indeed, we can take I' = Bg and define

Q: ) 0y = Yy, (M) —E.
We recall two elementary and well-known facts that we shall use.

PROPOSITION 1.9. Let E be a finite-dimensional normed space, and take € > 0. Then
there exist n € N and an embedding J : E — £,° such that

lz| <[ Jzly, < (X +e) |z (zeE), (1.3.16)
and so d(E,J(E)) <1+e.
Proof. We may suppose that ¢ < 1.
The set Sgr := {\ € E’ : |A|| = 1} is compact, and so totally bounded, in the metric

space (E',|-|]), and hence there exist n € N and Ay,..., A, € Sg such that, for each
A € Sp, there exists i € N, with [|A — A;| < &/2. Set

Jr=(1+¢e)({x, A1),...,{x, \n)) (x€E).

Then Jz € {° (z € E), the map J : E — ¢,° is linear, and (1.3.16) follows easily, so that
J is an embedding. =

PROPOSITION 1.10. Let E be a normed space, take k € N, and suppose that {x1, ..., xx}
is a linearly independent set in E. Then there exists € > 0 such that {y1,...,yr} is a
linearly independent set whenever y; € E and |x; — y;| < e for j € Ny.
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Proof. Set F = lin{xzy,...,x;}, a finite-dimensional subspace of E, and consider the
linear bijection

k
T:(Cla'-wck)HZijj? €]€1—>F
j=1

Set M = HT‘1|| > 0, fix € € (0,1/M), and consider elements y1,...,yx € E such that
lz; — ;] < e (j € Ny). Suppose that C1,...,¢, € F with 3*_; (;y; = 0. Then

k k k
1
MZKJ < iTi| = ZCJ’(% <€Z|Cj|'
j=1 = j=1 j=1
Since e < 1/M, this is a contradiction unless ZLI I¢;j| = 0. Hence ¢ = --- = ¢, = 0,
and so {y1,...,yx} is linearly independent. m
Now let E be a normed space, and take n € N. We shall consider norms ||| - ||| on E™
that satisfy the following two conditions:
llalll > max o] (@ = (o120 € B (1.3.17)
and
[1(0,...,0,2;,0,...,0)||| = ||lz:| (zi€ E,ieN,). (1.3.18)

Each norm that satisfies these conditions defines the product topology of E™. Certainly
|| ]| := | -, satisfies these conditions whenever (||-||,,) is a power-norm based on FE.
The maps Ay .. 1,y € L(E, F") and ¥, . 1,y € L(E™, F) were defined in equations
(1.3.8) and (1.3.9), respectively. The results of the following proposition will be developed
further in §3.2.
ProrosITION 1.11. Let E and F' be normed spaces, and take n € N.
(i) Suppose that the norm ||| - ||| on F™ satisfies (1.3.17) and (1.3.18). Then the map
(Tl,“';Tn)'_)A(Tl,...qT,L)a B(E,F)n_’B(E’Fn)a
is a linear isomorphism.
(ii) Suppose that the norm ||| -||| on E™ satisfies (1.3.17) and (1.3.18). Then the map
(Th,...,Tn) = Xy, B(E,F)" — B(E", F),
is a linear isomorphism.
Proof. Take Ty,...,T, € B(E,F).

(i) For each z € E, we have

1A, @)]]] < ZIII(O,...,O,Tix,O,. 0l < (ZIT> (Ed
=1

by (1.3.18), and so Ay, 7,y € B(E,F") with |Ar, 7| <D, [T

Clearly the specified map is a linear injection. For ¢ € N,,, let m; : F* — F be the
coordinate projection onto the i*® coordinate, and take T' € B(E, F™); by (1.3.17), m; is
a contraction, and so m; o T' € B(E, F). Further T' = A(, o7, .. x,0or), and so the specified
map is a surjection.
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(ii) For each z1,...,z, € E, we have

2y, @z < (Z |Ti|> x| < (2 m) lin, ozl
i=1 iz

by (1.3.17), and so X7, 1,) € B(E", F) with |S(, 7, < 20, I T3]

Clearly the specified map is a linear injection. For i € N,,, let ¢; : E — E™ be the
embedding into the i ** coordinate, and take T € B(E™, F); by (1.3.18), ¢; is an isometry,
and so T' o 1; € B(E, F). Since T' = ¥(po,, ... Tou,), the specified map is a surjection. m

Let E be a normed space, take n € N, and suppose that E™ is endowed with a norm
|| - ||| which satisfies equations (1.3.17) and (1.3.18). As a special case of clause (ii), above,

take A1,..., A\ € £, and define A = X5, x,) € (E™]|[-]]|)’, so that
(e, Ay = i(mz, Ay (= (x1,...,2,) € E"). (1.3.19)
i=1
Then .
LA TR
where [||-]]|" is the dual norm to |||-|||, and so, by identifying X € (E™,|||-]||)" with

(A,.. ., An) € (E')™, we have defined a norm on (E’)™. We have identified xg» with ng),
and so we regard kg (E™) as a subspace of (E")".

Suppose in addition that 7" is an operator from E into a normed space F' and that F'"
is also endowed with a norm ||| -||| which satisfies equations (1.3.17) and (1.3.18). Then
the above identification of the dual spaces of (E™, |||-|||) and (F™,]||-|||) with (E’)™ and
(F")", respectively, implies that the dual of the n'* amplification of T is identified with
the n'® amplification of the dual of T, so that

(T™Y = (T")™ (neN). (1.3.20)

1.4. Tensor products. We recall some definitions concerning tensor products of normed
spaces; for the theory of such tensor products, see [22, 23, 24, 25, 32, 55] and [15, Appendix
3.

Suppose that E and F' are linear spaces over the same field F, and denote their
(algebraic) tensor product by F ® F. Each element z € F ® F has a representation

as z = Z?lej ® y;, where n € N, x1,...,2, € E, and y1,...,y, € F; in the case
where z # 0, we may suppose that the sets {z1,...,z,} and {y1,...,yn} are linearly
independent.

Let F be a subspace of a linear space E, and let G be a linear space. Then FF'® G
is a subspace of E ® G and the quotient space (F ® G)/(F ® G) can be identified with
(E/F)®QG.

Let F, F, and G be linear spaces, and take S to be a bilinear map from E x F' into
G. Then there is a unique linear map Ts : F® F' — G such that

Ts(z®vy) = S(z,y) (xeE,yeF).
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Let E, F, X, and Y be linear spaces, and suppose that S € L(E,X) and T € L(F,Y).
Then there is a unique linear map SQT : FQ F — X ® Y such that

(S®T)(z®y)=Sx®Ty (reE,yeF).

Similarly, suppose that A and p are linear functionals on E and F, respectively. Then
A ® p is the unique linear functional on £ ® F' such that

A (zy) =@, Ny, n (@ecE yekF). (1.4.1)

Suppose that E is a finite-dimensional space with a basis {e,...,e,} and that F is
a linear space. Then each element z € F ® F' has a unique representation in the form
z = Z?Zl e; ® yj, where y1,...,y, € F. For example, the space F" has the standard
basis {01, ...,0,}, and so we can identify (y1,...,y,) € F™ with 3/, §; ®y; n F" @ F.

Let F and G be linear spaces, and take T' € L(F,G) and n € N. As above, we identify
F" and G" with F* ® F and F" ® G, respectively. Then the n* amplification T of T
is identified with the operator I, T : F" ® F' — F™ ® G. More generally, for A € M, ,,,
where m,n € N, the action

AQT:F"®F -F"®G (1.4.2)
corresponds to the map
x— ATMx) =T (Az), F" - G™. (1.4.3)

In particular, the map AQIp : F*"®F — F™®F corresponds to the map A : F™* — F™,
with the above identification.
Let E and F' be normed spaces. The projective tensor norm | - | on EQF is defined

by

m m

Izl = inf{z ] lys] = 2 = Y 2 ®y;, me N} (e EQF),

j=1 Jj=1
where the infimum is taken over all representations of z as an element of £ ® F. Then
(EQF, | -|,) is a normed space; it is complete if either E or F'is finite dimensional and the
other is a Banach space, but it is not complete if both F and F' are infinite-dimensional
spaces; the Banach space which is its completion is denoted by

(EQF,||,)-

The injective tensor norm |- . on E® F is defined by

Izl = Sup{

where z = Z;Zl x; ® y; is any representation of z in E® F. Then (E® F,|-|,) is a
normed space; the Banach space which is its completion is denoted by

We note that always |z|, < |z], (2 € E® F); it is straightforward to see that, in
the case where dim F = n, we have

Izl <nlzl, (:€e EQF), (1.4.4)

g Ay )

Jj=1

2>\€BE/,,U,€BF/},
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and so the identity map from (E®F, | -||.) onto (E®F, ||-|,.) is an isomorphism in this
special case.
A norm ||-| on E® F is a cross-norm if

lz®yl = |zllllyl (zeE,yeF),
and a sub-cross-norm if
lz®yl < [zl llyl (zeE,yeF).

A sub-cross-norm | - | on EQF is reasonable if the linear functional A®u that was defined
in equation (1.4.1) is bounded on (F ® F, | -|) with [A® p| < ||| |u| for each X € E’
and p € F'. The projective and injective tensor norms on £ ® F are both cross-norms;
indeed, the projective tensor norm is the maximum cross-norm on £ ® F.

The following result is [55, Proposition 6.1].

PROPOSITION 1.12. Let E and F' be normed spaces.
(i) A norm | -|| on E® F is a reasonable sub-cross-norm if and only if
Izl <Mzl <zl (e EQF).

(ii) Each reasonable sub-cross-norm |- || on EQF is a cross-norm, and the dual norm
|-|" is a cross-norm on E' @ F'. m

Let E and F be normed spaces. The dual space (E@F)’ is isometrically isomorphic
to B(E, F') via the map ¢ defined by

G, (M) () =@y, \) (reE,yeF, Ae(EQF)). (1.4.5)

By [22, p. 47], there is a natural isometric embedding of E' @ F' in (E ® F)’, but this
embedding is not usually a surjection. However, in the case where either E or F is a
finite-dimensional space, we have the two identifications

(EQF|-1.) = (E'"®@F,|-,) (1.4.6)

and
(EQF,|-I,) = (E'@F,|I.). (14.7)

See [22, Theorem 6.4], for example.

Now let E, F, and G be Banach spaces, and take S to be a bounded bilinear map
from E x F into G. Then there is a unique bounded linear map Ts : EQ F — G such
that Ts(z ® y) = S(z,y) (x € E, y € F); further, |Ts| = |S|. The bilinear map

R:(y,\)—»y®\, FxE —B(E,F),

where y ® A\ was defined in (1.3.11), is bounded, and so we obtain a bounded linear
operator Tg : FQE' — B(E,F). The range of Tx is the space of nuclear operators,
denoted by (N(E, F),|-|,), where |-, is the nuclear norm; see (22, §3.6].

We shall use the following standard theorem; see [55, Propositions 2.3 and 3.2], for
example. For the final statement, see [22, (4.3) and (5.8)].
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THEOREM 1.13. Let E, F, X, and Y be Banach spaces, and suppose that S € B(E, X)
and T € B(F,Y). Then there are unique operators
SR, TeB(E®F,X®Y) and S®.TeB(ERF,XR®Y)

with

(@ T)(z®y) =52®@Ty (vreE,yeF)
and

(S®:T)(z®y) =Sr@Ty (reE,yeF),
respectively. Further,

IS ®x T = 1S ® T| = IS T -

Suppose that S and T are injective. Then S ®. T is always injective, and S ®, T is
injective whenever either E or F' has the approximation property. m

We shall usually write S ® T for either S ®, T or S ®. T, as appropriate.
In particular, suppose that F' is a closed subspace of a Banach space E and that G
is a Banach space. Then the linear map

Ic®-Jp: (GR®F,|-]|,) > (GRE,||,)

is a contraction, but it is not always an embedding. More generally, the projective tensor
product ‘preserves quotients, but not necessarily subspaces’ and the injective tensor prod-
uct ‘preserves subspaces, but not necessarily quotients’. This phenomenon is discussed
in the literature; for example, see [23, Theorem 2.3.1] and [55, §§2.1,3.1]. The following
result is contained in [22, Chapters 3 and 4] and [55, §2.1, §3.1, and Exercise 3.3].

ProrosiTiON 1.14. Let E and G be Banach spaces, and suppose that F is a closed
subspace of E.

(i) The linear map I¢ ® Qr : GR®E — G&® (E/F) is a quotient operator.

(ii) The linear map Ig @ Jr : GRF — G®F is an isometry if and only if each
T € B(F,G') extends to an operator T € B(E, G') with Hf” =|T].

(iii) For each measure space S0, the linear map Ip1 o) ® Jp : L' () ®F - L'(Q)RFE
1S an isometry.

(iv) The linear map kg @ kg : GRFE — G"® E" is an isometry.

(v) The linear map I ® Jp : GRF > GREFE is an isometry. m

The next proposition is closely related to clause (ii), above; it may be well-known
(see, e.g., [47, Section 3]), but we prove it for the sake of completeness.

PROPOSITION 1.15. Let F' be a finite-dimensional subspace of a Banach space E, and let
G be a Banach space. Then the linear map
Ig®:Jr:GRF > GRE

is an embedding, and B(Ig ®- Jr) = 1/A(F, E). Moreover, in the case where G = F', we
have

B(Ip ®x Jr) = 1/N(F,E).
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Proof. The first part of this proposition is easy, and hence we need to show only that
B(IF’ Qr JF) < 1//\(Fa E) Set
T=1IpQ®:Jrp: F'®F > F'®F
and ¢ = 1/8(T). By equation (1.4.5) and the fact that F' is reflexive, we may consider the
surjection T” as an operator from B(E, F') onto B(F'). Since r(T") = 1/8(T) = ¢, it follows
that, for each U € B(F'), there exists V € B(E, F) with T"(V) = U and |V < ¢|U]|. But
T’ is the restriction map, and so, taking U = I, we conclude that A(F, E) < c.
The result follows. m

1.5. Weak p—summing norms. Let F be a normed space. In this section, we shall
recall the definition of the weak pfsumming norms on F and give some of their basic
properties. Throughout this section, 1 < p < o and ¢ = p'.

The following standard definition was glven in [20, Definition 4.1.1] and [19, §2.3]; for
further discussion, see also [22, 24, 32].

Let E be a normed space, and take n € N. Following the notation of [18, 20, 32], we
define pp () for & = (z1,...,2,) € E™ by

1/p
tp () = sup (Z |<a;, )\>p> : A€ By p =sup {|(z, Mlep 1 A€ B} .

Then (E™, upn) is a normed space; it is a Banach space when E is a Banach space. We
write ,uf,n when it is necessary to identify the space E. For example,

oo (@) = max |oi| = |l pp (@ = (21,0 20) € B"). (1.5.1)

DEFINITION 1.16. Let E be a normed space, and take p with 1 < p < oo and n € N.
Then py, ., is the weak p—summing norm on E (at dimension n).

Let E be a normed space. Clearly (p,.,) is a power-norm based on E and, for each
n € N, we have

7

n 1/p
Inax i < ppn(z1, . 20) < (Z ||:1ci|p> (x1,...,2, € E). (1.5.2)
i=1

Also pip, n(®) = pipy.n(x) (x € E™) whenever 1 < p; < p2 < o0 and n € N. By [32, p. 26]
or [55, (6.4)], it follows that, for each p € [1,0], n € N, and z1,...,z, € E, we have

n 1/q
G155 Cn €T, (Z |<jq> <1lp. (153)
j=1

Now take n € N and Al,...,)\neE’, and set A = (A1,...,A,). Then

tpn(T1,. .., %n) = sup T

n 1/p
Pp.n(X) = sup (Z | {z, )\i>|p> :x€ Bg . (1.5.4)

i=1
Let E and F be normed spaces, and take n € N and T € B(E, F). Then
ppa (T @) < (@) [T (2 € B"). (1.5.5)
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Let E be a normed space. Then the space of sequences z = (z;) € EN such that

0e) 1/p
o] = sup (2|<xi,A>|p> NE B b <o
i=1

is denoted by (£{ear (E), [ -l»  (gy) in [23, p. 16], by (Lreak(E), |- ngak) in [24, p. 32],
and by (6,(E), | -]}) in [55, (6.4)].
Let E be a normed space, and take n € N. For « = (21,...,2,) € E™, consider the

map
Tmi(Cl,u-,Cn)HZQ;xi, K;Z*)E
1=1

Then T, € B(¢2, E) and pp, n(x) = |Tl|. The norm on E™ corresponding to the injective
tensor norm on ¢? ® E is denoted by | - |

i&@xi

and so, for = (x1,...,x,) € E™, we have

n 1/q
: (Z Iai|q> <1,\e Bp
i=1

g,n’

n

|z, = = sup Z iz, A)
1=1 e i=1
n 1/p
= sup (Z |{a;, )\>|p> A€ Bgr p = lpn(x).
i=1
Hence
Il ,, = ppn(x) (z€E"). (1.5.6)
It follows that
(B pipm) = BUL,E) = (2@ F, ||, (15.7)

In the case where F is a finite-dimensional normed space, we also have
(Ena,up,n) = B(E’yﬁﬁ) .
Indeed, the element @ = (z1,...,z,) € E™ corresponds to the element T, € B(E', (F),

ytn
where

T,(\) = A" (z) = (@, X)) (Ae E).
Let E be a normed space with a closed subspace F, and take p with 1 < p < o0,
n € N, and © € F™. Then it follows immediately from the Hahn—Banach theorem that
we obtain the same values for y, ,(x) whether it be evaluated with respect to E or F.
Thus ‘a weak p—summing norm passes to subspaces’, in the sense that

TE s (F i) = (B ) (15.8)
is an isometry for each n € N; ¢f. Proposition 1.14(v). Now suppose that 1 < p < oo with
p # 2 and that n € N. Then it is not necessarily the case that the norm ui QF on the

quotient space (E/F)™ of E™ is equal to the quotient of the norm uin on E™; we shall
show this in Example 1.30, below.

Let E be a normed space, and again take p with 1 < p < o0 and set ¢ = p’. Forn e N
and x € E", define

Vpn(x) = sup{|<a:, M Ae (BN, pgn(N) < 1} )
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Then we see that (E™,v,, ) is a normed space; we write when it is necessary to
) P, b

identify the space E. For example,

E
Vpn

vin(x) = 2 ;| (&= (21,...,2,) € E", neN). (1.5.9)
j=1

Clearly (vp,n) is a power-norm based on E. The norm v, ,, is the restriction to E™ of the
dual norm of ju, ,,, where p, ,, is defined on (E')™. Since ({4 @ E')’ = £? ® E” by (1.4.6),
it follows that

vpn() = 2|, (z€E", neN), (1.5.10)

where | - [, denotes the projective tensor norm on £f ® E and we are using Proposition
1.14(iv). Hence
(E™ vpn) = (LR QE,||,,) (neN). (1.5.11)

DEFINITION 1.17. Let E be a normed space, and take p with 1 < p < o0 and n € N.
Then vy, is the dual weak p—summing norm on E (at dimension n).

Take n € N. Then it is clear that the dual space to (E™, yip ) is ((E')", v4.») and that
the dual space to (E™,vp ) is ((E')", tig,n)-
It follows from equation (1.5.2) by duality that, for each n € N, we have

(Z mf’) < Vpn(@r,ezn) < il (@1, 20 € E). (1.5.12)
=1 =1

ExaMPLE 1.18. Let E be a normed space, and take n € N. Then we have defined the
p-sum norm | - He;‘f(E) on the space E" in Definition 1.7. As in §1.4, we identify (P @ E
with E™, and so we obtain a norm on ¢ ® E' corresponding to the p—sum norm. It follows
from (1.5.6), (1.5.2), (1.5.12), (1.5.10) that

|2l = o (@) < [l () < Vpn(x) = 2], (e EY), (1.5.13)

and so, by Proposition 1.12, |- ,» ) defines a reasonable cross-norm on £} ® E.
(In fact, it follows from [55, (6.9)] that
dp(2) < |2l p(py < 9p(2) (2 €L ®E),

where d,, and g, denote certain ‘Chevet—Saphar tensor norms’.)

Now suppose that F and F are normed spaces and that T' € B(E, F'). Also in §1.4,
we identified the operator I,, ® T : (P ® E — ¢? ® F with the nth amplification T™) of
T. It is clear from the definitions that

[, ®T: (PQE — (P ® F|| = HT<"> L 0P(E) — Ef;(F)” =T . (1.5.14)

In the language of §3.1, this will say that T is a multi-bounded operator with respect to
the p—sum norms based on E and F, respectively, and that |T'],,, = |7]. =
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PROPOSITION 1.19. Let E and F be normed spaces, and take T € B(E,F) and n € N.
Then

T (B )~ (")

- HT(") (E"VE ) - (F,uF )

rTpsn ’Tpn

=Tl

Proof. Recall that we are identifying the n'® amplification T of T with the operator
I,®T : 4’ ®E — (P ® F. By Theorem 1.13, |I,, ®: T| = |1, ® T|| = |T|. The result
now follows from the identifications of the weak p—summing norm and the dual weak
p-summing norm in (1.5.6) and (1.5.10), respectively. m

The next result follows from Proposition 1.14(i) and equation (1.5.11).

PROPOSITION 1.20. Let F' be a closed subspace of a Banach space E, let Qp : E — E/F
be the quotient map, and take p with 1 < p < o0 and n € N. Then

QW (B"vE) — (E/F)", vE[F)

»p,n »Yp,n
is a quotient operator. m

Take F' to be a closed subspace of a Banach space E, and suppose that 1 < p < o

with p # 2 and that n € N. Then it is not necessarily the case that the norm 1/5 » on the
subspace F™ of E™ is equal to the restriction to F™ of the norm v¥ on E™. We shall

p,n
also show this in Example 1.30, below.

1.6. Subspaces and subquotients of LP-spaces. Let (€2, 1) be a measure space, and
take p with 1 < p < 00. We write LP(Q, u) or LP(2) for the usual Banach space of scalar-
valued, p—integrable (with respect to the measure p) functions. In particular, we write
LP(T) for the usual space of p—integrable (with respect to Lebesgue measure) functions
on I. Again we write L?(Q, u, R) or LP(Q, u, C), etc., when necessary.

We shall need some results which determine the Banach spaces that are either sub-
spaces or subquotients of Banach spaces of this form, and we summarize the story here.
Following Pisier in [51], we make the following definition.

DEFINITION 1.21. Take p with 1 < p < oo0. Then the class of Banach spaces that are
subquotients of Banach spaces of the form LP(, 1), where (2, ) is a measure space, is
denoted by SQ(p).

Each Banach space E is a quotient of a space of the form £1(T'), and so SQ(1) is the
class of all Banach spaces. Set B = Bg/. Then the map z — kg(z) | B, E — {*(B), is
an isometric embedding, and so SQ(o0) is the class of all Banach spaces. Also SQ(2) is
the class of all Hilbert spaces. Let E be a Banach space. Then clearly E' € SQ(p’) if and
only if E € SQ(p).

The first result is standard; see [2, Theorem 6.4.19 and Proposition 11.1.9], for ex-
ample. (The result is stated just for real Banach spaces in these sources; the result for
complex Banach spaces follows easily.) An early source for the final clause is a paper of
Dor [26, Theorem 2.1].

PROPOSITION 1.22. (i) Suppose that 1 < p <2 and 1 <r < o. Then £" and L"(I) each
embed in LP(I) if and only if p < r < 2.
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(ii) Suppose that 2 <p < o and 1 <r < o0. Then £" and L"(I) each embed in L (1)
if and only if r =2 orr =p.
Moreover, in both cases, 7 and L™ (I) embed isometrically in LP(I) whenever they embed
in LP(I). m

COROLLARY 1.23. Suppose that 2 < p < 0 and 1 <r <. Then £ and L"(I) are each
isometrically isomorphic to a quotient of LP(I) if and only if 2 < r < p.

Proof. Set ¢ = p’ and s = r’. Suppose that 2 < r < p. Then 1 < ¢ < s < 2, and so, by
Proposition 1.22(i), £° and L°(I) embed isometrically in L?(I). Hence £" and L"(I) are
isometrically isomorphic to a quotient of LP(I). The converse is similar. m

It follows from Proposition 1.22(i) and Corollary 1.23 that the space £ is a sub-
quotient of LP(I) whenever l <p<r<2or2<r<p<ow.

Although it is not strictly relevant to our work, we note that, for each r,p € (1, 00),
the space £” embeds in LP(I) as a complemented subspace if and only if r = p or r = 2
[2, Theorem 6.4.21].

We shall also use the following result from [2, Theorem 11.1.8].

PROPOSITION 1.24. Take p with 1 < p < o0. Then each separable Banach space that is
finitely representable in £P is isometrically isomorphic to a closed subspace of LP(I). m

We next give in Theorem 1.26 a more general version of Proposition 1.22. We shall use
the following remark. Take p with 1 < p < 0, let (€, ) be a measure space, and suppose
that F is a closed, separable subspace of LP(£2, ). Then it is easy to see that F embeds
in a space LP(3, v), where (X, v) is a measure space and v is o-finite, whence LP(X, v) is
separable. By [33, p. 15] and by [37, p. 128], each infinite-dimensional, separable space
of the form L?(X, v) is isometrically isomorphic to either 7 or to LP(I) or to £? @, LP(I)
or to £P @, LP(I) for some n € N, and hence embeds isometrically in LP(T).

The first result is close to [2, Proposition 11.17].

PROPOSITION 1.25. Let  be a measure space, and take r with 1 < r < co. Then L" ()
is finitely representable in £7.

Proof. Take a finite-dimensional subspace X of L"(€2) and take € > 0, say {21,...,Zm}
is a basis for X, where m € N. We approximate each z; by a simple function f; in L"(£2)
in such a way that the linear operator T : X — L"(Q) with Tx; = f; (i € N,,,) is an
isomorphism onto F := lin{f1,..., fm} with |T| |77 < 1+ e. Take {A,..., A} to
be a measurable partition of €2 such that each function f; is constant on each set Aj;,
and set G =lin{xa,,...,x4,}. Then F < G and G = ¢/. We conclude that there is a
finite-dimensional subspace Y of £" such that d(X,Y) < 1 + ¢, as required. m

THEOREM 1.26. Let Q) be a measure space, and take p with 1 < p < 0.

(i) Suppose that r is such that 1 < p<r <2 or thatp > 2 andr =2 orr = p. Then
the space L" () is finitely representable in £P and there is a measure space o such that
L™ (Q) is isometrically isomorphic to a closed subspace of LP(X).
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(ii) Suppose that 2 < p < o and 1 < r < o0 with r # 2 and r # p. Then £" is not
isomorphic to a closed subspace of LP().

(iii) Suppose that 1 <p <r <2 or2 <r <p < w. Then L"(Q) belongs to the class
SQ(p)-

Proof. (i) By Proposition 1.25, L"(Q) is finitely representable in £”. By Proposition 1.22,
¢" embeds isometrically in LP(I). Again by Proposition 1.25, LP(I) is finitely representable
in £P. Thus L"(?) is finitely representable in £P.

By [24, Corollary 8.14(a)], there is a measure space X such that L" () is isometrically
isomorphic to a closed subspace of LP(X).

(ii) By Proposition 1.22(ii), £" is not isomorphic to a subspace of LP(I), and so the
result follows from our preliminary remark.

(iii) The case where 1 < p < r < 2 is covered in (i); the case where 2 < r < p < ®
follows by duality. m

The following theorem implies that £” is isomorphic to a member of the class SQ(p)
if and only if r lies between 2 and p; it is surely well-known, but we have not found an
explicit statement in the literature.

THEOREM 1.27. Take p and r with 1 < p < o0 and 1 < r < o0, and suppose that either
l<p<2andrélp2] or2<p<oo andr¢][20p].

(i) For each C > 0, there exists n € N such that £ is not C—isomorphic to a space
in the class SQ(p).

(ii) For each measure space Q1 such that L"(Q) is an infinite-dimensional space, the
space L™ () is not isomorphic to a space in the class SQ(p).

Proof. By duality, it suffices to prove the theorem in the case where 2 < p < o and
r ¢ [2,p], and so we suppose that this is the case.

(i) Assume to the contrary that, for some C' > 0 and each n € N, there is an n-
dimensional subspace E,, of a quotient of the space LP(X) with d(E,,¢") < C. By [62,
II.E.8] and [40, Corollary 5], respectively, we have

der 02y = V271Ul and  d(E,, 02) < nlV/2-1/7) (1.6.1)

for each n € N. (Again, the results quoted are given for real-valued spaces, but they
extend easily to complex-valued spaces.)
First suppose that p < r < c0. Then, by (1.3.12) and (1.6.1), we have
77,1/271/7" < Cnl/Qfl/p (Tl c N) ,
and so n'/P~Y" < C (n € N), a contradiction.
Next suppose that 1 < r < 2. Then we claim that
d(En, £7) = en'/m=12  (n e N) (1.6.2)

for some ¢ > 0. Indeed, take n € N and closed subspaces X and Y of LP(X) such that
Y ¢ X ¢ LP(¥) and dim(X/Y) = n, with quotient map @ : X — X/Y, and take a
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contractive isomorphism 7' : ¢, — X /Y, with inverse S : X/Y — £]. We again write

{d1,...,9,} for the canonical basis of ¢;. For each i € N,,, there exists z; € X with
|z:| <2 and Q(x;) = T4¢;. In the following sums, &1, ...,&, range over all choices of +1.
We have
11 nt/r
[ &g Z T i(si = .
e [Bewn > g [Baetl,, > g[Sl - T

On the other hand, the space LP(X) is of type 2 because p > 2 [62, III.A.23], and so
there is a constant M > 0 such that

" 1/2
1 2 1
— il <M ; < 2Mn'/?.
o [ e, (Zum) n

Thus | S| = en'/7=1/2, where ¢ = 1/2M, and so d(E,,,£}) = en'/"=1/2 (n € N), giving the
claim (1.6.2).
It follows that cn'/"~'/2 < C' (n € N), again a contradiction.

(ii) Let Q be a measure space such that L"(£2) is an infinite-dimensional space, and
assume towards a contradiction that L"(2) is isomorphic to a subquotient E of LP(X),
where ¥ is a measure space, say d(E,L"(2)) = C. For each n € N, the space £ is
isometrically isomorphic to a closed subspace of L™(Q2), and so there is an n—dimensional
subspace E,, of a quotient of the space LP(X) with d(E,,£) < C. However, by (i), this
is not the case for some n € N, giving the required contradiction.

Thus L"(Q2) is not isomorphic to a subquotient of LP(X) for any measure space X. m

We now present a result about uncomplemented subspaces of the spaces P that we
shall use.

THEOREM 1.28. Take p with 1 < p < o0 and p # 2. Then there is a closed subspace F'
of £P such that F is isomorphic to £P and F is not complemented in £P.

Proof. In the case where p = 1, this is a theorem of Bourgain [10]. In the two cases where
1 <p<2and?2 < p < o, this is [5, Theorem 3.1] and [54, Corollary to Theorem 6],
respectively. m

COROLLARY 1.29. Take p with 1 < p < o0 and p # 2. Then there are a constant C' > 0, a
closed, uncomplemented subspace F of £P, and an increasing sequence (Fy,) of subspaces
of F such that dim F,, = n, d(F,,¢?) < C, and \(F,,, F') < C for each n € N, and further

ny*n

such that | J{F,, : n € N} is dense in F and lim,,_,o A(F,, (P) = 0.

Proof. By Theorem 1.28, there is a closed subspace F' of P such that F' is not com-
plemented in ¢? and F ~ (P say T : {? — F is the specified isomorphism. Set
F, =T(P) (neN). We see that dimF,, = n (n € N) and that there exists C > 0
such that d(F,,¢?) < C and A\(F,,,F) < C for each n € N, and also that ( J{F,, : n € N}
is dense in F'. It remains to show that lim, o A(F,, (P) = .

Assume towards a contradiction that there is a strictly increasing sequence (ny) in
N such that each space F,, is complemented in ¢? by a projection, say Qi € B(¢?), and
that sup{|Qx| : k € N} < o0. Set ¢ = p/, so that 1 < g < oo. The space B(¢?) is the dual



28 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

of the space G := (P ® (4, and so the sequence (Qr) has an accumulation point, say Q,
with respect to the weak * topology o(B(¢?),G) on B(£P).

Take f € £P. We first claim that Qf € F. For otherwise there exists A € £¢ such that
(Qf, Ay =1and (g, \y =0 (g € F). However {Qf, \) = limy{ga, Ay = 0 for a subnet
(9a) of (Qrf), a contradiction. Thus Qf € F, as claimed.

We next claim that Qf = f (f € F). Indeed, first suppose that f € F),, for some
keN. Then Q;f = f for each j € N with j > k, and so (Qf, X) = (f, X) for each X € £9,
whence Qf = f. Since | J{F},, : k € N} is dense in F, the second claim follows.

We have shown that @ € B(¢P) is a projection onto F, a contradiction of the fact
that F' is not complemented in ¢?. Thus we conclude that lim,, o A(F),, £P) = 0. =

A similar result to the above can be obtained in the case where p = 1 from results
in [10] by somewhat different methods. As we shall not use the case where p = 1, we do
not provide a proof of this remark.

ExAMPLE 1.30. Suppose that F' is a closed subspace of a Banach space E, with the
embedding Jr : F' — E and quotient map Qp : E — E/F. Take p with 1 < p < 00 and
p # 2, and take n € N. Then, as we remarked, it is not necessarily the case that the weak
p-summing norm uf, QF on the quotient space E"/F™ = (E/F)" is equal to the quotient
of the weak p—summing norm uﬁn on E™ or that the dual weak p—summing norm V£ "
on the subspace F'™ of E™ is equal to the restriction to F™ of the dual weak p—summing

norm l/ffn on E™. Further the relevant norms are not always uniformly equivalent as n

varies. Here we present examples to substantiate these remarks.

Denote by ﬁf,n the quotient norm on (E/F)" of the norm /', on E™. Then we do
have

plf @+ FY) <pl,(x+F") (®eE"), vl (x)<vi.(z) (xeF"),

and so, for each n € N, the norms uf, /nF and ﬁﬁ » are equivalent on (E/F)™ and the norms

vl and v}, are equivalent on F". However we shall show that we do not always have
uniform equivalence (in n) in the two cases.

Set ¢ = p’, so that 1 < ¢ < o0 and ¢ # 2, and consider the special case where E = £9.
By Corollary 1.29, there are a constant C' > 0, a closed subspace F' of F, and an increasing
sequence (F),) of subspaces of F' such that dim F,, = n, such that d(F,,¢?) < C, and
such that A\(F,, F') < C for each n € N, and further such that lim,,_,q A(F,, F) = oo. For

each n € N, take a projection Q,, of F onto F,, with |@,| < C, and set
Cn = 1/5(16}: ®7r JFn> 5
where Jgr, : F, — E is the inclusion map. Thus, for each n € N, ¢, is the minimum

constant such that

V;‘ZL(:L.) < CVLVpE,n(w) (.’13 € F:Ll) .

Since d(F),, ¢%) < C, we have d(F],£?) < C, and so there is an isomorphism 7}, : F), — (2
with |T,,] = 1 and | T, < C.
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Let us combine the commutative diagram

~ Ij» ®r JF,

(PQF, (PQE
Tn_l ®7r IF,L Tn Rr IE‘
)Y Irr ®@r JF, ~
FL®F, FI®FE

with equation (1.3.13) (which applies because T, ' ®, I, is an isomorphism), with
Theorem 1.13, and with Proposition 1.15. Then we conclude that
1

C
= IP g I ’ s = — 3 — A
o By ®x Jr,) < CB(IFp ®r JE,) NEo B) 0 as n— o

Thus there is a sequence (x,,) such that @, € (¥ ® F,, with v (z,) = 1 for each n € N
and such that 7, (@,) — 0 as n — o0.

We now regard x,, as an element of the subspace F}} of F™ for n € N and use
Proposition 1.19 to conclude that

v (@) = v QW (2,)) < Ol (24),

and hence that

B (JI(:") : (F”J/ZI:”) — (E"7V£n)) —0 as n— o, (1.6.3)
an equation that we shall refer to later.
Recall that F is a closed subspace of E = £9. Since P has the approximation property,

Theorem 1.13 implies that the map
I» @n Jp AP RF — (P @11

is an injection. However it follows from equation (1.6.3) that it is not an embedding.
Let U : F' — E'/F* be the inverse of the isometric isomorphism J}. induced by
Ji : B — F' as in (1.3.6). Take n € N, and write 1z}/,, for the quotient norm on the

space (E'/F*)™ of the norm Hf,/n on (E')™. Then we have a commutative diagram

J(n) /
(B, vE.Y W) (F™ vl
- (Jp)™ -
(B, u) (F)", uE")
(n)
| v oo
(n)
I

n —F E'/F+ n  E'JFL
(B /FHm Gl ) < (B JF )" ).
Set

’ 1 ’
dn = |15 s+ (B'/FH)" w2 /7) = (B 7)),
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so that d,, is the minimum constant such that
Tign A+ (") < dpfl 7 0+ (FD) (Ae (7).
Since U is an isometric isomorphism, Proposition 1.19 (applied to U and its inverse)
/ ’ L
implies that U™ is an isometric isomorphism of ((F")", pk,) onto ((E’/FL)"Mf,r{F ).
Hence, using the above diagram, we see that
dp = U™ (F')" il ) = (B /F9)" T |

= r((Tp)™) = (7)) =

—— > as n— P, (1.6.4)
BUE)

/ 1 ’
using (1.3.7), (1.3.14), and (1.6.3). This shows that the norms ufT{F and ﬂgn on the
space (E'/F*)" are not uniformly equivalent as n varies. m

1.7. Schechtman’s space. In this section, we give a result about quotients of the spaces
LP(T), where 1 < p < o0; in the case where 1 < p < 2, the result seems to be new, and
may have independent interest.

We first describe some Banach spaces Z,, and S, for p > 1 that arose in the paper
[57] of Schechtman, where a somewhat different notation was used.

DEFINITION 1.31. Take p with 1 < p < c0. Then Z,, is the Banach space £7(¢?).

Let My, denote the linear space of all scalar-valued N x N-matrices. We may consider
the Banach space Z, = ¢P(£?) for 1 < p < o to be a subspace of My, in the following
way. Given a € Z,, we have a = (a; : j € N), where a; € £? (j € N) with

o0 1/p
lallz, = (Z |ajfz> < 0;
Jj=1

we set a; = (a; ;i € N) for j € N, and identify a with (a; ;) € My, so that a; is the j
column of the matrix («; ;). For later reference, we note that

ez, = (5 (3 o )/>/ 171)

=1 Ni=1

The dual space of Z, is Z,, where ¢ = p'; the duality bracket is given by
0
i), (Big)y =Y, @ijBiy ((cij) € Zy, (Biy) € Zy)-
ij=1
For a = (a; ;) € My, let a' = (a;;) € My denote its transpose, and consider the
subspace
Sy ={b+c":bceZ,}
of M, and the linear surjection

T:(bc)—>b+c, Z,® Z,—S,.
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The kernel of T is clearly a closed subspace of the Banach space Z, ®; Z,, and we give
Sp the quotient norm, so that

lalls, = inf{lbl z, + llclz, :b,c€ Zp,a=b+ e} (a€Sp).
Thus (S, |- |g,) is a Banach space; further, |alq = HatHSP (aeSy).

In the next lemma, we use ‘matrix units’ e;; € Mg, for ¢,j € N, where e;;(r,s) =1
when (r,s) = (i,j) and e;;(r,s) = 0 when (r,s) # (4,7), and consider matrices (c; ;)
with only finitely-many non-zero entries, writing the matrix as Z - oy j€;5. For example,
for each sequence (o) € coo and ¢ € N, the elements

0 0
Z Q€45 and Z Q€4
j=1 j=1

correspond to the i** row and i*" column, respectively, of M.

LEMMA 1.32. Take p with 1 < p < 2, and suppose that (o) € coo. Then:

- 1/2
2
= (Z |a| > ;
Sy J=1

(ii) for each strictly increasing sequences (i) and (jr) in N, we have

0 l/p
= (Z ak|p> :
S k=1

p

(i) for each i € N, we have

6” ej’b

Sp

Proof. (i) Take ¢ € N.
First consider the row a = Z;il ajeq;, an element of Z, = S, © M. Then

/2
¢ t 2
s, = Il < 1], = (Ses)
where the final equality follows from (1.7.1).
Conversely, given € > 0, take b, c € Z, such that a = b+ ¢ and
lals, = [blz, + lclz, —¢,

say b = (Brs) and ¢ = (7,5) as elements of My,. Then a; = 3;; + ;. (j € N), so that,
by the sub-additivity of the £2-norm, we obtain

e}

S hut)

o0

0 1/2 0
(Z |aj|2> < (Z |ﬁi,j|2) + <
j=1 j=1 Jj=1
o 1/p 1/2
<(Zial) 4 (Em ?)
j=1
Zp

0

i, €ij 5,i€ji
ZIJ

< [bllz, + lelz, <lals, +¢-
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)1/2

Since € > 0 was arbitrary, we conclude that (Zle |ovj |2 < |als, .

The claimed equality follows.

(ii) Set a = 3.7, akei, j,- Then

I~ 1/p
lals, < lalz, = (Z Iak|p> -
k=1

Conversely, given € > 0, again take b = (3,.5) and ¢ = (7, 5) in Z, such that a = b+c'
and

lals, = [bllz, + lclz, —¢-
Then o = fi,.j. + Vjw.ix (k € N), so that, by the sub-additivity of the ¢?-norm, we

obtain
1/p

o0 1/p o0 1/p 0
(2 W) < (2 wik,jkp) ; (2 mw) <z, + Iclz, < lals, +¢.
k=1 k=1 k=1

As before, this implies that (3., |Oéj|p)1/p < lals, -
The claimed equality follows. m

THEOREM 1.33. Take p with 1 < p < 2. Then the space S, is isomorphic to a member of
the class SQ(p), but it is not isomorphic to a closed subspace of LP(Q)) for any measure
space §2.

Proof. By Proposition 1.22(i), £2 embeds in LP(I), and so Z, embeds in LP(I), whence
Z, @1 Z, embeds in LP(I)@®; LP(I) ~ LP(I). Since S, is a quotient of Z, @1 Z,, the space
S, is isomorphic to a member of the class SQ(p).
Assume towards a contradiction that there is an embedding J : S, — L?(Q) for some
measure space €2, so that |Ja[ ., q) = B(J) alls, (a€ Sp), where 5(J) > 0, and set
fi,j = Jeij € LP(Q) (’L,j € N) .

It follows from Lemma 1.32(i) that the ‘rows’ and ‘columns’ of the array (f; ;) each form
a basis of the space ¢2, and so it now follows from the main theorem, Theorem 1.1, in
[29] that there exist strictly increasing sequences (ix) and (jx) in N such that

n
Z fik,jk
k=1

(In fact, the quoted theorem is considerably more general.) Take n € N. By Lemma
1.32(ii), applied with ay, =1 (k <n) and o, = 0 (k > n), we see that

n 1 n
1;1 Cik i o) ];1 fingn

a contradiction of (1.7.2). Thus S, is not isomorphic to a closed subspace of LP(2). m

=0. (1.7.2)
Lr(Q)

. 1
nh—Igo nl/P

nl/P — <

Sp

9

LP(Q)

The following theorem will be used in Example 2.31.
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THEOREM 1.34. For each p with 1 < p < o0 and p # 2, there is a separable Banach space
in the class SQ(p) that is not isomorphic to a closed linear subspace of LP(Q) for any
measure space €.

Proof. First, suppose that p = 1. For each measure space ), the Banach space L!(f2)
has cotype 2 [2, Theorem 6.2.14(i)], and so each closed subspace of L({) has cotype 2.
The spaces E = £7 for ¢ > 2 have cotype ¢ [2, Theorem 6.2.14(ii)], and so these spaces
are not isomorphic to a closed linear subspace of L!(£2). Certainly E € SQ(1). (Indeed,
there is a quotient operator from ¢! onto E [2, Theorem 2.3.1].)

Second, suppose that p > 2, and set ¢ = p’. Take r with 2 < r < p, and set s = r'.
By Proposition 1.22(i), £° embeds isometrically in L9(I), and hence £ is isometrically
isomorphic to a quotient of LP(I). However, by Theorem 1.26(ii), £" is not isomorphic to
a subspace of LP(Q2) for any measure space €.

Finally, suppose that 1 < p < 2. Then the result follows from Theorem 1.33. m

1.8. The spaces LP(Q); E) and p—spaces. In this section, we shall define the class of
‘p—spaces’; as a preliminary, we shall recall the definition of the spaces LP(Q; E).

Let (£2, ) be a measure space, take p with 1 < p < o0, and suppose that E is a
Banach space. Then the space LP(; E) consists of the (equivalence classes of) strongly
p—measurable functions F' : 2 — F such that the function s — ||F(s)| on Q belongs to
LP(Q, 1) ; see [25]. Thus (LP(; E), | - |) is a Banach space with respect to the norm | - |
specified by

1/p
7] = ( [RECTE du(S)) (Fe I7(% B)),

with |F|| = ess sup{|F(s)| : s € Q} when p = c0.
The tensor product LP(Q2) ® E can be identified with a dense subspace of L?(Q; E);
indeed, the elementary tensor f ® x € LP(Q) ® E corresponds to the function

f®x:s— f(s)x, Q— F;
see [22, Chapter 7], for example. In particular, as before we shall identify ¢? ® E with
L2 (E) for m € N, so that the action of
S®Ip:lPQF - IPQFE

(where m,n € N and S € M, ,,,) corresponds to the action of S as a map from £2 (E) to
¢P(E); this is consistent with the identification of (z1,...,z,) € E™ with Z?:l 0; ®@x; in
F*® E in §1.4 and with equation (1.4.3).

Now suppose that € and ¥ are measure spaces and that E is a Banach space, and
again take p with 1 < p < 0. For each S € B(LP(Q2), LP(X)), there is a linear map

S®Ip: LP(NQF — LP(X)QE,

and we consider whether this map is bounded with respect to the relative norms from
LP(Q; F) and LP(X; E), respectively. (We note in passing the following from [51, §1.2]:
An operator S € B(LP(Q2), LP (X)) is regular, equivalently, order-bounded (see §4.2) if and
only if the above operator S ® I is bounded for every Banach space E.)
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The following definition is due to Herz [31, p. 70].

DEFINITION 1.35. Let E be a Banach space, and take p with 1 < p < c0. Then F is a
p-space whenever

[S® el <|S| (SeB(LP(Q2), L' (%))

for all measure spaces 2 and X.
Further, Herz shows the following in [31, Proposition 0].

THEOREM 1.36. Let E be a Banach space, and take p with 1 < p < o0. Then the following
are equivalent:

(a) E is a p—space;
(b) |S: L2 (E) = LE(E)| < |S: 42 — LP| for each S € B(£2,LF) and m,n € N;
(c) IS : 4P (E) - L2 (E)| < ||S: €2 — LE| for each S € B((2) and m € N;

(d) |S:eP(E) - tP(E)| < |S: P — £P| for each S € B({P). m

Herz also notes the following; they are easily seen. Take p with 1 < p < co0. Then:
(i) each space LP(2) for a measure space § is a p—space;

(ii) each closed subspace of a p—space is a p-space;

(iii) each quotient of a p—space by a closed subspace is a p-space;

(iv) the dual of a p—space is a p’~space (when 1 < p < ).

It follows that each space in the class SQ(p) is a p—space. However, Herz left open the
converse to this latter statement; we shall consider this in the next section.

1.9. Kwapien’s theorem. In this section, we shall characterize the class of p—spaces.

In fact, the converse to the above statement of Herz follows from a theorem of Kwapien
[36, Theorem 2]. A generalization of Kwapieni’s theorem is stated by Pisier in [51, Theo-
rem 4.6]: to obtain Kwapien’s result, one must take C' = 1 and the class B to be just the
singleton {IF'} in the cited reference. The theorem of Kwapieni is important for this memoir
and elsewhere, and the original proof is perhaps somewhat inaccessible, and so we wish
to present a detailed account; our proof is based on one given by Professor Christian Le
Merdy in an unpublished note, and we are grateful to him for agreeing that we could
present this proof here.

First, we introduce a further definition; it uses the notation of (1.3.3).

DEFINITION 1.37. Let (E,|-|) be a normed space, and take p with 1 < p < 00. Suppose
that m,ne N, x € E™, and y € E™. Then y <, x if

[y, Mllep < 1<, Dl (A€ EY). (1.9.1)
The condition in (1.9.1) is that

n 1/p m 1/p
<Z|<yj,A>P> <<Z|<xi,x>|") (e B,

Jj=1
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where @ = (z1,...,%m) and y = (y1,...,Yn).
Let E be a normed space, take m € N and ¢ = (z1,...,2m) € £F,
correspond to x in £? @ E, say z = Z;nzl 0; ® x;. Suppose also that

k
z = 2%@612',
i=1

where k € N, ry,...,7, € £ and ay,...,a; € E. Take A € E’. Then

k
(e, Ay = I, ®N)(2) = Z<ai, Mr; € LP . (1.9.2)

i=1

(E), and let z

THEOREM 1.38. Let (E,|-|) be a normed space, and take p with 1 < p < c0. Suppose
that m,ne N, x € E™, and y € E™ with y <, =, and set

Z={{x,\): \e E'}.

Then there is a matric A € M, ,, such that Ax =y, such that w = (A® Ig)(z), where
2€ Z@FE and we (P ®E correspond to x and y, respectively, and such that the map
A | Z:Z — (P is a contraction as an element of B(Z,LP), where we regard Z as a
subspace of £

Proof. Set @ = (z1,...,2,,) € E™ and y = (y1,...,yn) € E™, and define

m k n 14
z= Zdj@)zj = Zm@% and w = Zéj@)yj = Z&'@bi
j=1 i=1 j=1 i=1

as elements of /2 ® E and ¢? ® E, respectively, where we may suppose that z # 0 and
w # 0, and we specify that {rq,...,rt} and {s1,...,se} are linearly independent subsets
of £2 and £P, respectively, and that {ai,...,ax} and {by,...,bs} are linearly independent
subsets of E. We see from (1.9.2) that Z = lin{ry,...,7x}, a linear subspace of £f,, and
sozeEZQRFE.

Take A € E’ with {a;, A\ = 0 (i € Ni). By (1.9.2), we have {x,\) = 0. Thus
{y, Ay = 0, and hence Zf=1<bi, Ays; = 0. Since {s1,..., 8¢} is a linearly independent set
in £2, it follows that {(b;, \) = 0 (i € Ny); this implies that b; € lin{ay,...,ar} (i € Ny),

n?
k
w = Zti®ai
i=1

and hence that
for some t1,...,t, € £P. There is a linear map A : Z — £P such that Ar; = t; (i € Ny),
and then w = (A®Ig)(z). We extend A (arbitrarily) to a linear map from ¢2 to £P, and
regard A as a matrix in M, ,,,; we have Az = y when we regard A as a map from E™ to
E™.

We claim that the map A : Z — ¢P is a contraction. Indeed, take (i,...,(; in F, and
set r = Zle ¢iri € Z. Since {aq,...,ax} is linearly independent, there exists A € E’ with
{ai, Ay = (; (i € Ni), and then, by (1.9.2),

I7lep, = <2 Mgy, and [Ar|,p = =<y, Mgz -

P
Ly

k
DGt
i=1
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Since y <, @, it follows that |Ar|,» <|r[,», and so A is a contraction in B(Z, (). =

We record a relevant result that we shall use later: it is Lemma 7.7 of [24], taking
C=1land X =7 =F and Y = F for Banach spaces E and F in that result.

THEOREM 1.39. Let E and F be normed spaces, and take p with 1 < p < o0. Suppose
that an operator T € B(E, F) has the property that

fre

. |l o ()

whenever m,n € N, x € E™, y € E", and y <, «. Then there are a measure space §)
and a contraction J : E — LP(Q) such that |Tz| < [Jz[ 1.0 (z€E). u

This theorem says that T ‘factors through a subspace of LP(Q2), with both factors
being contractions’. We obtain the following corollary by taking ' = E and T = Ig in
the above theorem.

COROLLARY 1.40. Let E be a normed space, and take p with 1 < p < 00. Suppose that

1Yller ) < l2lez o)
whenever m,n e N, x € E™, y € E", and y <, ®. Then E embeds isometrically into a
space LP(QQ) for some measure space §). m

Part of the following lemma is exactly [49, Lemma 8.5], with X; of that reference
taken to be the scalar field.

LEMMA 1.41. Let E be a Banach space, let T be an indez set, and take Q € B(¢1(T), E)
and p with 1 < p < 0. Suppose that, for each r,5s € N and each C € M, 5, we have

[C®Q:tP@t"(l) > P QE|<|C: P — 1P| . (1.9.3)
Then
2 1Qail < Y IfIE (1.9.4)
j=1 i=1

whenever m,n € N and fi,..., fu, g1, -, gn € LX) with (g1, ..., 9n) <p (fis--+, fm)-

Proof. Set. (X, |-) = (€X(0), |- losge).

We take m,n e N, f = (f1,...,fm) € X" and g = (g1,...,9,) € X" with g <, f,
and seek to prove inequality (1.9.4).

By reducing T, if necessary, we may suppose that max{|f1(7)|,...,|[fm(y)]} > 0 for
each v € I'. We may also suppose that f; # 0 (i € N,,) and that > /", ||f;|” = 1.

As in Theorem 1.38, set Z = {{f, A\) : A € X'}, regarded as a linear subspace of
L2 Since g <p f, it follows from Theorem 1.38 that there is a matrix A € M, ,,, such
that Af =g and A| Z:Z — (P is a contraction as an element of B(Z, £?). We write
A= (am- 1€ Nrm, j € Nn).

Define

m 1/p
a(y) = (Z 15 |fm>> (veT),
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so that a(y) >0 (y€eT) and

> al ”*ZHM” M =1

~yell ~yell
Thus o € £P(T') with [af,, ) = 1.
Now define b; , = fi(y)/a(7) for i € N,,, and v € T, so that

bira(y) = fily) (€N, yel).

Take h € co(T"). Since the function ¢ — t? is convex on R*, we have

OB _ s IO P
(Z 7] ) <L et (€N

el a<7) ~el
and so
3 bishi() (Zm el ) s 3, L ”p
~yel ~el’ A/ ~yell v a 'Y
1 Ih(vl ,
vyel ’Y
Hence

)

i=1

D biyh(y

~el

Zumplxm ” = S R = 18y -

~el ~el

This shows that the linear map

B:hw— (2 biﬁh(’}/)) , (COO(F>7 H ’ HU)(F)) - ([71;“ H ’ H[ﬁl) )

~el i=1
is a contraction. Since coo(I') is dense in ¢P(T"), there is a contraction, also denoted by
B, in B(¢P(T"),£P) extending the original B. Clearly

v m

BS, = () = 25 () ) = 555

where €, : X — [ is the evaluation functional at . Thus the range of B is contained in

<-f’€"/> (’YEF),

the subspace Z.
Define
C=Ao0oB: ()¢l

so that the map C' is also a contraction. We set C = (c¢; ), where
m
v =D ajibiy (jEN,, yeT).

Thus

gj = Z ajifi = 2 Z aj,ibi ()6, = Z cjy(7)0y  (j€Np). (1.9.5)
i=1

i=1~el’ vyel'
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Fix € > 0, and choose a finite subset 'y of I' such that
n

DllR(gs I To)|” = Z 1Qg;1” — (1.9.6)

say [Tg| = k; we may suppose that k > n. We also write C for the restriction of the
original operator C' to ¢P(T'y), and regard the new map C as a matrix in M, ;. Set
x = (a(y)dy : yeTy) € lP(I'g, X) and h = (g1 | To,...,9n | T'o) € £2(X). By equation
(1.9.5), we have

Cx=h. (1.9.7)
As in equation (1.4.3), we can identify the map C ® Q : £P(I'y) ® X — £? ® E with the
map

Q™ o C:(P(Ty,X) — (P(E).

Since C' is a contraction, the hypothesis (1.9.3) (with s = k and r = n) implies that the

above map is a contraction, and so, by (1.9.7), we have

n

> Qg 1Tl = (@™ = C)(a )M <eloirexy = 2 le@P <1, (198)

j=1 7€l
It follows from (1.9.6) and (1.9.8) that

n

n
D@yl < 2 (gj ITo)IP +e<1l+e.
j=1

This holds true for each £ > 0, and so we obtain the required inequality (1.9.4), where
we recall that D" [fi|’ =1. =

We can now conclude the proof of Kwapient’s theorem.

THEOREM 1.42. Take p with 1 < p < 00. Then the class SQ(p) coincides with the class
of p—spaces.

Proof. We have noted, following Herz, that each member of the class SQ(p) is a p—space.

Now suppose that E is a Banach space that is a p-space. We shall apply Proposition
1.6, Theorem 1.39, and Lemma 1.41.

Take r,s € N and C' € M, ;. Since E is a p—space, we know that

ICR®Ip: {PQE - LPQE|<|C:LF— 0P| .
There is an index set I' and a quotient operator @ : £}(I') — E; by equation (1.5.14), we
see that
[I,®@Q:tr@t () -~ (?@E| = Q| =1.

Since C®Q = (C®Ig) o (Is ® Q), it follows that inequality (1.9.3) of Lemma 1.41 is
satisfied, and hence that lemma shows that

n m
dllQgilP < dIfIP
j=1 =1
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whenever m,n € N and g1,...,9n, f1,.--, fm € £1(T) with (g1,...,90) <p (f1,--+ fm)-
By Theorem 1.39 (taken with E = ¢}(T'), F = E, and T = (@), there is a contraction
J :4YT) — LP(Q) for some measure space 2 such that

|QFI <17 flpoiey (feL'T).

By Proposition 1.6 (taken with E = ¢1(T"), F = E, and G equal to the closure of the
range of J in LP(2)), the space F is isometrically isomorphic to a quotient of G. Thus
E belongs to the class SQ(p). m

The above is an ‘isometric’ version of Kwapieni’s theorem. There is also an isomorphic
version of this theorem; it is proved by a small variation of the above proof.

THEOREM 1.43. Let E be a Banach space, and take C' = 1 and p with 1 < p < c0. Then
the following are equivalent:

(a) E is C—isomorphic to a p—space;

(b) |[S®Ig| < C|S| (S e B(LP(Q),LP(X))) for all measure spaces Q and X;

(c) IS: 4P (E) > LP(E)| < C|S: Lk — LP| for each S € B(LE,LP) and m,n € N;

(

m’Tn

d) |S:¢E(E) > tE(E)| <C|S: L —LP| for each S e B(Y) and meN. n

COROLLARY 1.44. Take p with 1 < p < o0 and r with 1 < r < o0, and suppose that )
is a measure space such that L™(2) is an infinite-dimensional space. Then the following
are equivalent:

(a) L™(2) is a p—space;

(b) L™(Q) is isomorphic to a p—space;

(c) either l<p<r<2or2<r<p<wo.

Suppose that 1 <p <2 and r ¢ [p,2] or2 <p < and r ¢ [2,p]. Then, for each C > 0,
there exists n € N such that the space £, is not C—isomorphic to a p—space.

Proof. The main part of this result follows immediately from Theorem 1.26(iii), Theorem
1.27(ii), and Theorem 1.42. The final clause follows from Theorems 1.27(i) and 1.42. m

1.10. Interpolation spaces. We summarize the basics of complex interpolation theory.
For details, see [6, §§2.3,2.4], [28, Chapter 9], and [51]; the seminal paper is that of
Calderén [11].

Let (Eo, |- |,) and (E,]|-|;) be two (real or complex) Banach spaces that are both
linear subspaces of a Banach space (H, | -|), the ambient space, and suppose that the
inclusion maps from (Ej, |- ;) into (H, [ - [) are both continuous. Then the pair

{(Eo, - llo), (v, - 1)}

is a compatible couple (of Banach spaces). It is straightforward to show that, in this case,
the spaces Ey n F1 and Ey + E; are then Banach spaces under the respective norms
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defined by:
|2l gy, = max{|]y, |zl;} (z€ Eon Er);
|zl gy 1 2, = Inf{|@ollg + (1], : 2 = 20 + 21, X0 € Eo, 1 € E1}  (x € Eo + E1).

A Banach space (G, | -|) that contains Ey n Ey and is contained in Ey + E; and is such
that the two inclusions

(Eo N Ev |- lgynm,) = (G- ) = (Bo + Evs |-l gyt )

are continuous is then an intermediate space.

For details of the following remarks, see [6, Chapter 4], for example. For the remainder
of this section, all our Banach spaces are complex Banach spaces.

Suppose that {(Eo, |- [,), (E1,|-[l;)} is a compatible couple of Banach spaces. Let
Lo and L; be the lines {iy : y € R} and {1 + iy : y € R}, respectively, in C, and set
S = (0,1) x R = C, an open strip in C. Take F to be the linear space of all functions
F on S taking values in (Eg + 1, | - | g, 4 g,) such that F' is bounded and continuous on
S, such that F' is analytic on S, and such that F' | L; is a bounded and continuous map
into (Ej, | -|;) for j =0, 1.

We define a norm on F by setting

|Fll7 = max{sup{|F(2)[; : 2 € L} (FeF).
By the Phragmén—Lindel6f theorem,
|F() gyrp, <IFlz (z€S, FeF).

Further (F, |- | £) is a Banach space.

Next take 6 € (0, 1), and identify 6 with the point (6,0) of S. Then the map F' +— F(6)
is a contractive linear map from JF into (Eo + Ex, |- |, g, ), and the image of this map
is denoted by

(Eo, Ev)o = Elg);

FElg) is a Banach space with respect to the quotient norm defined by
|l = mf{||F|| z : F'e F, F(0) =x} (€ Epy),

so that | -y is the interpolation norm. Further (Ep, |- [¢)) is an intermediate space.

We now note that, in the definition of the family F, we may suppose that F'(iy) and
F(1+1iy) tend to 0 in Ey and Ej, respectively, as |y| — 0. Indeed, we can multiply each
original function in the family F by the function

z—exp(6(z* —60%), S—C,

for suitable § > 0 to obtain this without changing the space (Efg, | - [[4)); for this, see
[13, p. 1007]. This extra property of F was assumed by Calderén when he introduced this
theory in [11]. We shall suppose throughout that functions in F have this extra property.

We note that, if we move to norms on Ey and E; that are equivalent to |- |, and
| -], on Ey and Ej, respectively, we do not change the intermediate space Epg) (and the
interpolation norm is equivalent to the original interpolation norm).

We also note that, in the above situation, the space Ey n Ej is dense in (Ejg, || - H[@]);
this is [6, Theorem 4.2.2(a)].
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A Banach-space-valued form of the famous Riesz—Thorin interpolation theorem is the
following; full details are given in [6, Theorem 5.1.2].

THEOREM 1.45. Let Q be a measure space, and let {Eg, E1} be a compatible couple of
complex Banach spaces. Take 0 € (0,1) and po, p1 with 1 < po,p1 < o0, and define p by
1 1-6 0

p Po b1
Set E = (Eo, E1)g. Then {LP°(Q; Ey), LP*(Q; Ey)} is a compatible couple of Banach
spaces, and
(L™ (9 By), L™ (% By)) s = L(: E)

with | fley = 1fll ey (f € LP(E)). m

In particular, with the above notation, {£7°(Ey), P (E;)} is also a compatible couple
of Banach spaces, and
(£P°(Eo), L7 (Ey)) e = LP(E), (1.10.1)
where F = (Ey, E1) .
Take n € N. By [6, Theorem 5.1.2], it is also true that {¢?°(Ey), ¢ (E1)} is a com-
patible couple of Banach spaces and that

(65 (Eo), €, (Ev)) o = LR (E), (1.10.2)

where 1/p = (1 —0)/po and E = (Ey, F1) ¢.
The fundamental theorem in this context is the following [6, Theorem 4.1.4].

THEOREM 1.46. Let {(Eo, |- |o), (E1, |- [1)} and {(Fo,|-|y), (F1,|-Ily)} be two compati-
ble couples of complex Banach spaces, and suppose that T : Eqg+ E1 — Fy+ F} is a linear
map such that T(E;) € F; and T | E; : E; — F; is bounded, with norm M;, for j =0, 1.
Take 0 € (0,1). Then T(Eg) < Fiy and |T | Efgy| < My~ °M{. =

PROPOSITION 1.47. Let {Ey, E1} be a compatible couple of complex Banach spaces, and
take 6 € (0,1). Suppose that 1 < p < o and that Ey and Ey are both p-spaces. Then
(Fo, E1) ¢ is also a p-space.

Proof. Set E = (Ey, E1)¢. By (1.10.1), (¢2(Eo), L (E1)) e = LE(E) (neN).

Take m,n € Nand T € B(¢?,¢P), and consider T as a map defined on the spaces Ej*
and on ET*, say

Mj =T £5,(E;) — L2(E)| - (G =0,1).
Since Ey and E; are both p-spaces, in fact M; < |T| (j = 0,1). By Theorem 1.46,
TP (E)) c ¢P(F) and
T = €5,(B) — e2(B)| < My~ MY < |71 )T = |7,

and so F is a p-space by Theorem 1.36, (b) = (a). m

We shall see in Example 2.16, to be given below, that an apparent generalization of
the above result to the case where Fy and E; are pp— and pi—spaces, respectively, and
1/p = (1—0)/po + 6/p1 is not necessarily true.
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2. Power-norms and p—multi-norms

2.1. Power-norms. We now return to the theory of power-norms. Throughout we con-
tinue to consider linear spaces over a field F, where F is either R or C.

Let (||-[l,,) be a power-norm based on a normed space E, as in Definition 1.1. Then
it is easy to see [20, Lemma 2.11] that

. max | < [zl < Z |z:ll (xz=(z1,...,2,) € E", neN). (2.1.1)
Theen i=1

Thus the formulae ||, = max;—1 ., ||z;]| and ||, = D)/, |lz;|| define the minimum
and maximum power-norms based on E, respectively; the corresponding spaces E™ are
just £ (E) and £}(E), respectively.

Let (E™,|-],) be a power-normed space, and suppose that F' is a subspace of E.
Then an easy check shows that (F",|-|,) is also a power-normed space. In the case
where F' is a closed subspace of E, equation (1.3.10) defines a power-norm based on
E/F; the latter is called the quotient power-norm.

Let (E™,|-|,,) be a power-normed space. Then, by [20, Proposition 2.30], the dual
sequence ((E')",[-|) is a power-Banach space. We say that ((E')", ||} is the dual
power-Banach space to (E™, | -|,,). In the case where (E”, |- |, ) is a multi-normed space
or a dual multi-normed space, then ((E")", |- | is a dual multi-Banach space or a multi-
Banach space, respectively [20, §2.3.2].

The following characterization of power-norms is straightforward.

PROPOSITION 2.1. Let E be a linear space, and suppose that || - |,
each n € N. Then (||-],,) is a power-norm based on E if and only if

is a norm on E™ for

ITz|,, < max{|T;,| i€ N, jeN,}|z|, (zeE) (2.1.2)

for each special matriz T € M, , and each m,n e N. m

In fact, to verify that (| - [,,) is a power-norm based on a linear space F, it is sufficient
to check equation (2.1.2) for a restricted class of special matrices T'. Indeed, to verify
(A1), it is sufficient to consider square matrices (75 ;) such that T; ; = d; ; save for two
specified values iy and jo of ¢ and j, respectively, and such that 7; ; = 1 — §; ; when
{1,7} = {do,jo}; to verify (A2), it is sufficient to consider diagonal matrices; to verify
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(A3), it is sufficient to consider matrices of the form

é (1) 8 10 ... 00
0 1 0 0
: : - : € Mn-‘rl,n and 0 € Mn,n-ﬁ-l .
00 ... 1 o
0o o 00 ... 10

:neN) and (||-|?

n

DEFINITION 2.2. Let E be a linear space, and let (| - ||iL
two power-norms based on F. Then
1 2y . 1 2 n
(U-1m) < d-15) izl < lzf;,  (ze E™, neN),

1
n

:n € N) be

and (|- : n e N) dominates (|-|> : n e N), written (|-|}) < (|-|?), if there is a

constant C' > 0 such that
|, < Clel; (zcE" neN); (2.1.3)
the two power-norms are equivalent, written

(I Iy :neNy=(|-|2:neN) or (|-,

n

lle

if each dominates the other.

For discussions of when two multi-norms are equivalent, see [8] and [19].

2.2. p—multi-norms. We now define the main topic of this memoir, a special class of
power-normed spaces.

DEFINITION 2.3. Let E be a linear space, and take p with 1 < p < o0. A p—multi-norm
based on E is a sequence (| -||,, : n € N) such that ||-|,, is a norm on E™ for each n € N
and such that

|7z, <|T:¢°—e2||z], (TeM,y,,zeE" mneN), (2.2.1)

and then (E™, |||, is a p-multi-normed space.

In the case where E is a Banach space, we may refer to a p—multi-Banach space.

This definition was first given by Ramsden in [52], where the term ‘type—p multi-
norm’ was used. As observed in [52, p. 58], it follows from Proposition 2.1 that each
p—multi-norm is a power-norm.

The motivation for giving this definition is the following. The characterizations given
in Theorems 2.35 and 2.36, respectively, of [20] prove that co-multi-norms and 1-multi-
norms in the above sense are exactly the multi-norms and dual multi-norms that were
defined in Definition 1.1, and so our new definition generalizes the old one given for the
cases p =1 and p = 0.

For n € N, let C,, be a class of matrices in M,, such that
|U: L2 —eP| <1 (Uecly)

and such that the absolutely convex hull of C,, is the closed unit ball of the space M,
when this space is identified with B(¢F). Then, to verify equation (2.2.1), it suffices to
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check that axiom (A3) holds and that we have |Uz|,, < x|, (x € E™) for each U € C,.
In particular, in the case where p = 2 and F is a complex linear space, the class U,, of
unitary matrices in M, (C) satisfies the required condition with C,, = U,,.

Let (|-, : » € N) be a p-multi-norm based on a linear space E. As noted in [52,
Lemmas 4.3.2 and 4.3.4], the following variations of Axioms (A4) and (B4) hold:

I(z1,- s 21, axn, Brn) |, = (@1, T, Ypn) |, (2.2.2)

H(xh ceey Tp—1, 0T + 6y)||n < H(xh v ,xn_1,7qx,7qy)|\n+1 3 (223)

for all a,f € F, 1,...,2,, 2,y € E, and n € N, where ¢ = p’ and v, = (|a|” + |8]")"/"

for r = p, q. In the two cases where p = 1 and p = o0, just equation (2.2.2) characterizes
a p—multi-norm. However, in the case where 1 < p < o0, these two equations do not
characterize p—multi-norms based on E, as we shall see in Example 2.7(ii), to be given
below. These equations are used by Blasco in [7] to characterize a larger class of power-
normed spaces than the p—multi-normed spaces.
It follows from (2.2.2) that
n 1/p
ez, ... anz)|, = (2 |ai|”> lz|  (a1,...,on€F,ze E,neN), (2.24)
i=1
and so
[(z,...,2)|, =n'P|z| (zeE,neN). (2.2.5)

In particular, for each non-zero normed space F, a given power-norm based on F is a
p—multi-norm for at most one value of p.

The following result follows easily from (2.2.3) by induction on n € N; in particular
the given inequality holds for all p—multi-norms based on FE.

PROPOSITION 2.4. Let E be a normed space, take p with 1 < p < o0, and suppose that
(I-1I,,) is @ power-norm based on E such that inequality (2.2.3) is satisfied. Then

n
PILES
i=1

forallay,...,ap€F and neN, whereq=p'. m

< [(@i)lgg [, (2 = (z1,...,20) € E")

We note the following standard constructions involving p—multi-norms; clause (iv) is
[52, Corollary 4.4.12].

PRrROPOSITION 2.5. Let E be a normed space, take p with 1 < p < o0, and suppose that
(I-1I,,) is @ p-multi-norm based on E.

(i) For each subspace F' of E, the power-normed space (F™, |-, ) is a p-multi-normed
space.

(ii) Form e N, set F' = E™. Then the power-normed space (F™,|| - |
normed space.

mn) 18 @ p-multi-

(iii) For each closed subspace F' of E, the quotient power-normed space ((E/F)", | -|,,)
is a p—multi-normed space.

(iv) The sequence (||-|.) of dual norms is a p’~multi-norm based on E'.
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Proof. (i) and (ii) These are easily checked.

(iii) Take m,n e N, x € E", and T € Ml,;, ,, with ||T: £? — (2| < 1, and take € > 0.
There exists y € F" with |z + y|, < |z + F"|,, + €. Since Ty € F™, we have

|T(@ + F*)],, < T+ y)l,, < |z +yl, <lz+ ], +e.

This holds for each € > 0, and so |T'(z + F")|,, < |« + F"|,,, as required.

(iv) Set ¢ = p/. Take m,n € N, T € M,,, ,,, and A € (E’)". Then, for each x € E™
with [|z|,, < 1, we have

o, TN = [(T'a, M < [T, NI, < |7 5, — R[N, = [T 67 — €3]Il

and so |TA[,, < ||T: €2 — 4]/ |A],. Thus (| -|,) is ¢-multi-norm based on E'. m

DEFINITION 2.6. Let (E™, |- |,,) be a p-multi-normed space, where 1 < p < co0. Then the
sequence (| - |) of norms is the dual p'~multi-norm based on E’.

ExaMpPLES 2.7. Take p with 1 < p < co.
(i) Forne Nand z = (z1,...,2,) € F", set

n 1/p
|z, = (Z Zilp> = [zll,p -

i=1
Then (||-|,,) is a p-multi-norm based on F, and it is immediately checked that it is the
unique p-multi-norm based on F such that |z|, = |z| (z € F).

(ii) Let F be a normed space. Then we have defined the p—sum norm in Definition
1.7 by the formula

n 1/p
2] 0p sy — (2 x|> (= (1, z) e B neN).  (226)
i=1

Set -], = |- ll¢p (), so that (E,[-[,) = €F(E). Then clearly (|-,) is a power-norm
based on FE; this power-norm is called the p—sum power-norm. Clearly the sequence
(|- 1I,,) satisfies equations (2.2.2) and (2.2.3). In the case where p = o0, we obtain the
minimum multi-norm; in the case where p = 1, we obtain the maximum dual multi-norm,
as in [20].

Now consider the special case in which £/ = £P. Take m,n € N, T' € M, ,, such that
|T:¢P - ¢2| <1, and ® = (z1,...,2,) € ((P)". For k € N, set

Qp = (aclk,...,xnk) EF”,
where z; = (x;; : j € N) for ¢ € N,,. Then
0
| Tz, = 2 El Tx)i|” = Z |Teulyr < Z leuelyr = Z Z |zl = [z,
k=11i=1 k=1 k=1j=1

and so (| -[,,) is a p-multi-norm based on ¢P. More generally, consider the case where
E = LP(Q, 1), where (€, 1) is a measure space. Then we shall see in Example 2.27(ii),
below, that (|- |,,) is a strong p—multi-norm, and hence that (|- [,) is a p-multi-norm.
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Next suppose that 1 < p < 2 and that r € [p,2]. By Proposition 1.22, the spaces
£" and L"(I) are isometrically isomorphic to closed subspaces of LP(I), and so, by Prop-
osition 2.5(i), the p—sum power-norm is a p-multi-norm based on the spaces £” and L" ().
Second, suppose that 2 < p < o and that r € [2,p]. Then, by Corollary 1.23, £" and
L™ (I) are isometrically isomorphic to quotients of LP(I), and so, by Proposition 2.5(iii),
the p—sum power-norm is a p—multi-norm on these spaces.

However, we shall see in Theorem 2.8, below, that the p-sum norm based on a Banach
space is not always a p—multi-norm.

(iii) Let E be a normed space. For n € N, the norm f,, ,, on E™ is the weak p—summing
norm discussed in §1.5.

It is shown in [20, Theorem 3.16] that (up5) is a p-multi-norm based on E; we shall
prove a stronger result in Example 2.27(iii). It follows that the set of p—multi-norms
based on an arbitrary normed space E is not empty. In fact, we shall see in Theorem
2.11, below, that (pp,,) has the property that

ppn(®) < |z|, (zeE" neN)
for each p—multi-norm (|| - |,,) based on E.

(iv) Let F be a normed space, and set ¢ = p’. For n € N, the dual weak p-summing
norm v, , on E™ was also discussed in §1.5; indeed, v}, ,, is the restriction to E" of the
dual norm of uZ,, on (E")".

Since (pq,n) is a ¢-multi-norm based on E’, it follows that (1, ,) is a p-multi-norm
based on E. In fact, we shall see in Theorem 2.11, below, that (v, ) has the property
that

2], < vpn(@) (z€E" neN)

for each p-multi-norm (|| - [|,,) based on E. m

The results concerning p—sum power-norms mentioned in Example 2.7(ii), above, are
special to the cases mentioned. Indeed, take p with 1 < p < oo. Then it follows from
Theorem 1.36, (a) < (b), that the p—sum power-norm based on a Banach space E is a
p—multi-norm if and only if E' is a p—space, and so the following theorem is an immediate
consequence of Kwapien’s theorem, Theorem 1.42.

THEOREM 2.8. Let E be a Banach space, and take p with 1 < p < oo. Then the following
conditions on E are equivalent:

(a) the p—sum power-norm based on E is a p—multi-norm;
(b) E is a p-space;
(c) E belongs to the class SQ(p). m

Further, take take p with 1 < p < o0 and r with 1 < r < o, and let Q be a
measure space such that L"(£2) is an infinite-dimensional space. Then, by Theorem 2.8
and Corollary 1.44, the p—sum power-norm based on L" () is a p-multi-norm if and only
if either 1 < p<r <2or 2 <r < p< . In particular, equations (2.2.2) and (2.2.3) do
not characterize p—multi-norms when 1 < p < 0.
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EXAMPLE 2.9. We now generalize a construction of [45, p. 17] (using a different term-
inology).

Fix independent standard normal random variables, f1, fa,.... More specifically, we
suppose, in the real case, that each f; has the probability density function

exp(—£2/2) (teR),

1
V2T
so that the joint density function of fi,..., f, on R™ (for n € N) is

1 2 2
Wexp(—(t1++tn)/2) (tl,...,tnGR).
In the complex case, fi, f2,... are independent complex standard normal random vari-
ables, of the form (g; + ih;)/+/2, where g1, h1,go, ha,... are real independent standard
normal random variables. For background information, see [41, pp. 148-149].
Now suppose that F is a complex Banach space, take n € N, and suppose that
U = (Ui;) € M, (C) is a unitary matrix. Take f1,..., f, to be independent complex

standard normal random variables, as above. Then the two n-tuples f = (fi,..., fn)
and (Uf)1,...,(Uf)n) are equidistributed (see [48, Chapter 2]), and so

2 fzxz Z (Z Ui,jfj) Z; (xh Lo, Ty € E) . (227)
=1

i=1 \j=1
ForneNand @ = (x1,...,x,) € E™, define

n
> fis
i-1

E =K

], = E : (2.2.8)

so that |- [, is a norm on E™.

We claim that (||-|,,) is a 2-multi-norm based on E. Indeed, it is immediate that
(I -1I,,) satisfies axiom (A3). Now take n € N and a unitary matrix V' € M,,(C), and set
U = V' so that U is also a unitary matrix in M, (C). It follows from equations (2.2.7)
and (2.2.8) that

V|, =E =E

i fi(V);

i=1 j=1
> (Z Uj,ifi) T > i
j=1 i=1

i=1
and so (|- |,) satisfies equation (2.2.1) for each unitary matrix V', and hence for all
matrices in M, (C). It follows that (|- |,,) is a 2-multi-norm.

P)l/p

for each p with 1 < p < 0. This will be a 2-multi-norm based on E by the same reasoning
as in the case where p = 1. Moreover, all these 2-multi-norms are equivalent: for each

=E =E = |z, ,

In fact, we could also define

|z, = (E

n
> fiwi
i=1




48 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

such p, there is a constant C), such that
|z, <lzl,,<Cplzl, (zekL™ neN);

the second inequality in the above formula is the Gaussian version of the Khintchine—
Kahane inequality [39, §4.2]. m

ExXAMPLE 2.10. As indicated, a number of multi-norms have been introduced in earlier
works. Here we recall one of these, from [20, §1.4].

Let E be a normed space, and take p,q with 1 < p < ¢ < o0. Then the (p, ¢)-multi-
norm (|- |7 based on E is defined by

n 1/q
|| = sup (2 (i, w) (A ) <1
i=1

for € = (21,...,2,) € E™ and n € N. By [20, Theorem 4.1], (| - Hgf’"”) is indeed a multi-

norm based on E.
(1,1) _ H . ”max
n n

For example, it is shown in [20, Theorem 4.6] that | - |
(I [77*) is the maximum multi-norm, defined on page 6.

(n € N), where

The theory of when two such multi-norms are equivalent is given in [8]. m

As in §1.5, the norms |- |_,, and |- |, are the injective and projective norms, res-
pectively, on £2 ® E. The following theorem is similar to results in [52, §4.5].

THEOREM 2.11. Let E be a normed space, and take p with 1 < p < o0. Suppose that
(I-1,,) is a p-multi-norm based on E. Then

ppn(®) = 2|, < lzf, <|zl., =vpn(®) (zeE" neN).

Proof. Set ¢ = p/, and take n € N and « = (z1,...,2,) € E™. By Proposition 2.4, we
have

sup

n n 1/q
Z oz (2 |Oéi|q> <1, <|=],,
i=1 i=1

and hence, by equations (1.5.3) and (1.5.6),

n n l/q
PR (Z |0<i|q> <1l; <]z, .
i=1 i=1

The dual g-multi-norm based on E’ is (| - |} ). We have |
each A € (E")", and hence

], = sup {|<x, Ml = A}, <1} <sup {[<&, )|+ pgn(X) < 1} = vpu(@) = 2, -

This completes the proof. m

|2, = pp.n(z) = sup

e = Han(X) < X[, for

In particular, for each Banach space F and each p with 1 < p < o0, there are minimum
and maximum p-multi-norms based on £, namely (p1,,,) and (p,»), respectively, as noted
in [52]; for n € N, we have pigo ., = |- |2 and v, = |- |[** in the notation of §1.1.

n n
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The following remarks are also contained in [52, §4.5]; clauses (i) and (ii) are imme-
diate from Theorem 2.11.

PROPOSITION 2.12. Let E be a normed space, and take p with 1 < p < 0.

(i) The dual of the mazimum p—-multi-norm based on E is the minimum p’ —multi-norm
based on E'.

(ii) The dual of the minimum p-multi-norm based on E is the mazimum p'—multi-
norm based on E'.

(iii) The bidual of a p—multi-norm based on E is a p—multi-norm based on E”, and
the canonical embedding of (E™, | - |,,) into (E")", || |) is an isometry for eachn € N.

2.3. Interpolation spaces and p—multi-norms. Let (Eo, | -|,) and (E4,|-|,) be two
(real or complex) Banach spaces such that {Fy, E1} is a compatible couple. Further,
suppose that (| - HSL) and (|| - ||71L) are power-norms based on the respective spaces. Then,
for each m € N, we consider the pair

(B 1 1), (B 1 )}

Since EJ* n E{* = (Eo n Eq)™ and EJ* + ET" = (Eo + E1)™, it follows that this pair is
also a compatible couple of Banach spaces.

Now suppose that Fy and F; are complex Banach spaces. Take 6 € (0,1), and set
E = (Ey, E1)g, as in §1.10. Then the norms | - Hgn and | - H}n are equivalent to the norms
on {2 (Ep) and £2 (E1), respectively, and so it follows from Theorem 1.45 that the inter-
mediate space ((EJ, || - Hgn), (BT, | - H:n»g is isomorphic to £2 (E); the interpolation norm
defined on E™ by using || - H?n and | - H}n is denoted by | - |,,,-

THEOREM 2.13. Let {(Eo, |- |,), (E1,[l-[;)} be a compatible couple of complex Banach

spaces, and suppose that (| - Hg) and (| - Hi) are power-norms based on Eg and Ey, resp-
ectively. Take 6 € (0,1), and set E = (Eo, Ey)s. Then (E™,|-|,) is a power-normed
space.

Proof. The axioms (A1), (A2), and (A3) are easily checked using Theorem 1.46. m

DEFINITION 2.14. The pair (E", | -|,,) is the interpolation power-normed space of index
6 defined by the compatible couple of complex Banach spaces {(Eo, | - ), (E1, |- [;)} and
the power-norms (|| Hg) and (| - H;) based on Ey and Fj, respectively; the power-norm
based on F is the interpolation power-norm.

For example, suppose that (]|- H?L) and (|| - ||711) are a po—sum and a p;—sum power-
norm (as in Example 2.7(ii)) based on Banach spaces Ey and Ej, respectively, where
1 < pg,p1 < 0. Take 0 € (0,1), and define p by
1 1-0 6

p Po p1
Then, by equation (1.10.1), the interpolation norm on E™ is the p—sum power-norm
based on F.
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Now suppose that 1 < pg,p; < o and that (] H?L) is a pp-—multi-norm based on a
complex Banach space Fy and (|- Hi) is a p;—multi-norm based on a complex Banach
space E;. Take 6 € (0,1), and define p as above. We ask whether the interpolation power-
norm (| - |,,) based on E is a p-multi-norm. The first theorem shows that this is the case
when py = p1; Example 2.16 will show that this may not be the case for certain values
of pg and p; with py # p1, even when Ey = E7, and Example 2.32 will show that this
may not be the case for more general values of py and p;.

THEOREM 2.15. Take p with 1 < p < o0, and suppose that {Ey, E1} is a compatible
couple of complex Banach spaces and that there are p—multi-norms (| - H(T)L) and (|| - ||:L)
based on Ey and Ey, respectively. Take 6 € (0,1). Then the interpolation power-norm
defined from these p—multi-norms that is based on (Ey, E1) ¢ is also a p—multi-norm.

Proof. Set E = (Ey, E1)g¢.

Let F be the space of functions on the strip S taking values in Ey 4+ E1, as defined
in §1.10, and, for k € N, take Fj to be the corresponding space of functions on the strip
S taking values in Ef + E¥, so that the image of the map

F— F(0), F.— E¥+EF,

is E*; the space E* has the interpolation norm, say | - |,, determined by | - HZ and | - H;lc
We need to check inequality (2.2.1) in Definition 2.3 for the interpolation power-norm
(I-1l,,) based on E. For this, take m,n € N, T' e B({E,(P) with [T : £ — (P| <1, and
x=(r1,...,2,) € E™.
Take £ > 0. Then there exists I € F,, with F'(0) = z and ||[F|z <[, + . Set

G=ToF:5S—E".
Then it is easily seen that, as a map from S into (E} + E7, || - ”E{; +E?), the new function
G satisfies the conditions for it to belong to the space F,,. For j = 0,1 and z € L;, we
have [G(2)] gx < [F(2)] g,
|G|, <|F|x, - Since G(0) = Tz, it follows that |T'z|, < |z|,, +e. This holds true for
each € > 0, and so ||Tz|,, < |x|,,. Thus (2.2.1) holds, as required. =

pm because both Ey and E; are p-multi-normed spaces, and so

EXAMPLE 2.16. Let E be a complex normed space, and consider the maximum dual
multi-norm and minimum multi-norm based on E. Take 6 € (0,1). Then, as in equation
(1.10.2), for each m € N, the interpolation space between £} (E) and ¢°(E) is (P (E),
where p = 1/(1 —0), and so the interpolation power-norm based on E is a p—multi-norm
if and only if the p-sum power-norm based on E of Example 2.7(ii) is a p—multi-norm.
However this is not the case for suitable Banach spaces E. Indeed, suppose that £ = £".
Then, as stated after Theorem 2.8, the p—sum power-norm based on E is not a p—multi-

norm when r is outside a certain range of values. m

2.4. Characterization of p—multi-norms. We shall now characterize p—multi-norms
in terms of tensor products.

In [18], it was explained how multi-norms correspond to certain tensor norms. We
recall this briefly; details are given in [18, §3].
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DEFINITION 2.17. Let E be a normed space. Then a norm | - | on ¢o® E is a co—norm if
|61 ® 2| = ||z| for each x € E and if the linear operator T®I is bounded on (co®FE, | - ||)
with norm at most |T|| for each compact operator T on cg.

Suppose that |- | is a co—norm on ¢o ® E, and set
|1, szl = | D6 @i (21,...,2, € E, neN). (2.4.1)
i=1

Then (||- |, : n € N) is a multi-norm based on E.

A more general and detailed version of the following theorem is given as [18, Theorem
3.4].

THEOREM 2.18. Let E be a normed space. Then the above construction defines a bijection
from the family of co—norms on co ® E onto the family of multi-norms based on E. The
injective tensor norm and the projective tensor norm on co ® E correspond to the min-
imum and maximum multi-norms, respectively. m

A norm ||| on ¢g ® E satisfies ‘property (P)’ (due to Pisier) [45, §2, p. 12] if
IT® | <|T| (T eB(co))- (2.4.2)

It is shown in [18, Corollary 3.6] that these norms are exactly the ¢o—norms of Definition
2.17, and so the definition of a multi-normed space corresponds to the theory in the
memoir of Marcolino Nhani [45] concerning norms on ¢ ® E satisfying property (P). In
particular, the word ‘compact’ is not required in Definition 2.17, as noted in [18]. As we
shall explain in §5.1, ¢p—norms also arise in the thesis [44] of McClaran.

In the paper [18], there is also a notion of an £!-norm on ¢! ® E, and it is noted
in [18, §4.1] that £!-norms correspond to dual multi-norms in an analogous way to that
defined above. These results will be generalized below.

We have the following analogue of Definition 2.17 and Theorem 2.18.

DEFINITION 2.19. Let E be a normed space, and take p with 1 < p < 00. Then a norm
| -] on £? ® E is an £P—norm if |01 ® x| = |z| for each 2 € E and if the linear operator
T ® I is bounded on ({? ® E, | -|) with norm at most ||T| for each operator T on ¢?.

It is clear from Theorem 1.13 that the projective tensor norm || - | and the injective
tensor norm | - |- on £? ® E are each {P—norms.

Take p with 1 < p < 00, and let || - || be an £P—norm on (P Q E. Fix a € £ and z € E,
and define S = B (B € £?). Then S is a finite-rank operator on £ with S| = |||,
and (S® Ig)(d ® z) = a« ® x. Thus

le®z| = [(S® )6 @) < |S] ] @ x| = [l ]

and so | - | is a sub-cross-norm on ¢? ® E. Essentially as in equation (2.4.1), we define

Zn: 0; @ x;
i=1

Then | -||; coincides with the given norm on F, and it is clear that each |- ||, is a norm
on E™ and that (2.2.1) is satisfied. Hence (|- |,, : » € N) is a p-multi-norm based on FE.

[(x1,....20)|,, = (1,...,2n € E, neN). (2.4.3)
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By Theorem 2.11,
Izl < Izl < Izl (€ €@ E),

and so it follows from Proposition 1.12 that || - | is a reasonable cross-norm on ¢ ®Q E.
The following statement recasts the definition of a p—multi-norm in the above nota-
tion.

PROPOSITION 2.20. Let E be a mormed space, and take p with 1 < p < . Then a
sequence (E™; | -|,, : n € N) corresponds to a p-multi-norm based on E if and only if

IT®Ig : P QF > LPQFE| < |T:4F — L2
for each m,neN and T € B({?,(P). m

mrTn
THEOREM 2.21. Let E be a normed space, and take p with 1 < p < co. Then the con-
struction given in equation (2.4.3) defines a bijection from the family of {P—norms on
LP ® E onto the family of p—multi-norms based on E.

Proof. Suppose that | - || is an £7-norm on {?®FE. Then we have noted that (|- |,, : n € N)
is a p—multi-norm based on FE.

Conversely, suppose that (|- [, : n € N) is a p-multi-norm based on E.

First note that each element z of cgp ® E can be expressed ‘essentially uniquely’ in
the form z = Z;—Ll 0; @ x; for some n € N and z1,...,z, € E, in the sense that the
representation is unique up to the addition of some zero vectors x;. In this case, we
define

ol = (@2l -

That [|z| is uniquely defined follows because (| - |[,,) satisfies Axiom (A3). It is clear that
| -] is a norm on coy ® E.

We claim that || - | is a cross-norm on coo ® E with respect to the norm | - ||,, on cgo.
Indeed, take a = (g, ..., ) in oo and x € E. Then
n
la@z| =} 8 ®@ajz| = [(uz,...,anz)l, = |l ||
j=1

by equation (2.2.4), and this gives the claim.
Next, take m,n € N, and consider z = Z?:l §;®zj€co®E and T = (T} ;) € My, .
Then

(T@]E)(Z) = 2 ZTi,j(Si@x]’ = 2(51® <Z Ti,jxj> = Z(Sl®(T$)Z, (244)
j=1i=1 i=1 j=1 i=1
where @ = (z1,...,z,), and so

I(T®Ie)(2)| = [Tx|,, < |T: L5 — Lo |zl = IT]]=] -

Thus
IT®Igl| <|T]| . (2.4.5)

We shall now extend the above norm | - || from cop ® E to {? Q E.
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Take z € /P ® E, so that

z = Zuj®scj for some keN, wup,...,up€lP, and x1,...,2,€ E; (2.4.6)
j=1
we may suppose that z # 0 and that the sets {u1,...,ur} and {z1,..., 2} are linearly
independent in ¢? and F, respectively. Define

2n=(Po®Ig)(2) €coo®FE, t,=|z:] (neN).
Then we have

tn = [(Pn® 1)) = [(Pn® Ig)(Prt1 @ Ie)(2)| < [ Pultnsr (n€N)
by (2.4.5). Since | P, | = 1, the sequence (t,) is increasing in R. Further,

k k k k
Y Pauy @5 < Y 1Pauy © il = Y [Py gl < D gl gl (neN),
= j=1 j=1 j=1

where we are using the fact that | - | is a cross-norm on cgo ® E, and so (t,,) is bounded

above. Hence (t,,) converges, and so we may define
|2] = lim ¢, = sup{| (P, ® Ip)(2)] : n € N}.

In the case where z € cgo® F, the new definition is consistent with the existing definition.

Clearly the map |- | : z — ||z| is a semi-norm on ¢? ® E. Now take z € {? ® E with
z # 0, and express z in the form (2.4.6). Since {u1,...,u;} is linearly independent in ¢?,
it follows from Proposition 1.10 that there exists n € N such that {P,u1,..., Pyux}
is linearly independent in cgg. Thus z, = Z?:l Pou; ® x; # 0. This implies that
Iz = |zn] > 0, and so ||| is a norm on £? ® E. This norm extends the specified norm
on coo ® E, and also z = lim,,_, 2, with respect to ||| for each z € £? ® E, so that
coo® FE is dense in ((PRQE,|-|).

Take T to be an operator on £P, say with |T| = 1, and take z € {? ® F to be of the
form in equation (2.4.6). Then, for each m,n € N, we see that

(BT ® Ie)(2)|| < [(PaT ® I5)(2 = 2m) | + [(PaT ® I5)(2m) |
k
Z | T [ (Ter = Prn) ()| 5] + | (PaT P ® 1) (2 )| -

We have limy,—qo | (Ler — Pr)(u)| = 0 for each u € £P. Also, by (2.4.5), we have

[(PuT Py ® Ie) 2l < |PaTPonl 2] < 2] < 12| (mom e N),

and so [(P,T® Ig)(z)| < |zl (n € N). Hence |(T® Ig)(2)| < |z|, and so ||| is an
{P—norm on /P Q E.

The correspondence that we have described is clearly a bijection. m

The above proof also establishes Theorem 2.18 by replacing /P’ by ‘c(’ throughout.
As such the proof seems to be simpler than the one of this specific fact given in [18].
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2.5. Strong p—multi-norms. There are strengthenings of the concept of a p—multi-
norm that we shall describe in the next two sections. The role of these strengthenings
will become apparent later, in the representation theorems of Chapter 5. We recall that
the notation y <,  was introduced in Definition 1.37.

DEFINITION 2.22. Let E be a linear space, and take p with 1 < p < o0. A strong p—multi-
norm based on E is a sequence (| -|,) such that ||-||, is a norm on E™ for each n € N
and such that |y|,, < |z|,, whenever m,n e N, x € E™, y € E", and y <, . In this
case, (E™, | -,,) is a strong p—multi-normed space.

It is clear that each strong p—multi-norm is a power-norm. The following result shows
that it is indeed a p—multi-norm.

PROPOSITION 2.23. Let E be a linear space, and take p with 1 < p < oo. Suppose that

(E™ |-, is a strong p-multi-normed space. Then (||-|,,) is a p-multi-norm based on
E.

Proof. Take m,ne N, x € E", and T € M, ,, with |T : P — ¢P | < 1. Then
KT, Ml = 1T 2, M)llgp, < 1<, Mgz (A e EY),
and so Tx <, . Hence |Tz|,, < |x|,, by the defining condition of a strong p-multi-
norm. This shows that (|- [,) is a p-multi-norm. =
The following result is immediately checked.
PROPOSITION 2.24. Let E be a linear space, take p with 1 < p < oo, and let (||-,,) be a
strong p—multi-norm based on E.

(i) Suppose that F is a subspace of E. Then (F™,|-|,) is a strong p-multi-normed
space.

(ii) Suppose that m € N, and set F = E™. Then (F",|-|
normed space. m

mn) 18 @ strong p-multi-

We shall now see that the converse of Proposition 2.23 is true in the special cases
where p = 2 or p = o0; we recall that the latter case corresponds to multi-norms them-
selves. In Example 2.31, we shall show that the converse holds for all Banach spaces only
when p = 2 or p = o0.

THEOREM 2.25. Let p = 2 or p = o0, and suppose that (E™,|-|,) is a p-multi-normed
space. Then (| -|,) is a strong p—multi-norm.
Proof. Take m,ne N, x € E™, and y € E” such that y <, =, and set
Z ={{x, \y: \e E'}.

By Theorem 1.38, there is a matrix A € M, ,,, such that Ax =y and A| Z: Z — (P
is a contraction as an element of B(Z, £?), where the norm on Z is the restriction of the
norm on ¢2.

In the case where p = 2, there is an orthogonal projection P of /P onto Z with

m

|P| =1, and weset T = (A| Z) o P:{P — £P. In the case where p = oo, the space £F is
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a 1-injective space, and so there is an extension T : ¢2 — (P of A | Z with |T|| = |4 | Z||.
In both cases T is a contraction.
For each A € E’, we have

(T, \) = ((Az, V) =Y, A),

and so y = T'x. Since (|- |,,) is a p-multi-norm, inequality (2.2.1) holds, and so we have
lyl,, <l[,,, as required. m

In particular, each multi-norm is a strong multi-norm.

Recall that the quotient of a p—multi-norm is a p—multi-norm. However, it is not
generally true that the quotient of a strong p—multi-norm is necessarily a strong p—multi-
norm. (By Theorem 2.25, this is true for p = 2 and p = 0.) An example to demonstrate
this when 2 < p < o0 will be given within Example 2.30, below, and a counter-example
for each p with 1 < p < o0 and p # 2 will be given in Example 2.31. The example within
Example 2.30 will also show that, for 1 < p < 2, the dual of a strong p-multi-norm, which
is a p/-multi-norm, is not necessarily a strong p’~multi-norm; Corollary 2.38 will show
the stronger result that this holds for each p with 1 < p < oo and p # 2.

THEOREM 2.26. Let E and F be infinite-dimensional Banach spaces such that E is
finitely representable in F', and take p with 1 < p < 0. Suppose that the p—sum power-
norm based on F is a strong p—multi-norm. Then the p—sum power-norm based on E is
also a strong p—multi-norm.

Proof. Take m,n e N, & = (z1,...,2n) € E™, and y = (y1,...,Yn) € E™ such that
Y <p T, so that

21w VI < 2 [ DI (A e B

Set X =lin{x1,...,Zm,Y1,---,Yn}, a finite-dimensional subspace of E, and take £ > 0.
Then there is a finite-dimensional subspace Y of F' and an isomorphism 7" : X — Y such
that |T| [T <1 +e.

Take p € F’. Then T'(u | Y) belongs to X', and so has a norm-preserving extension,
say A, to E'. Thus (T'z, uy =z, T'(u | Y)) =<z, A) (z € X), and so

DTy, I < DT, and Y | Ty; |7 < ) [Ta]?
j=1 i=1 j=1 i=1

because the p—sum power-norm based on F' is a strong p—multi-norm. Hence

2l lP < T Y ITys P < T Y Tl
j=1 j=1 i=1

<ITIP TP D P < @+ )P D P
1=1 i=1

This holds true for each € > 0, and so 377, [y;[” < X7, 24"

We have shown that the p—sum power-norm based on F is a strong p—multi-norm. =
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We consider again some examples of p—multi-norms that were given above in Example
2.7.

ExXAMPLES 2.27. Take p with 1 < p < o0.
(i) The unique p—multi-norm based on F is obviously a strong p—multi-norm.

(ii) Let E be a normed space, and again consider the p—sum power-norm based on E
given by

n 1/p
lzll,, == Nl g = (Z |Ii|p> (z1,...,7n € B, n€N).
i=1

Certainly this power-norm is a strong p—multi-norm when p = 00, so we now suppose
that 1 < p < 0.

We know that this power-norm is a p—multi-norm in the special case that E = ¢P.
In fact, it is a strong p—multi-norm in this case. To see this, fix m,n € N, and take
x = (1,...,%m) € E™ and y = (y1,...,Yn) € E", say x; = (x;4) for i € N,,, and
y; = (y;x) for j € N,. Suppose that [[{y, \)[,» < |[[{z,A)[,» just for each A € E' = 07" of

the form d;, for k € N. Then
D lyiel” < |l
j=1 i=1

for each k € N, and so

n [e0] 0 n O m m Q0
DUkl = D0 Dyl < X0 Dl =) D el
j=1k=1 i=1k=1

k=1j=1 k=1i=1
Thus

n m
Dyl < )
j=1 i=1

and hence |y|,, < |x|,,, as required.

By Theorem 2.26, the p—sum power-norm is a strong p—multi-norm when based on
any Banach space F that is finitely representable in ¢P.

Let © be a measure space. Suppose that either 1 <p <r <2orp>2andr =2
or r = p. Then, by Theorem 1.26(i), the space L"(f2) is finitely representable in £7, and
so the p—sum power-norm based on L"(Q2) is a strong p—multi-norm. In particular, the
p—sum power-norm based on LP() is a strong p—multi-norm.

We shall see shortly that the p—sum power-norm based on a Banach space E may be
a p—multi-norm that is not a strong p—multi-norm.

(iii) Let E be a normed space, and consider the weak p—summing norm (p,, ,,) based
on E. Take m,ne N, x € E™, and y € E™ with y <, . Since

tip.m () = sup{[<z, M|,z - A€ Ber},

it is immediate that pp . (y) < ppm(x), and so (pp,n) is a strong p—multi-norm.
However it is not necessarily the case that each quotient of the weak p—summing
norm is a strong p—multi-norm; we shall see this in Example 2.39.
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(iv) Let E be a normed space, and consider the dual weak p—summing norm (v, ,,)
based on E.

There are Banach spaces E such that (v ,), when based on E, is and is not a strong
p—multi-norm. Indeed, by (i), (v, ), when based on F, is a strong p—multi-norm. However
Theorem 2.37 will show that this is not necessarily the case when 1 < p < o0 and p # 2,
even for certain finite-dimensional spaces F.

(v) The 2-multi-norm defined in Example 2.9 is a strong 2-multi-norm. m

Let E be a Banach space. We showed in Theorem 2.8 that the p—sum power-norm
based on F is a p—multi-norm if and only if E belongs to the class SQ(p) if and only if E
is a p—space. In contrast, we obtain the following theorem; it is an immediate consequence
of Corollary 1.40 and the above remarks.

THEOREM 2.28. Let E be a Banach space, and take p with 1 < p < o0. Then the following
conditions on E are equivalent:

(a) the p—sum power-norm based on E is a strong p—multi-norm;

(b) E is isometrically isomorphic to a closed subspace of LP(Q, u) for some measure
space (Q, ). m

COROLLARY 2.29. Take p and r with2 <p <o and 1 <r < . Then:
(i) the p—sum power-norm based on £" is a p—multi-norm if and only if 2 < r < p;

(ii) the p—sum power-norm based on £" is a strong p—multi-norm if and only if r = 2
orr =mp;

(iii) the p—sum power-norm based on L] is a strong p—multi-norm for each n € N if
and only if r =2 orr = p.

Proof. (i) This is noted on page 46.

(ii) Tt follows from Theorem 2.28 that the p-sum power-norm based on £7 is a strong
p—multi-norm if and only if £7 is isometrically isomorphic to a closed subspace of LP(, 1)
for some measure space (£2, 1); by Proposition 1.22 and Theorem 1.26(ii), this holds if
and only if r = 2 or r = p.

(iii) Suppose that r = 2 or r = p. By (ii), the p-sum power-norm based on £" is a
strong p-multi-norm, and so the same is true for the p—sum power-norm based on ¢, for
each n e N.

Suppose that the p—sum power-norm based on ¢, is a strong p-multi-norm for each
n € N. By Theorem 2.28 and the remarks above Theorem 1.26, ¢, embeds isometrically
in LP(I) for each n € N. It follows that ¢" is finitely representable in LP(I), and so, by
Proposition 1.24, £ is isometrically isomorphic to a closed subspace of L?(I). Again, this
implies that r =2 orr =p. =

ExampLE 2.30. Take p and r with 2 < r < p < 0. Then the p—sum power-norm based on
LP(T) is certainly a strong p—multi-norm. By Corollary 1.23, £" is isometrically isomorphic
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to a quotient of LP(I). The quotient multi-norm based on £" is also the p—sum power-
norm, but, by Corollary 2.29(ii), this is not a strong p—multi-norm. Thus the quotient of
a strong p—multi-norm is not necessarily a strong p—multi-norm.

Now suppose that 1 < p < s < 2. Then the p—sum power-norm based on £° is
a strong p—multi-norm, but the dual p’-multi-norm based on £", where r = s', is a
p'—multi-norm that is not a strong p’—multi-norm. Thus the dual of a strong p—multi-
norm is not necessarily a strong p’—multi-norm. m

ExaMpPLE 2.31. This example will extend the previous one by showing that, for each p
with 1 < p < o0 and p # 2, there is a Banach space F, a strong p—multi-norm based
on F, and a closed subspace F' of E such that the quotient power-norm based on E/F
is not a strong p—multi-norm. In particular, this shows that, for each such p, there is a
p—multi-norm that is not strong.

Indeed, for each p with 1 < p < o0 and p # 2, it follows from Theorem 1.34 that there
is a closed subspace F of a space LP()) that has a quotient F which is not isomorphic
to a closed linear subspace of any space LP(X). By Theorem 2.28, the p—sum power-
norm based on FE is a strong p—multi-norm. The quotient of this power-norm is the
p—sum power-norm based on F'; by Theorem 2.28 again, this latter p—multi-norm is not
strong. m

In summary, the class of p—multi-normed spaces is closed under taking quotients, but
this is not true for the class of strong p—multi-normed spaces when 1 < p < o0 and p # 2.

We now consider when interpolation preserves strong p—multi-norms. The first ex-
ample given below shows that the interpolation space between two strong pp— and p;—
multi-normed spaces (with pg # p1) need not be a p—multi-normed space and, even in
the special case that pg = p1 = p, so that the interpolation space is a p—multi-normed
space, it is not necessarily a strong p—multi-normed space.

ExamMpLE 2.32. Let Ey and E; be two complex Banach spaces, take pg and p; with
1 < pp,p1 < 0, and take 6 € (0,1). As usual, define p by the formula

1 1-6 0

== +—.

p Po P

As in equation (1.10.1), (¢P°(Ey),£P1(E1)) e = £P(E), where E = (Ey, E1) ¢, and so, as
before, the interpolated norm on ¢?(E) from the pp— and p;—sum power-norms on Fjy

and FE1, respectively, is the p—sum power-norm based on FE.
Suppose that
1<py<?2<p <0,

and take Ey = £P°(C) and E; = £%(C). Now take j to be 0 or 1. In both cases, it follows
from Proposition 1.22 that the space E; embeds isometrically into L3 (I, C), and so, by
Theorem 2.28, the p;—sum power-norm based on Fj; is a strong p;—multi-norm. However,
(Eo, E1) g = £%(C), where
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and clearly ¢ < min{p, 2}. By remarks on page 46, the p—sum power-norm based on ¢(C)
is not a p—multi-norm.

Now suppose that 2 < p < o0 and take Ey = £%(C) and E; = ¢P(C). By Proposition
1.22, both the spaces Fy and E; embed isometrically into LP(I,C), and so the p—sum
power-norm on both Fy and E; is a strong p—multi-norm. We have (Ey, F1)p = £7(C),
where

1 1-0 0
r 2 p
so that 2 < r < p. By Corollary 2.29(i), £"(C) is in the class SQ(p), and so the inter-
polated p—sum power-norm on (Ey, F1)y is a p-multi-norm; this also follows from The-

i

orem 2.15. However, by Corollary 2.29(ii), this p—multi-norm is not a strong p—multi-
norm. m

We now exhibit a finite-dimensional Banach space and a 1-multi-norm (i.e., a dual
multi-norm) based on this space such that the 1-multi-norm is not a strong 1-multi-norm.
The example also shows that the dual of a multi-norm, which is a 1-multi-norm, is not
necessarily a strong l-multi-norm. A more general example will be given in Corollary
2.38, but the present calculation is elementary and avoids an appeal to deep theorems
contained within Theorem 1.28.

ExAMPLE 2.33. Fix n € N, and consider the finite-dimensional Banach space E = {°,
with dual space E' = ¢}. We define y = ¢,(d1,...,0,) € E", where ¢, > 0 is to be

determined. Set m = 2", and let 1, ..., x,, be the vectors in F of the form (e1,...,&,),
where each ¢; is equal to £1 and each choice of (e1,...,&,) is taken exactly once, so that
|zl z =1 (j € Npy)s set = (21,...,2m) € E™.

Now take A = (A1, ..., An) € E', say with [A[,, = Y1 |Aj| = 1. Then we have

[y Mlles = en 3 1l = e
Jj=1

Also

n n 1/2
K Wl = Z{ STen e =t e Nn} > A (2 w)
j=1 j=1

by Khintchine’s inequality; here A; is an absolute constant. In fact, by [58], 4; = 1/4/2.
By Holder’s inequality, we have

n n 1/2
1=\l <nt <Z >\j|2> ,
j=1 j=1

and so [{x, M|, = 2"/(2n)"/2. Thus y <; = when we make the choice ¢, = 2"/(2n)'/?
for n e N. '
We consider the 1-multi-norm based on E that is defined by

k
Iz szl = D) Izl (21,..., 20 € E, ke N);
j=1
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this is the maximum dual multi-norm based on E. We have

n n1/22n
ol = 0 3 Wl = e = "2

j=1

Moreover, |z, = m = 2", and so the inequality ‘|y||,, < |z],,’ fails whenever n'/2 > /2,
i.e., whenever n > 3.

We conclude that there is a 1-multi-norm based on a finite-dimensional space ¢,
that is not a strong 1-multi-norm.

Now take F' = E’ = {}. Then the corresponding dual of the prescribed maximum
1-multi-norm based on E is the minimum co-multi-norm based on F'. By Theorem 2.25,
each co—multi-norm is a strong oco—multi-norm. But of course the dual of this strong
co—multi-norm based on F' is the 1-multi-norm based on E that was defined above, and
this is not a strong 1-multi-norm. =

We wish now to determine when the maximum p-multi-norm (v,) when based on
various spaces is a strong p—multi-norm. We first give an equivalent condition for a p—
multi-norm to be strong; in the following theorem, the norm on ¢? ® E, for n € N, is that
specified by equation (2.4.3).

THEOREM 2.34. Let E be a linear space, and take p with 1 < p < 00. Suppose that (| -||,,)
is a sequence such that | -||,, is a norm on E™ for each n € N. Then (| -|,) is a strong
p-multi-norm if and only if, for each m,n € N, for any subspaces Z and W of £P and
0P, respectively, and any contraction T in B(Z, W), the map

n’

TRIp:ZQFE ->WQE

is also a contraction with respect to the associated norms on 2 @ E and (P ® E, respect-
wely.

Proof. Suppose that (| -|,,) is a strong p—multi-norm, and take m,n € N, subspaces Z
and W of £P and ¢F, respectively, and a contraction T in B(Z, W).

Let ze Z® F, say
m k
z= Z(Sj®xj =Zri®aia
j=1 i=1

where z1,...,2,, € E, k€ N, and {rq,...,rt} and {aq,...,ar} are subsets of Z and F,
respectively. Take A € E’. Then, by (1.9.2), we have

m 1/p
(Z (@ A>|p) -

Now set w = (T® Ig)(z) € W® E £} ® E, so that w = }/_, §; ® y;, say, where

k
Z<ai, )\>T1‘
=1

124
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Y1y .- -,Yn € E. Then, by another application of (1.9.2), we have

n k p k p
ISV YO B Y O
j=1 i=1 or i=1 or
k P m
< | Dai, M| =7 Ky, MDIF
i=1 ep j=1
Set @ = (x1,...,2m) and ¥y = (y1,...,¥Yn). Then we have shown that y <, z, and

so, by hypothesis, |y|,, < |z[,,, i.e., Jw| < |z||. Thus T ® I is a contraction.

Conversely, suppose that the stated condition holds. Take m,n € N, and then take
= (21,...,7,) € E™and y = (y1,...,y,) € E" such that y <, @. Set z = 37| 6;®@u;
and w =37, 0; ®y;.

By Theorem 1.38, there are a subspace Z of £P, and a contraction T in B(Z,¢F) with
(T®Ig)(z) = w. By hypothesis, T® Ir : Z® E — {? ® E is also a contraction, and so

Iy, = lwl = (T ®Ie)z| < 2] = |z, -

This shows that (||-|,,) is a strong p-multi-norm. =

ExampLE 2.35. Take p with 1 < p < o0. We shall now exhibit some further Banach
spaces E such that the maximum p-multi-norm (v, ,) of Example 2.7(iv), when based
on E, is a strong p-multi-norm. We recall from equation (1.5.10) that v, corresponds
to the projective tensor norm on £ ® E for n € N.

Indeed, take E to be L'(Q, 1) for a measure space (£2, u). In particular, consider the
case where E = ¢*(I) for an index set I. By Proposition 1.14(iii), X ® F is isometrically a
closed subspace of Y ® E whenever X is a closed subspace of a Banach space Y. Now take
m,n € N and subspaces Z and W of ¢ and £P, respectively, and let T' be a contraction
in B(Z,W). Then, by Theorem 1.13,

TQRIg: ZQE - WQRE
is also a contraction with respect to the projective norms on £ ® E and {P ® I, respect-

ively. By Theorem 2.34, (vp,,) is a strong p—multi-norm based on F. =

The spaces E = L(Q, ) for a measure space (€2, 1) are the only Banach spaces that
we know to have the property that the maximum p-multi-norm (v, ), when based on
L, is strong.

Next we shall describe a criterion that will enable us to see that certain maximum
p-multi-norms (v, ,,) are not strong; the projection constant A(F, E)) was defined on page
13.

THEOREM 2.36. Tuake p with 1 < p < o0, and suppose that Z and W are two subspaces
LP of the same finite dimension, such that

d(Z, W)AW, £P) < \(Z, (7). (2.5.1)

Then the mazimum p-multi-norm (vp,,) based on the dual space Z' is not strong.
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Proof. By a small perturbation, we may suppose that both Z and W are subspaces of
£2 for some m € N, and then A\(W,£2) = A(W,£P) and A(Z,(2) = \(Z,£P).

Set k =dimZ = dimW and ¢ = 1/8(Jz ®x Iz), where Jz : Z — £P is the natural
embedding, so that, by Proposition 1.15, we have ¢ = A\(Z, £P). Set

W=WQ®Z, Z=2827, and L=(LRZ.

By the definition of ¢, there exists z € Z with |z|;, = 1 and |z|,; = ¢, taking the
corresponding projective norms on L and Z.

There is a linear bijection T : Z — W such that [T = 1 and |T7*| = d(Z, W); set
w=(T®Iz)(z) e W c L. Using Theorem 1.13, we have the calculation that

c=|zlg = [T @ Iz) ()|, < [T 1z ] |wlw = d(Z, W) |w]w -
Also A(W,L) < A\(W,£P), and so |w]yw < AW, £P) |wl|y,. Hence
MZ,€3) = ¢ < d(Z, WIA(W, 02, Jul, (25.2)

Assume that the maximum p-multi-norm (v, ,) based on Z’ is strong. Since v, ,
corresponds to the projective tensor norm on £ ® Z' for n € N, it follows from Theorem
2.34 that the map T®Iz : Z — W is also a contraction with respect to the norm | - |, on
Z and W. Thus we see that ||w|;, < |z|;, = 1, and so it follows from equation (2.5.2) that
XNZ,e2) < d(Z,W)A(W,£P). Hence inequality (2.5.1) does not hold, a contradiction.

This completes the proof. m

THEOREM 2.37. Take p with 1 < p < o0 and p # 2. Then there is a finite-dimensional
Banach space E such that the marimum p—-multi-norm based on E is not strong.

Proof. In the case where p = 1, an appropriate example (with dimension 3) is given in
Example 2.33, and so we now suppose that p > 1. We shall apply Theorem 2.36.

By Corollary 1.29, there are a constant C' > 0 and an increasing sequence (F),) of
subspaces of £ such that d(F,,,£?) < C (n e N) and lim,,_,oo A(F,, (P) = 0. Take n € N
with M(F,,,£?) > C, and set Z = F,, and W = (2. Then d(Z,W) < C, A\(W,{P) = 1,
and A(Z,¢?) > C, and so inequality (2.5.1) holds. By Theorem 2.36, the maximum
p—multi-norm on the dual space Z’ = F, is not strong. m

COROLLARY 2.38. Take q with 1 < g < o0 and q # 2. Then there is a finite-dimensional
Banach space F' such that the minimum g-multi-norm (ug.,) based on F is strong, but
such that the dual ¢'-multi-norm (vy ) based on F' is not strong.

Proof. By Example 2.27(iii), the minimum ¢g—multi-norm based on the above space Z
is strong, but, as stated, the dual ¢’~multi-norm based on Z’, which is the maximum
¢'-multi-norm (vy ), is not strong. m

ExaMpPLE 2.39. We finally exhibit a quotient of a weak p—summing norm that is not a
strong p—multi-norm. To see this, we shall again use the example given in Corollary 1.29
and the characterization of strong p—multi-norms given in Theorem 2.34.

In this example, we suppose that 1 < p < 00 and p # 2; a variation of Corollary 1.29
that holds in the case where p = 1 would give an analogous example for the case where
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p = 1. However we shall give an easier example of the same phenomenon in this case in
Example 5.12.

Thus take p with 1 < p < o0 and p # 2, set ¢ = p/, and let C > 1 be the constant
specified in Corollary 1.29. Then there are n, N € N, a closed subspace Z of £} with
dimZ = n and A\(Z,¢8) > C, and an isomorphism T: Z — (P with |T|| = 1 and
|7~ <cC

Set E = Eg,, so that B/ = (X, and F = Z+ < E. Let Qr: E — E/F be the quotient
map. Then Q% : (E/F) — E’ is an isometry onto the subspace F* = Z, and so the map
U: (E/F) — Z given by

Ur=Qr(\) (Ae(E/F))
is an isometric isomorphism.
We consider the weak p—summing norm (up ) based on E. As in Example 2.27(iii),

this p—multi-norm is strong. The purpose of this example is to show that the induced
quotient p—multi-norm based on E/F is not strong.

Take m € N. We recall that
(E™, ppm) =P QE = B(E'(E).

We shall again write i, ,, for the quotient norm on (E/F)™ = £l ® (E/F') induced by
the norm g, , on E™ = (2 @ E. As usual, (6;)]; denotes the standard basis for £2,; we
shall denote by (d;)7™, the corresponding sequence of biorthogonal functionals, which is
equal to the standard basis for £ under our identification of £ with the dual of ¢2.

Define

= )16, @U'T'S; et} @ (E/F) (2.5.3)

i=1

and

z=(T"®Igr)y 2T15®UT’5’EZ®(E/F)CEP (E/F).
1=1

For each A € (E/F), equation (1.9.2) implies that
@, Ay = Y NU'T'§)5; = Y (TUN, 87y 6; = TUX.
i=1 i=

A similar calculation shows that (z,\) = U\, and hence we have
Iy Vller = 1TUM ez < [UAez = <2, Mller,

because |T'| = 1. This shows that y <, «
Let pn € £}, and X\ € (E/F)’. By applying the functional p ® A, which is given by
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equation (1.4.1), to the element x € £}, ® (E/F'), we obtain

(@, p®N) = Z<T—15i, wU'T'S, Ay = <Z<TUA i, (T‘l)/u>

i=1

N
— (TUA, (T4 = (UM, 1y = (Qlph, 1) = <Z<QFA 5, u>

- i@i, 1 {Qrd;, A) = <(IN ®Qr) (i 9 @54), ﬂ®A>,

Since the functionals of the form p ® A span the space (/X ® (E/F))’, it follows that

N
x = (IN®QF>(Z 6@62) 7
and hence i, y( HZ 1 0; ®5’HE ~ =1
We shall now assume towards a contradiction that the p-multi-norm (f,, ,,) based
on E/F is strong. Note that [z, ,,(y) < i, y(z) < 1. The quotient norm of y is attained
because £P ® E is a finite-dimensional space, and so we can find an element

v=> QU ellQE
i=1
such that |v|e, <1 and (I, ® QF)(v) = y. Comparing the definition (2.5.3) of y with
the expression

(I7L®QF 26 ®QFU17
=1

we deduce that
UT'S, =Qrv; (ieN,). (2.5.4)

Define V': £} — (P by setting
Vz= Z<z7vi>6i (zelk),
i=1

so that V' is the operator corresponding to the element v, and hence |V = |v]en < 1.
We observe that V | Z = T. Indeed, for z € Z, set A = U~'z € (E/F)’, so that
z=UX = Qr)\; using (2.5.4), we obtain

Vz= Y\ Qrodi = > (N U'T'8))5; = TUXN = Tz,
i=1 i=1
as required. This implies that the operator P := TV e B(t%) is a projection with
image Z, and consequently A\(Z, (%) < |P| < C, which contradicts our choice of Z.
Thus we have shown that the p-multi-norm (f,, ,,) based on E/F is not strong, as
required. m
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2.6. Convex and concave power-norms. The second strengthening of the concept
of a p—multi-norm that we shall consider involves convexity.

DEFINITION 2.40. Let (E™,|-|,,) be a power-normed space, and take p with 1 < p < oo.
Then (E™,||-|,,) is p—convex if

1
1@, 9) s < (I, + Tyl2)"” (2.6.1)

and p—concave if
1
1@,y = (22 + 1yI2) "7 (2.6.2)

in both cases for each m,n € N, each * € E™, and each y € E".

Each power-norm is obviously 1-convex and co—concave. Suppose that a power-norm
is p—convex, respectively, p—concave. Then it is also r—convex, respectively, r—concave,
for each r € [1, p], respectively r € [p, 0].

For example, take p, ¢ with 1 < p < ¢ < o0, and let (] - Hilp"n) be the (p, ¢)-multi-norm
defined in Example 2.10. Then (|- |**%)) is r—convex for r > 1 if and only if r € [1,q].
We shall see in Theorem 4.26 that, for each p with 1 < p < oo, there are p—multi-norms
that are not p—convex.

A 2-—convex 2-multi-norm based on a Banach space F is exactly what is termed
a sequential norm in [38, Definition 2.1], and the corresponding space (E™, | -|,) is an
operator sequence space. A related notion of a p-operator space (for 1 < p < ) was
introduced by Daws in [21]. One could say that our theory of p—multi-normed spaces is
‘half-way’ between that of classical Banach space theory and operator space theory; our
hope is that it sheds some light on both of these topics and their connections.

The main texts on operator space theory are those of Blecher and Le Merdy [9], of
Effros and Ruan [27], of Helemskii [30], and of Pisier [50].

Let (E",|-|,) be a p-convex or p-concave power-normed space, and suppose that
F is a subspace of E. Then the corresponding power-norms based on F' and, in the case
where F' is closed, on the quotient E/F are both p—convex or p—concave, respectively.

For m,n € N, consider the linear bijection J,, that takes the element x + y in
E™@ E"™ to the concatenation (x,y) in E™*". Then (E™,|-|,) is p-convex if and only
if

Tt (E™ ) @p (B 1) = E™ ] ) (2.6.3)

is a contraction for each m,n € N. Similarly, (E™, | -|,) is p-concave if and only if the
inverse J;,1, of Jy, n is a contraction for each m,n € N.

PROPOSITION 2.41. Let (E™,||-|,,) be a power-normed space, and take p with 1 < p < .
Then (E™, | -|,,) is p—concave if and only if (E')", |- |.) is p'~convez, and (E™,|-||,,) is
p—convez if and only if (E")", | -|.) is p’—concave.

Proof. For notational convenience, set ¢ = p’ and F = E’.
Suppose that (E",|-|,) is p-convex, so that the above map J,,, is a contraction
for each m,n € N. The dual J;, ,, of J,, » is the linear bijection taking (X, u) in the

space F™" to A+ p in F™ @, F" = (E™ @, E™)’, and this map is also a contraction.
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/

min), and so

But the map .J;, ,, is exactly the map corresponding to J,,}, on (F™*" |- |
(F™,|-|) is g—concave.
Similarly, we see that (F™, || ) is ¢-convex whenever (E™, |- |, ) is p-concave.
Now suppose that (F™,|-|) is g-convex, respectively, g-concave. Then we have
shown that the bidual ((E”)",[-|") is p-concave, respectively, p-convex, and hence

(E™, |-, is p—concave, respectively, p-convex. m

EXAMPLES 2.42. Take p with 1 < p < o0.
(i) The unique p—multi-norm based on F is obviously p—convex and p—concave, as is
the p—sum power-norm based on a normed space.

(ii) It is easy to see that the p—sum power-norm is the maximum p-convex power-
norm, in the sense that, for each normed space E and each p—convex power-norm (| - |,,)
based on E, we have

|z, < l®|pE (weE", neN). (2.6.4)

(iii) The weak p—summing norm (p, ) based on a normed space E is a p-multi-norm,
and it is p—convex. For take m,n e N, ¢ = (z1,...,z,) € E™, and y = (y1,...,yn) € E™.
For each A € Bg/, we have

m n 1/p
(2 i, DI + D Ky, A>|”> < (pam (@) + ppn(m)")"
i=1 1=1

and 0 fiy,m (@, Y)) < (tpm ()7 + f1,n(y)?)"/”. Thus () is p-convex.

In particular, (pg,,) based on a Banach space E is a sequential norm, and in fact
(E™, pi2,n) is the minimum operator sequence space based on E, in the language of [38,
p. 250).

(iv) Let E be a normed space, and consider the maximum p-multi-norm (v, ,,) based
on E. The dual of this p—multi-norm is the p’-multi-norm (p, ) based on E’, and so,
by (ii) and Proposition 2.41, (v,,,) is p—concave. m

PROPOSITION 2.43. Take p with 1 < p < o0. Let {Ey, F1} be a compatible couple of
complex Banach spaces, and suppose that (EJ, | - ||?L) and (E7, || - H:Z) are p—convex power-
normed spaces based on Ey and Ey, respectively. Take 0 € (0,1), and set E = (Eg, F1)g.

Then the power-normed space (E™, | -|,,) is p—conveuz.

Proof. Take m,n € N. Then, essentially as in equation (1.10.1), {Ef" @, E§, E{" @, ET}
is a compatible couple of complex Banach spaces and
(Eo" @y By, EY" @y EY) g = E™ @, E".

The maps Jy(,??n and Jy(,i)n associated with Fy and E1, respectively, are both contractions,

and so, by Theorem 1.46, the map J,, » associated with E is also a contraction. Thus
(E™,|-],,) is p—convex. m
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3. Multi-bounded operators
We obtain preliminary results on multi-bounded operators.

3.1. Definitions and basic results. We recall that the n'™ amplification T of a
linear mapping 7" between linear spaces E and F was defined for n € N in Definition 1.2;
indeed, T(") is specified by the formula

T (x1,...,xn) — (Tx1,...,Tx,), E"—F".
Suppose that (E",|-|,,) and (F™,|-|,) are two power-normed spaces, and that
T € B(E,F). It follows from (2.1.1) that the n'® amplification of T' is bounded as a
linear map from (E™, |- |,) to (F™,[-[,) (with |T| < |T™| < n|T|) for each n € N.
However, in general, the norms HT(")H will not be uniformly bounded in n € N. The

following generalizes definitions given in [20, §6.1.3]. Recall that B(S) is the embedding
constant of an operator S, as on page 12.

DEFINITION 3.1. Let (E™,|-],) and (F™,|-|,,) be power-normed spaces, and suppose
that T e B(E, F'). Then T is multi-bounded, with norm ||T’||, ,, if

[T, = sp {7

:neN}<oo.

The map T is a multi-contraction, respectively, a multi-isometry, if the map
T (B | -D,) = (F™ ] 1,)

is a contraction, respectively, an isometry, for each n € N. Further, T is a multi-isomor-
phism if it is a bijection and if both T : E — F and T~!' : F — E are multi-bounded,
and T is a multi-embedding if it is an embedding and if inf{3(T") : n € N} > 0.

The spaces (E™,|-||,,) and (F",|-|,) are multi-isomorphic, respectively, multi-iso-
metric, if there is a multi-isomorphism, respectively, a bijective multi-isometry from F
onto F.

The collection of multi-bounded maps from E to F is denoted by M(E, F).

In particular, in the case where (E™, |- |,,) and (F™,|-|,,) are p-multi-normed spaces
for some p with 1 < p < oo, we shall sometimes say that T is p-multi-bounded if it
is multi-bounded with respect to the two p—multi-norms, and we shall write M, (E, F)
for the collection of p—multi-bounded maps from E to F. In this case, the norm of a
p-multi-bounded operator 7' € M, (E, F') is sometimes denoted by [T, -

In the case where (E™, | -|,,) and (F", | -|,) are operator sequence spaces, our defin-
itions coincide with those of sequentially bounded maps, sequential contractions, and
sequential isometries given in [38, Definition 2.2].
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For a study of My, (E, F) and M (E) = My (E, E) (in the setting of multi-bounded
spaces), see [20, Chapter 6].

Let E and F be Banach spaces such that (E", | - |,,) and (F™, |- |,,) are power-normed
spaces. Then (M(E, F), |- |,,,) is easily seen to be a Banach space; cf. [20, Theorem 6.15].

EXAMPLE 3.2. Take p, ¢ such that 1 < p,q < o, suppose that (E",|-|,,) is a p-multi-
normed space and that (F",|-|,) is a ¢-multi-normed space, and consider the space
(M(E,F),|-|,.,)- We suppose that E, F' # {0}.
First suppose that p < gq. Take y € F' and A € E’, and consider T := y® X € F(E, F).
Then, for n e N and & = (z1,...,z,) € E™, we have
T2 =K, Ny, @ V)l

n

n 1/q
= (Z <xj,/\>q> lyl by equation (2.2.4)
j=1

n 1/p
< (Z <mj,A>p> Iyl

< tpn (@) [Al [yl < ll2],, (Al Dy Theorem 2.11,

and so T' € M(E,F) with |T|,., = [Al[y]. It follows that F(E,F) ¢ M(E,F). In
particular, M(E, F) # {0}.

Second suppose that p > q. Take T € B(E, F) with T # 0, and then take x € E with
|z| =1 and Tz # 0. For n € N, set = (z,...,7) € E™ By (2.2.5), |z|, = n'/? and
|T™ax| = |Tz|n"4, and so |T™| > |Txz|n*9=/P — 0 as n — co. It follows that
T¢ M(E,F), and so M(E,F) = {0}. m

ExamMpPLE 3.3. Let E and F' be Banach spaces, and take p,q with 1 < p < q < 0.
Consider the weak p-summing norm () based on E, so that (u,,) is a strong
p-multi-norm, and the g-sum power-norm (|- |,q()) based on F, so that (|-[,sr)
is a power-norm that is sometimes a (strong) ¢-multi-norm. Then the space of multi-
bounded operators from (E", ppn) to (£, |- |ys(p)) with the multi-bounded norm | - |,,,,
is exactly the space (I, ,(E, F'), ) of (¢, p)-summing operators from E to F', and so

[T = 7ap(T) (T € Iy p(E, F)) .

Consider the special case when F' = E and ¢ = p; we shall write II,(E) for II, ,(E, E),
mp for m, », and 7,(E) for m,(Ig), as is standard. Thus

15+ (B" 1ipn) = (B™ |- lops)| | = mlB). (3.1.1)
See [20, §3.4.2], for example, for background on (g, p)-summing operators. m

Let (E™,|-|,,) be a power-normed space, and let F' be a linear subspace of E. Then
the inclusion Jg : F' — FE is a multi-isometry. Suppose that F' is closed in E. As we
remarked after equation (1.3.5), for each n € N, we identify the n'" amplification of the
quotient mapping Qr : E — E/F with the quotient mapping of E™ onto E™/F™, and
so QQr is a multi-contraction.



Multi-normed spaces 69

Let (E™,|-|,) and (F™,|-|,) be two power-normed spaces, and take T € B(E, F')
and n € N. Recall from equation (1.3.20) that we have identified the dual of the n'®
amplification of T with the n*® amplification of the dual T" of T', so that (T'(™)’" = (")),
Moreover, we have identified the n*® amplification of the canonical embedding of E into
its bidual E” with the canonical embedding of E™ into its bidual (E™)”. Since the latter
operator is an isometry, we see that the canonical embedding of a power-normed space
into its bidual is a multi-isometry.

PROPOSITION 3.4. Let (E™,|-|,) and (F™,|-|,) be power-normed spaces, and take
TeB(E,F). Then T is multi-bounded if and only if T' : F' — E’ is multi-bounded
with respect to the dual power-norms based on F' and E’, respectively, and, in this case,
[T, = |T|l,p- In the case where (E™, | -|,) and (F™,|-|,,) are p-multi-normed spaces
for some p with 1 <p < o and T € M,(E, F), we have T' € M, (F', E').

Proof. Take n € N. Then H(T’)(") | = H(T(”))’H = HT(”) |- Thus 7" is multi-bounded if and
only if T is multi-bounded; in this case, |T7(|,,, = [T,.;- ®

The following remarks are contained in [20, Chapter 6] in the setting of multi-norms,
but they apply in the setting of power-norms and, in particular, for p—multi-norms.

DEFINITION 3.5. Let (E™,|-||,) be a power-normed space, and take (z;) € EN. Then
(x;) is a multi-null sequence in E if, for each € > 0, there exists ng € N such that

Sup [(n41,- s Tnyi) |, <€ (n=ng).
keN

Let (E™,|-],) and (F™,|],) be two power-normed spaces, and take T € B(E, F'). Then
T is multi-continuous if (Tx;) is a multi-null sequence in F whenever (z;) is a multi-null
sequence in F.

The following result has the same proof as [20, Theorem 6.14].

THEOREM 3.6. Let (E™,|-|,) and (F™,|-|,,) be two power-normed spaces, and take
T e B(E,F). Then T is multi-continuous if and only if T is multi-bounded. w

We shall next prove the power-normed analogue of the theorem on quotient operators
stated as Proposition 1.4(i). This result will be used later.

PROPOSITION 3.7. Let (E",|-|,) and (F™,|-|,,) be power-normed spaces, and suppose
that T € B(E, F). Then the operator T: E/ker T — F induced by T is a multi-isometry
if and only if T™ is a quotient operator for each n € N.

Proof. We have identified the two spaces (E/ker T)" and E™/(ker T)" isometrically for
each n € N. Hence the diagram (1.3.7) implies that T is a multi-isometry if and only if
T() is an isometry for each n € N, and, by Proposition 1.4(i), the latter happens if and
only if T(") is a quotient operator for each n € N. m

COROLLARLS.& Let F be a closed subspace of a power-normed space E. Then the iso-
morphism J}. : E'/JF+ — F' induced by the dual of the inclusion Jp : F — E is a
multi-isometry.
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Proof. Take n € N. By Proposition 3.7, we must show that (.J}.)("™ is a quotient operator.
Since (J4)™ = (Jl(rn))’ and Jl(,n) is an isometry, this follows from Proposition 1.4(ii). m

PROPOSITION 3.9. Let E be an infinite-dimensional Banach space. Then:

(i) for 1 < p < o, the power-normed spaces (E™, jip.) and (E™, |- “e,lj(E)) are not
multi-isomorphic;

(ii) for 1 < p < o0, the power-normed spaces (E", |- |,rg)) and (E",vpy) are not
multi-isomorphic.

Proof. (i) Assume towards a contradiction that there is a multi-isomorphism T' € B(E),
where T maps (E", 1, ,) onto (E™, I-l¢z(g) for each n € N. Then we have

sup {‘

By Example 3.3 (in the case where p = ¢), this means that 7" is a p-summing operator,
which contradicts the fact that T is an isomorphism on an infinite-dimensional Banach
space. Indeed, the composition of any two p—summing operators is compact (see [24,
p. 50]), and hence the isomorphism 7 would be compact if T were p-summing.

T (E™ ppn) — (B, - ||g5(E))H ‘ne N} < 0.

(ii) This follows easily by duality. =

Note that, for each n € N, we have the equalities pq , = | - HZQC(E) by equation (1.5.1)
and || [,1 ) = v1,n by equation (1.5.9).

COROLLARY 3.10. Let E be an infinite-dimensional Banach space, and take p with
1 < p < . Then the p—multi-normed spaces (E™, i) and (E™, v, ) are not multi-
isomorphic.

Proof. For 1 < p < oo, this follows immediately by combining Proposition 3.9(i) with
the inequality (1.5.12), while the case where p = oo follows from equation (1.5.1) and
Proposition 3.9(ii). m

There is a quantitative version of Proposition 3.9 and Corollary 3.10 in the case where
E is a finite-dimensional space. Indeed, suppose that dim E = k. Then

V< |Ig : (B", tpn) = (E™ Vo) |y < k-

The upper bound follows from equation (1.4.4). The lower bound follows from equation
(3.1.1) in the case where 1 < p < 2 because m,(E) = mo(E) = v/k; in the case where
2 < p < o0, it follows by duality. It can be shown that both these bounds are optimal to
within a multiplicative constant.

ExaMPLE 3.11. We shall show that, for each p with 1 < p < o0, the inverse of a bijective
multi-contraction need not be multi-bounded, and hence there is no analogue of the
Banach isomorphism theorem for multi-bounded operators.

(We remark that, in the setting of multi-norms themselves, several examples of the
failure of the Banach isomorphism theorem were given in [20]. For example, Example 6.25
of [20] shows that there are multi-norms based on infinite-dimensional Banach spaces E
and F such that M(E,F) = B(E, F), but M(F,E) = N(F, E), the nuclear operators
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from F' to E, and Example 6.30 of [20] shows that the analogue of the Banach isomor-
phism theorem may fail even when there is one multi-norm based on a Banach space E
and we consider operators in B(E). See [20, Example 6.39] for a further example.)

In the present situation, take p with 1 < p < o and take any infinite-dimensional
Banach space E, and consider the identity operator Ir on E. Equation (1.5.13) shows
that

1 (B ) = (B )| <1 (neN),

but Corollary 3.10 implies that its inverse is not multi-bounded, so that
A

With a little more work, we can present a similar example for strong p—multi-normed
spaces. In the case where either p = 2 or p = o0, this follows immediately from the above
example by Theorem 2.25. Otherwise, take E = ¢P. By Example 2.27, (ii) and (iii), the
p-sum norm (| - || z}f(E)) and the weak p—summing norm (u, ,,) are strong p—multi-norms
based on E. Equation (1.5.2) shows that

15 (B - lerey) — (B tpn)

but, by Proposition 3.9(i), its inverse is not multi-bounded, so that

<1 (neN),

HI(EW) : (Env,UJp,n) - (E", |- Hff(E))H — 0 as n — 0.

This provides the required example. m

EXAMPLE 3.12. Let F be a closed subspace of a Banach space E, and take p with
1 < p < 0. Equation (1.5.8) shows that the inclusion Jr : F — F is a multi-isometry with
respect to the minimum p-multi-norms (uf,’j ) and (Mf,n) based on F' and FE, respectively.

In contrast, suppose that F' and E are endowed with their maximum p—multi-norms
(vF,) and (v, ), respectively. Proposition 1.19 implies that Jp is a multi-contraction,
but it is not always a multi-embedding. Indeed, suppose that 1 < p < o0 and p # 2 and
that E and F have been chosen as in Example 1.30. Then equation (1.6.3) shows that
Jr is not a multi-embedding of (F™, v ) into (E™,vF ).

EXAMPLE 3.13. Again, let F' be a closed subspace of a Banach space E, and take p with
1 < p < 0. We observe that, by Propositions 1.20 and 3.7, V;,%F is equal to the quotient
norm on (E/F)" of the norm v/F, on E™ for each n € N.

However, the analogous result may fail for the minimum p-multi-norm. To see this,
take ¢ with 1 < ¢ < o0 and ¢ # 2, and choose E and F as in Example 1.30. Then it
follows from equation (1.6.4) that the g-multi-normed space ((E'/F*)™, ul ;{FL) is not
multi-isomorphic to the g-multi-normed space ((E'/F L)”,ﬁf;%/n), where ﬁgln denotes the

quotient norm on (E’/F+)" of the norm uf’ln on (E")" forneN. n

We have noted in Theorem 2.18 that multi-norms correspond to cg—norms on co®Q F.
Suppose that (E”,|-|,) and (F",|-|,) are multi-normed spaces. Then T € B(E, F) is
multi-bounded if and only if I., ® T" is bounded as a map from co ® E to co ® F, and
further ||T'(|,,, = [{c, ® T'||. Thus, in this case, our multi-bounded operators are the same
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as the ‘opérateurs réguliers’ of [45, Définition 3.2] (where they are defined in the special
case that F and F are Banach lattices). More generally, take p with 1 < p < oo and
suppose that (E™, | -|,) and (F™, | -|,,) are p-multi-normed spaces. Then p-multi-norms
based on F correspond to ¢P—norms on ¢P ® E, where the correspondence is given in
equation (2.4.3). Thus the following theorem follows from Theorem 2.21.

THEOREM 3.14. Take p with 1 < p < o0, and suppose that (E™,|-|,) and (F™,|-,)
are p—multi-normed spaces. Take T € B(E, F). Then T is p-multi-bounded if and only if
Ii» ®T is bounded as a map from {P Q@ E to (P @ F ; in this case, |T|,,, = [Ier @T|. m

Let {Fy, E1} and {Fy, F1} be two compatible couples of complex Banach spaces,
and suppose that T' : Ey + E1 — Fy + F} is a linear map such that T'(E;) < F; and
T | E;: E; — F} is bounded for j = 0,1. Take 6 € (0,1), and set

FE = (Eo,El)g and F = (F()7F1)9.

Then, as in Theorem 1.46, T(FE) < F and T | E € B(E,F). Now take n € N. Then
T™ is a linear map from (Ey + E1)" to (Fy + F1)™ such that T(”)(EJ’?) c Fl' and
7™ | E} € B(ET, F}') for j = 0,1. Take p with 1 < p < o0, and suppose that there are
p—multi-norms based on all of the spaces Fy, F1, Fy, and Fy. By Theorem 2.15, the two
interpolation spaces E and F' are such that both the interpolation power-norms based
on these two spaces are also p-multi-norms. As in Theorem 2.15, (EJ, ET')p = E™ and
(Fg, FY)g = F™ for each n € N.
We use the above notation in the following theorem.

THEOREM 3.15. Let {Ey, E1} and {Fy, F1} be two compatible couples of complex Banach
spaces, and take p with 1 < p < oo and 0 € (0,1). Suppose that there is a p—multi-norm
based on each of these spaces and that T : Ey + Eh1 — Fy + Fy is a linear map such that
T|Eje My(E;,F;) forj=0and j=1. Then T(E)c F and T | E € My(E,F).

Proof. The p-multi-norms based on each space are all denoted by (| -|,,)-
There exist constants My and M; such that

T (B 1) = B < M (el
for j = 0 and j = 1. By Theorem 1.46, T(")(E™) ¢ F™ and

HT(”) . E" F"‘ <MI'MY (neN),

and so T(E) € F and T | E € M,(E, F), giving the result. m

3.2. Multi-norms on spaces of multi-bounded operators. We consider how to
recognize the space M(E, F') as a power-normed space.

Let (E™,|-],) and (F™,| -], ) be power-normed spaces. Then we saw in Proposition
1.11(i) that the map

(T, ..., Tn) = Ay, B(E,F)™ — B(E,F™),

is a linear isomorphism for each m € N.



Multi-normed spaces 73

Now suppose that m € N and that T1,...,T,, € M(E, F); set T' = Ap, ... 1,,)- Then
T(”)(gc17...7xn) = (Tizj:ieNp, jeN,) (z1,...,2,€ E),

and so

HT(”)(zh-n,fﬂn)‘ Ti(n)(xl,---’zn) (z1,...,zn € E).

=N

mneoi=1

This shows that T € M(E, F™) with | T, , < X7, |Til, .,
U, Ty, Ton) = Aeymy s, M(E,F)™ — M(E, F™)

for each m € N. Now take T'€ M(E,F™), and set T; = m; o T € B(E,F) for i € N,

as in Proposition 1.11(i). Then HTi(k) H < HT(k)H (keN),and so T; e M(E,F) (i € Np,).

Thus ¥,, is a surjection, and hence a linear bijection.
We denote by | - Hjn the norm on M(E, F)™ induced by this identification, so that

(T, Tl = A mly  (Ths- o T € M(E,F), meN).

,,,,,

n

and so we have a linear map

Thus

I(T4s - T}, =
sup{H(E-wj i €Ny, jeNy)| o [(@, .. zn)], <1, ne N} (3.2.1)
for Th,..., Ty € M(E, F), essentially as in [20, Proposition 6.19]. We see easily that
(M(E,F)™, |- |1

is a power-normed space.

Clause (i) of the following result was given in [52, Proposition 4.4.7].
THEOREM 3.16. Let (E™,|-|,,) and (F™,|-|,) be power-normed spaces, take p such that
1<p<oo, and set M = (M(E,F)™,| - Hin)

(i) Suppose that (F™,|-|,,) is a p—multi-normed space. Then M 1is a p-multi-normed
space.

(ii) Suppose that (F™,|-|,) is a strong p-multi-normed space. Then M is a strong
p-multi-normed space.

(iii) Suppose that (F™,|-|,,) is a p—convexr power-normed space. Then M is a p—
convex power-normed space.

Proof. (i) Take m,n € N, S € M, ,, and T4,..., T, € M(E,F); set T = (T1,...,T,).
We have
(W (ST M (@) = O (W (T) P (@)  (we B keN),
and so
(@ (s@N®] < s s 02— e | (w@N®| (ke
because, by Proposition 2.5(ii), ((F*/, |- ly;) + J € N) is a p-multi-normed space. It
follows that
IS = (U (ST, < 18+ €7 = L5 WD)y = |5+ 62 = LR IT,,
and this shows that (M(E, F)™, | -|! ) is a p-multi-normed space.
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(ii) Take m,n € N, (S1,...,Sn) € M(E,F)™, and (Ty,...,T,) € M(E,F)" such
that
(Th,...,T,) <p (S1,-..,Sm) -

For each x € E and A € F’, the map T — (T'z, A), M(E,F) — F, is a continuous linear
functional, and so

n 1/p m 1/p
(Z Tz, )\>|p> < (Z |(S;x, )\>|p> .

j=1
Now take k€ N and z1,...,xx € E. Then

n k 1/p m k 1/p
(zzm% w) <<z (Sian, w) e ).
1

j=1r=1 i=lr=
Since the power-norm based on F' is a strong p—multi-norm, it follows that
[(Tjxy 2 j e Ny, e Ng)|, . < [(Sizy i€ Ny v € Ny, -
By equation (3.2.1),
[T Tl < IS8 Sl

This shows that (|| - Hjn) is a strong p—multi-norm based on M.

(iii) Take m,n € N, S1,...,8, € M(E,F), and T1,...,T, € M(E,F), and set
S =(S,....,8) and T = (T},...,T,). For each k e N and = = (x1,...,7;) € E¥, we
have

[((Sizr 11 €Ny, 7€ Ng), (Tja, : jeN,, T € Nk))H(er”)k

. . 1
< (I(Sizs i€ Ny, 7 € N[ + [(Ty, 5 € N, e N[, )

because the power-norm based on F' is p—convex, and so, by (3.2.1),

P Py I/p
1S < ((1815)"+ (1711)7)
This shows that (M(E,F)™,| - Hjn) is p—convex. m

We remark that one can also identify M(E,F)™ with M(E™, F'), following Prop-
osition 1.11(ii), so obtaining another power-norm, say (|| |), based on M(E, F) when
(E™|-|,) and (F™,|-|,) are power-normed spaces. In the case where 1 < p < o0 and
(E",|-],) is a p-multi-normed space, (M(E,F)™,|-[") is a ¢g-multi-normed space,
where ¢ = p’. Similar results to those in Theorem 3.16 hold; see [52].
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4. Banach lattices

4.1. Background on Banach lattices. We now consider how the theory of p—multi-
norms described above applies in the special case where they are based on a Banach
lattice. In particular we shall introduce the canonical lattice p—multi-norm associated
with a Banach lattice.

Background on Banach lattice theory which is relevant to the theory of multi-norms
is given in [20, §1.3]. For example, the spaces C(K), £" and L"(Q) (for each r with
1 < r < ) are Banach lattices in the usual way.

In most texts (for example, see [43]), a ‘Banach lattice’ is based on a real Banach
space; we shall call this a real Banach lattice, and the complexification of a real Banach
lattice is what we shall term a complex Banach lattice, as in [20]. We shall use the term
Banach lattice for a real or complex Banach lattice.

The lattice operations in a real Banach lattice E' are denoted by v and A, and we
shall use standard notation; for example,

xt=2v0, 27 =(-2)v0, |z|=zv(-z)=2"+2,

for x € E.

We recall the standard construction of the complexification of a real Banach lattice.
Indeed, suppose that F is a (complex) linear space such that E = Eg @ iFg for a real
Banach lattice (Eg, |- ). The positive cone of Eg is denoted by E™; it is the positive

cone of E. Take z € E, say z = x + iy, where x,y € ER, so that x = Rz and y = &z, and
first define the modulus |z| € ET of z by

ol = (ol + 1o?) "

(the right-hand side is well-defined in E* by the ‘Youdine-Krivine functional calculus’,
given below), and then define

Izl =Tlzlll (=€ E).
Alternatively, we can set
|z| = |z + iy| = sup{x cos@ + y sinf : 0 < 0 < 27}, (4.1.1)

the supremum always exists in E* and the two definitions of |z| are consistent. Then
(E,||-]) is a complex Banach lattice; the space Eg is the underlying real lattice. For
details of these remarks, see [1, §3.2], [3], [20], [43, §1.d], [46, §2.2], and [56, Chapter II,
§11).



76 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

Let E be a Banach lattice. For z € ET, we set
A, ={z€FE:|z| <z}.
A functional A € E’ is positive if
(x, \y=0 (zeE"),

and these positive linear functionals form the positive cone (E’)™ in E’, so that F’ is the
dual Banach lattice. In fact, take A, u € Eg. Then {x, A v py and (z, A A u) are defined
for x € ET by the following Riesz—Kantorovich formulae:

{ e, Avpy = sup{y, O+, wy:y,z€ BT, y+ 2 =1z}, (4.12)
Z, Anpy = inf{ly, >+, wy:y,ze BT, y+ 2=z}, o
and then A v p and A A p are extended in the obvious way to be defined on Fg.

Now take F' = EF @ iF to be the complexification of a real Banach lattice E. Let A
be a continuous, real-linear functional on E. Then A extends uniquely to a continuous,
complex-linear functional on F': indeed, we define

Mz +iy) = M) +iMy) (x,y€ F),

and so we may regard E’ as a real-linear subspace of F’. For each A\ in F’, there exist
A1 and Ag in E’ such that A(z) = A\ (z) + ide(x) (x € E), and so F’ is isomorphic as
a complex Banach space to the complexification £’ @ iE’. In fact, this identification is
isometric; the details of this are given in [1, Corollary 3.26] and [45, Proposition 2.2.6],
for example. Thus we obtain the dual Banach lattice of a (complex) Banach lattice.

Similarly, given a bounded operator 7' : E — F between two real Banach lattices,
one can define the complexification Tc of T by

Tec:x+iy—Tx+iTy, E®IE - FOPiF.

It is easy to see that Tt is again a bounded operator with ||T]| < |[T¢| < 2||T°||; see [1, p.
106], for example.

A linear subspace F' of a real Banach lattice E is a sublattice if x v y,x Ay € F
whenever z,y € F'; a linear subspace F' of a complex Banach lattice E is a sublattice if
F is the complexification of a sublattice of Eg. The lattice operations in a real Banach
lattice are continuous, and so, for example, the closure of a sublattice in a Banach lattice
is a sublattice. A linear subspace F' of a Banach lattice F is an order-ideal in E if x € F
whenever z € E and |z| < |y| for some y € F'; clearly each order-ideal in E is a sublattice
of F.

Let F be a norm-closed order-ideal in a Banach lattice E, and let Qp : E — E/F be
the quotient map. Then the quotient space E/F, taken with the positive cone Qr(E™),
is a Banach lattice.

Let E be a Banach lattice. We set

B =BpnET.

We shall use the following easy fact. Suppose that z,y € E* and {y, A) < {(z, A) for each
positive linear functional A on E. Then y < z in E™. Also, for each A € (E')*, we have

IA| = sup{{z, \) : x € B} }. (4.1.3)
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We shall often use the following Riesz decomposition property of Banach lattices; see
[43, p. 2] or [46, Theorem 1.1.1], for example.

PROPOSITION 4.1. Let E be a Banach lattice. Suppose that x1,x2,y € E* are such that
y < x1+x2. Then there areyy,y2 € E1 withy; < x1, withys < T2, and withy = y1+y2. w

DEFINITION 4.2. A Banach lattice (E, | -||) is monotonically bounded if every increasing
net in BE is bounded above; it is Dedekind complete if every non-empty subset of E+
which is bounded above has a supremum; it has the Fatou property if, for every increasing
net (z, :a € A) in E that has a supremum z € E™, necessarily

|z = sup{|zal : € A}. (4.1.4)

For example, suppose that K is a compact space. Then the Banach lattice C(K) is
Dedekind complete if and only if K is extremely disconnected [17, Theorem 2.3.3].

A Dedekind complete Banach lattice has the Fatou property if and only if it has the
Nakano property, in the sense of [20, Definition 1.22(v)]. A dual Banach lattice is always
Dedekind complete and has the Fatou property [46, Proposition 2.4.19].

DEFINITION 4.3. A Banach lattice (E, | -|) is an AL-space if
|z +y| =|z| +|y| whenever z,yeE" with zAy=0,
and an AM -space if

|z v y|| = max{||z|,|ly]|} whenever z,ye ET with zAy=0.

We shall use the following terminology.

Let E and F be real Banach lattices. A linear map T : E — F'is a lattice homomor-
phism if

Txvy) =TevTy (z,yekE).
Let FE and F' be complex Banach lattices that are the complexifications of the real Banach
lattices Eg and Fg, respectively. A linear map T : E — F' is a lattice homomorphism if
T(x +1iy) = Sx + 1Sy (z,y € Eg), where S is a lattice homomorphism from Eg to Fg.

Now suppose that E and F are Banach lattices and that T € B(E, F'). Then T is a
lattice isomorphism if it is a bijective lattice homomorphism; one can easily see that, in
this case, the inverse map T~! is also a lattice homomorphism. The map T is a lattice
isometry if T is a lattice homomorphism that is an isometry; the two lattices E and F
are lattice isomorphic, respectively, lattice isometric, if there is a lattice isomorphism,
respectively, a lattice isometry, from E onto F. A lattice embedding from E to F' is
an embedding that is a lattice isomorphism onto its range. For example, the canonical
embedding kg : E — E” is a lattice isometry [3, Theorem 1.5.4].

Let E and F be complex Banach lattices, and suppose that T € B(F, F) is a lattice
isomorphism such that |Tz| = |z| (z € ET). One can easily check (using equation
(4.1.1)) that T : E — F is an isometry.

The following central representation theorem is proved in [1, Theorems 3.5 and 3.6],
[3, Theorems 4.27 and 4.29], [43, §1.b], and [46, Theorems 2.1.3 and 2.7.1], for example;
we shall call it ‘ Kakutani’s theorem’; detailed attributions for the various statements are
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given in [1]. The proofs in the above sources are for real Banach lattices; the complex
version is given in [1, Theorem 3.20].

DEFINITION 4.4. Let E be a Banach lattice. Then e € E is an AM-unit for E if, for
each z € E, we have ||z < 1 if and only if |z| <e.

THEOREM 4.5. (i) A Banach lattice is an AL-space if and only if it is lattice isometric
to a Banach lattice of the form L'(Q) for some measure space (.

(ii) A Banach lattice is an AM-space if and only if it is lattice isometric to a closed
sublattice of a space C(K) for some compact space K.

(iii) A Banach lattice with an AM -unit is lattice isometric to a space C(K) for some
compact space K. m

We recall one standard construction concerning Banach lattices; see [43, §1.d] for
details.

Let E be a Banach lattice, and take e > 0 in E. We denote by I. the principal
order-ideal in E generated by e, so that

I.={xeFE:|z|]<(e forsome (=0}.
For x € I., set
|z, =inf{¢ = 0: |z] < Ce}.

Then (I, | -||,) is a Banach lattice that is an AM-space, and e is an AM-unit for I., and

so, by Theorem 4.5(iii), I, is lattice isometric to C'(K) for some compact space K.

DEFINITION 4.6. Let E be a Banach lattice. An element e with e > 0 is a strong unit if
I.=FE.

Thus |- | and |- |
the following result.

. are equivalent norms on E when e is a strong unit, and we have

PROPOSITION 4.7. Let (E,|-|) be a Banach lattice with a strong unit, e. Then | -||, is
equivalent to the given norm | - |, and (E, | -|,) is lattice isometric to C(K) for a certain
compact space K. m

Let n € N. A function F': R™ — R is positively homogeneous if
F(aty,...,at,) = aF(ty,...,t,) (aeR" t1,... . t, eR).
Now let E be a real Banach lattice, take z1,...,2, € FE, and choose an element
e € ET such that |z;] < e (i € N,); for example, take e = |z1| v -+- v |z,| in E. Let

F : R™ — R be a continuous, positively homogeneous function. Then, identifying I, with
C(K,R) for some compact space K, we can set

Fz1,...,20)(t) = F(z1(t),...,z0(t)) (te K),

and so
F(z1,...,zy)el. Cc E;

in fact, the element F(x1,...,x,) is independent of the choice of e. The map that takes F'
to F(xq,...,x,) is the Youdine—Krivine calculus [63, 35]; for details of this construction,
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see [43, §1.d], for example. In particular, for each p with 1 < p < o0 and each Banach
lattice F, we can define the element

n 1/p
<Z |£L’Z|p> € E+
i=1

for x1,...,x, € E, where we interpret this element as |21| v - -+ v |z,| in the case where
p = 0. Similarly, for each 6 € (0,1), we can define the element |z|'~?|y|? for 2,y € E.

The Youdine—Krivine functional calculus as above is indeed usually given for real
Banach lattices. There is an extension to the complex setting; this is given in [34, Section
3], for example.

Let E and G be real Banach lattices, and suppose that T" € B(E,G) is a lattice
homomorphism. Take n € N, x1,...,x, € F, and a continuous, positively homogeneous
function F' : R™ — R. Then

T(F(z1,...,24)) = F(Txy,...,Txy). (4.1.5)

Let E be a real Banach lattice, let F' : R® — R be a continuous, positively homo-
geneous function, and suppose that F(t1,...,t,) =0 (t1,...,t, € R). Then we see that
F(z1,...,2,) = 0 for each z1,...,2, € E. Thus, in order to verify an inequality (or
an equality) that involves only continuous, positively homogeneous functions of finitely-
many variables (and, in particular, any lattice operations) in an arbitrary real Banach
lattice, it suffices to verify the inequality for real numbers.

Take p with 1 < p < 0. We recall from [43, p. 42] that, for a real Banach lattice F,
neN, and zq,...,2, € E, we have

n 1p n
(Z |xi|P) = sup {Z ;i (g, .. ap) € BZE(JR)} , (4.1.6)
i=1

i=1
where ¢ = p’. The same proof as that in [43] shows that, for a complex Banach lattice
E,neN, and z4,...,x, € E, we have

n 1/p
i=1 ;

n
PILES
1=1

: (Otl,...,an)Eng(C)} s (417)

where again q = p’. It follows that
n 1/p n
(Z |xi|p) = sup {9? (Z aixi> t(ony .., am) € ng(c)} . (4.1.8)
i=1 i=1
Indeed, these equalities hold in C(K,C) for each compact space K, and hence in an
arbitrary Banach lattice.
We have the following generalized versions of Holder’s inequality.
PROPOSITION 4.8. Let E be a Banach lattice.

(i) Take po,p1 with 1 < pg < p1 < © and take 0 with 0 < 6 < 1, and define p by
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1/p=(1—0)/po+0/p1. Then

n 1/p n (1-0)/po n 0/p1
(Z a; |xi|p> < (Z a; |xi|p°) <Z a; x¢|p1>
i1 i—1 i=1

for eachneN, xy,...,2, € E, and ay,...,a, € RT, and
n 1/p n (1-0)/po n 0/p1
<§J(|ac¢|1(9 |yi|0)p> < (Z |$i|p0> (Z |yi|p1> (4.1.9)
i=1 i=1 i=1
for eachneN and z1,...,2n,y1,...,yn € E.

(ii) Take p with 1 < p < 0. Then

n n 1/p n 1/q
Z [{zi, M)l < <<Z |17i|p> ; (Z |>\i|q> >

for eachneN, z1,...,2, € E, and \1,..., A\, € E', where g =p'.

Proof. The first part of clause (i) and clause (ii) are given in [43, Proposition 1.d.2, (ii)
and (iii)], for example.

For the second part of clause (i), recall that the following generalization of Holder’s
inequality holds for each n € N, each g, ¢q1 € (1,0), and each s1,...,8,,t1,...,t, € RT,
where 1/p =1/qo + 1/q1:

n 1p n 1/q0 n 1/q1
(Z s§t§> < (Z 53°> (Z tfl) : (4.1.10)
i=1 1=1 =1

Now take z1,...,Zn,y1,...,Yn € F, and set s; = |xi|1_9 and t; = |yi|0 for i € N, and
set go = po/(1 —0) and g1 = p1/6. Then we see that our two definitions of p coincide and
that inequality (4.1.9) holds with this interpretation of the symbols.

Define

n 1/p
F:(Ilﬂ"'axnayla"'ayn = <Z |x1‘ |yl > ’ R2nHR7

and

(1-6)/po n 0/p1
G:(T1,e oy, Ty Y1ye ey Yn) — (Z x1p°> (Z |yi|p1> , R S R.
i=1

Then F and G are continuous and positively homogeneous functions on R?" such that

F(‘r17"'7xn7y17"'7y’n) <G($17---7$my17---7yn) (x1u~"7xn7yla"'7yn€R)'

By the Youdine-Krivine calculus described above, the same inequality holds whenever
T1y.eryTnyYly---,Yn € E, where we note that all terms are in Et, and so inequality
(4.1.9) holds in this case. m

In the next result, we shall use the following form of the Riesz—Kantorovich formula
for complex Banach lattices specifically given in [1, Corollary 3.26].
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Let E be a complex Banach lattice, and take A € E’. Then

(z, |\) =sup{|{z, )| : z€ A} (xeE"). (4.1.11)
It follows that, for each A € (E’)™, we have
(|, A = sup{|[{x, uy| : ne Ay} (xeE). (4.1.12)

PROPOSITION 4.9. Let E be a Banach lattice, and take p with 1 < p < c0. Then

n 1/q n 1/p
<x, <Z |)\i|q> >=sup S T1,...,x, € B, (Z |J}i|p> <z
i=1 =1

foreachxe EY, neN, and A\1,...,\, € B/, where q =1p'.

n

PRI

i=1

Proof. This result in the case where E is a real Banach lattice is given in [43, p. 48].
Now suppose that F is a complex Banach lattice with underlying real Banach lattice
ER, and take x € ET, ne N, and \q,...,\, € E'. By the real case, we have

n 1/q n n 1/p
<$; <2 |)\i|q> > = sup Z@m |\l )i @1, 20 € Eg, <Z |$i|p> S
i=1 i=1

i=1
Fix € > 0, and take z1,...,x, € ET with
n 1/p n 1/q n
<Z xf) <z and <1’7 (Z |>\¢|q> < Z@m [Ail) + ¢
i=1 i=1 i=1

By (4.1.11), there exist 21, ..., 2, € E such that
‘Zl| < x; and <$i7 |/\1|> < |<Z“ )\1>| +é

for each ¢ € N,,. By multiplying each z; by a complex number of modulus 1, we may
suppose that (z;, \;> € Rt. It follows that

. 1/p " 1/q n
(Z |zip> <z and <x, (Z |)\i|q> < Z<Zi’ Aiy+e(n+1).
i=1

i=1 i=1
This holds true for each € > 0, and so

n 1/a n n 1/p
<»T7 (Z |)‘i|q> > < sup Z<sz Al 121,520 € B, <Z |Zi|p> S
i=1 i=1 i—1

The opposite inequality follows immediately from Proposition 4.8(ii), and so the result
is proved. m

The following is Khintchine’s inequality for Banach lattices; it follows easily from the
same inequality for scalars and the Youdine—Krivine calculus.

PROPOSITION 4.10. Let E be a real Banach lattice. Then

n 1/2 n
1 ) 1
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for each n e N and x1,...,x, € E, where the outer sum on the right-hand side is taken
over all choices of e;, = £1 forieN,. n

The following deep theorem of Krivine is taken from [43, Proposition 1.f.14]; here K¢
denotes Grothendieck’s constant.

THEOREM 4.11. Let E and F be Banach lattices, and take T € B(E, F). Then

(2 |Txi|2> < Ko |T] (Z mf)
=1 =1

for eachneN and z1,...,2, € E. n

1/2

The following definition is taken from [43, Definition 1.d.3].

DEFINITION 4.12. Let E be a Banach lattice, and take p with 1 < p < c0. Then FE is
p—convez (with constant 1) if

1
[z + ") < (lel” + 191”7 (@,y < E)
and p—concave (with constant 1) if
1
(2 + 1) 7] = (2l + ") (@ ye B).

For example, for a space E = LP(Q2), where 1 < p < o0 and € is a measure space, we
have

n 1/p n 1/p
=1 =1

E
and so LP(Q) is both p—convex and p—concave. Conversely, it is shown in [43, p. 59] that
each Banach lattice that is both p—convex and p—concave is lattice isometric to a Banach
lattice of the form LP(2). More generally, a calculation shows that, for r with 1 < r < oo,
the Banach lattice L"(Q) is p—convex if and only if r € [p, ] and is p-concave if and
only if r € [1,p].

Take p with 1 < p < . It is noted in [43, Proposition 1.d.4] that a Banach lattice
is p—convex, respectively, p—concave, if and only if the dual Banach lattice is p’—concave,
respectively, p'—convex.

4.2. Regular and order-bounded operators. We first recall the definitions of two
Banach spaces B, (E, F) and By(E, F).

Let E be a Banach lattice. A subset B of E is order-bounded if there exists x € E
such that B < A,. Let F and F be real Banach lattices, and let S and T be linear
operators from E to F. Then

S<T if Sx<Tx (vrekE™).

Clearly (L(E, F),<) is an ordered linear space.
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DEFINITION 4.13. Let E and F be real Banach lattices, and consider a linear operator
T from E to F. Then:

(i) T is positive it T = 0;
(ii) T is reqular if T = Ty — Ty, where T} and Ty are positive operators;

(iii) T is order-bounded if T'(B) is an order-bounded subset of F' for each order-
bounded subset B of E.

The set of positive operators from E to F is closed under addition and multiplication
by o € RT, and so it is a cone. Each regular operator is order-bounded. The book [3] is
devoted to positive operators on real Banach lattices (and more general spaces).

Now suppose that E and F' are complex Banach lattices, with underlying real Banach
lattices Eg and Fg, respectively. Then T € L(E, F) is positive if T(Egr) < Fg and the map
T | Er : Eg — Fg is positive. For a positive operator, we have |Tz| < T(|z]) (z € E).
Each operator in L(E, F) has a unique expression in the form S + iT, where S and T
belong to L(Eg, Fr) and

(S+iT)(x +1iy) = Se —Ty+i(Sy +Tx) (z,ye€ Er);

such an operator is regular or order-bounded if both S and T' are regular or order-bounded,
respectively.

Let E and F' be Banach lattices. Each order-bounded operator is continuous, and so
we denote the spaces of all positive, all regular, and all order-bounded operators from F
to F by B(E,F)*t, B.(E, F), and B,(E, F'), respectively. Thus we have

B(E,F)* c B,(E,F) < By(E,F)  B(E, F).

We write B,.(E) and By(FE) for B,.(E, E) and By(E, E), respectively. Take T € B(E, F)™*.
Then
IT|| = sup{|Tz| : 2 € By} . (4.2.1)

PROPOSITION 4.14. Let E and F be Banach lattices, and take p with 1 < p < 00. For
each T € B(E, F)", we have

n 1/p n 1/p
(Z |T:ci|p> <T(Z xiv’) (21,...,2n € B, neN).
i=1 i=1

Proof. We may suppose that z1,...,2, € ET and that we are working in Fr and Fg.
Set g =p'.
By equation (4.1.6), we have (33} ; 2i|P)"/? = sup A, where

A= {Z Q5 ¢ (0417...70171) € B&?(R)} ’
i=1

Further,

n 1/p
(Z |Txi|p> =supT(A).

i=1
Since sup T'(A) < T'(sup A), the result follows. m
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It follows that

n 1/p n 1/p
(Z T'rip> < HT” (Z |x1|p) (xla -5 T € E7 ne N) (422)
i=1 =1

for each T e B(E, F)*, a result of Krivine [43, Proposition 1.d.9].

In particular, Proposition 4.14 implies that

n 1/p n 1/p
<Z (s, A>P> <<<Z |xi|p> ,)\> (21,..., 2, € E, neN) (4.2.3)

for each A € (E')™.

Let E and F be Banach lattices. We now describe the norms on B,.(E,F') and
By(E, F). For each T € By(F, F), there exists ¢ > 0 such that, for each z € E*, there
exists y € F™ with T(A;) < Ay, and |y < ¢|z|. The infimum of these constants c is
denoted by |T,. Details of this result are given in [20, Proposition 1.26], which is based
on [60].

For T € B.(E, F), set

IT], = inf{]lS|| : S € B(E, F)", |Tz| < S(z]) (z€ E)}.

PROPOSITION 4.15. Let E and F' be Banach lattices. Then:

(i) |||l is @ norm on the space By(E, F) such that

|Tl, =T (T € Bo(E, F)),

and (By(E, F),|-|,) is a Banach space;

(ii) | -], is @ norm on B.(E,F) such that

|7l =Tl = T (T € B.(E, F)),

and (B, (E,F),|-|,) is a Banach space. m

In the case where F' = E, the spaces (B,.(E),|-|,) and (By(E),|-|,) are unital
Banach subalgebras of B(E).

The following result is proved in [3, pp. 12-13], for example; formula (4.2.4), below,
is a Riesz—Kantorovich formula.

PROPOSITION 4.16. Let E and F be Banach lattices, with F' Dedekind complete. Then
B.(E,F) = By(E, F) is a Dedekind complete Banach lattice. Suppose that T € B.(E, F).
Then

IT| (z) = sup{|Tz| : |2| <2} (veET) (4.2.4)

and, further, |T||, = |||T|| and |Tz| < |T|(|z]) (€ E). =

Let E and F be Banach lattices. Often, but not always, the two spaces B,.(E, F) and
By(E, F) are the same; by the above result, this holds when F' is Dedekind complete, and,
in particular, when F' is a dual Banach lattice. In the case where E and F' are AL-spaces,
it follows from [1, Theorem 3.9 and Corollary 3.10] and [3, Theorem 15.3] (where we note
that each AL-space is a ‘K B-space’) that B,.(E,F) = By(E,F) = B(E,F) and that
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IT|, =|T| (T eB(E,F)). On the other hand, suppose that p > 1, that £ = LP() for
a measure space 2, and that E is an infinite-dimensional space. Then, by [4], B,(E) is
not even dense in (B(E),|-|) and |- |, and |- | are not equivalent on B,(E). Examples
with B,.(E,F) < By(E, F) and with By(E, F) < B(E, F) are given in [3, Examples 1.11
and 15.1]. An example given in [60, §2] shows that there may be operators in By(E, F')
that are not even in the | - |-closure of B, (E, F'), and Example 4.1 of [60] exhibits Banach
lattices E and F' and a compact, order-bounded operator V : E — F which is not in
the || - [|,-closure of B,.(E, F). Suppose that B,.(E,F) = By(E, F). Then the norms ||- |,
and |- [, are equivalent on B,.(E, F'), but examples in [60] show that the norms are not
necessarily equal in this case. For general Banach lattices £ and F, the two norms |||,
and |- [, are not necessarily equivalent on B,.(E, F).

More information on regular and order-bounded operators can be found in the fine
survey article [61]. In this article, Theorems 2.1 and 2.4, respectively, characterize the
lattices F such that B,.(E, F) = B(E, F) for every Banach lattice E and lattices E such
that B.(E,F) = B(E,F) for every Banach lattice F'; some extra cases are provided
by Example 2.7 and Theorems 2.8 and 2.9 of [61]. Further, conditions for the equality
By(E,F) = B.(E,F) are given in [61, Section 4].

Let E and F be Banach lattices, and take T' € B,.(E, F). Then T | G € B,.(G, F) for
each closed sublattice G of E.

DEFINITION 4.17. Let E and F be Banach lattices, and take T € B(E, F). Then T is
pre-reqular if T € B(F', E’) is regular, and then
171, = |77,
for each such operator T'. The space of pre-regular operators from E to F' is denoted by
B, (E,F).
Thus B, (E, F) is a linear subspace of B(E, F),
| T, = T (T € Bp(E, F)),

and (Bpr(E, F), [ -[,,) is a Banach space.

It is clear that T” is regular and that |T(, < |7, for each T € B,(E,F), and
so a regular operator is pre-regular. Further, the dual of an order-bounded operator is
order-bounded [3, Theorem 5.8], and so an order-bounded operator is pre-regular by
Proposition 4.16. Thus we have

B(E,F)" ¢ B.(E,F)c By(E,F) c B,.(E,F) c B(E, F).

The following example shows that B, (E, F') can be a proper subset of B, (E, F').

EXAMPLE 4.18. In [3, Example 15.1], it is shown that the map
T:f—(f(1/n) = f(0):neN), C()—co,
is a bounded linear operator that is not order-bounded, and hence not regular. However

the dual T” of T is an operator T" : ¢! — C(I)’ between two AL-spaces, and so 1" is
regular, and hence T is pre-regular. m
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PROPOSITION 4.19. Let E and F be Banach lattices, and suppose that F is Dedekind
complete and has the Fatou property. Take T € B.(E,F). Then T' € B,(F',E') and
17", = 1T,
Proof. We shall show that ||T||,, < |T"],. Since |T”|, < |T”], < |T|,, this implies the
result.

Fix € > 0. By (4.2.1), there exists € E* with ||z = 1 and

N < T @) + -

Set S = {|Tz| : |2| < x}, a subset of F*', so that, by equation (4.2.4), sup S = |T| (x).
The family F of finite subsets of S, when ordered by inclusion, is a directed set. For
each a € F, set yo, = supa, so that (y, : @ € F) is an increasing net in F'* such that
sup{ya : @« € F} = |T| (z). Since F has the Fatou property,

T} (x) || = sup{|lyal - e F}.

Note that Z = kg (z) belongs to (E”)*. Now set § = {|T”¢| : |¢| < 2}, a subset of
(F")*, and let F be the family of finite subsets of S ; suppose that the elements yz are
defined in an analogous way to the elements y,, now with respect to F. Since F” has
the Fatou property,

[17"| @) | = sup{|g5] : B € F}.
Since {[T"¢| : |¢| < z} > {[T"Z] : |2| < «} and the embedding of F' into F” is a
lattice homomorphism, so that {7, : a € F} is a subset of {yz : 8 € F}, it follows that
HT"[ @) | = [T () [ Thus

HT [ =171 @) | = 1Tl -
This holds true for each € > 0, and so 7’|, < |7”,, as required. m

COROLLARY 4.20. Let E and F' be Banach lattices, and suppose that F' is a dual Banach
lattice. Take T € B.(E,F). Then T' € B.(F', E') and |T"|, = |T||, = || |T||. =

THEOREM 4.21. Let E and F be Banach lattices, and take T € B(E,F). Then the fol-
lowing are equivalent:

(a) T : F' — E' is regular, so that T is pre-regular;

(b) T” : E" — F” is regular;

(¢c) kp o T : E — F" is regular.

In this case, the three operators have the same regular norm.
Proof. Certainly (a) = (b) and |T"||, < |7"|,. Since kp 0o T =T" okg : E — F", we
see that (b) = (c) and |kg o T, < |77,

Finally, suppose that (c) holds. Then (kp o T)" : F” — E’ is regular. Now we
have T/ = (kp o T) o kg : F' — FE’, and so T’ is regular, giving (a); further, we
have |T"|, < |(kp o T)|,.. By Corollary 4.20, |k o T, = |(kr o T)'|,, and hence
1T, < lkrp o T,

The result follows. =
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4.3. Multi-norms based on Banach lattices. We now define the canonical lattice
p—multi-norm based on a Banach lattice.

DEFINITION 4.22. Let F be a Banach lattice, and take p with 1 < p < oo. For each
n e N, set

n 1/p
|| 2P = (Z |xi|p> (& = (x1,...,2,) € E"). (4.3.1)
i=1

The corresponding definition to (4.3.1) in the special case where p = oo is
L
Izl = [leal v vzl (2= (21,...,20) € E");
the above definition in the special case where p = 1 is
DL
Izl ™ =l + -+ lzal | (2= (21, 20) € E").
Then (]|- HTLL) and (|| - HDL) are the lattice multi-norm and the dual lattice multi-norm,

respectively, based on E, as defined in [20, Definition 4.41].

Let E be a Banach lattice. Then the Banach space (E™, | - \ﬁ’p) is the space that is
sometimes denoted by E(£F), slightly modifying the notation of [43, p. 46], and we shall
do this at some later points. See also [45, p. 8].

The space (E™, | -]
operations.

ﬁ’p ) is itself a Banach lattice with respect to the coordinatewise

THEOREM 4.23. Let E be a Banach lattice, and take p with 1 < p < 00. Then the sequence

(I

Proof. As in [20, Theorem 4.42], it is immediately checked that (|- HTLL) is an co—multi-
norm. By Theorem 2.25, each co-multi-norm is a strong co-multi-norm, and so the result
holds in the case where p = 0.

L,p ; ;
P) based on E is a strong p—multi-norm.

Now suppose that 1 < p < o0, and set ¢ = p’. By Proposition 2.23, we know that
a strong p—multi-norm is a p—multi-norm, and so it suffices to verify the condition in
Definition 1.37.

Take m,n € N, ¢ = (1,...,2,) € E™, and y = (y1,...,Yn) € E" with y <, ©
Thus, for each positive linear functional A on E, each u € E’ with |u| < A, and each
(ai1,...,ay) € Bya, we have

n n 1/q n 1/p
<Z ajys, 1)< Y5 eyl s, ml < <Z |04jq> (Z |<iju>|p>

Jj=1

j=1

m 1/p m 1/p
S (Z s, “>p> S <Z<|$i| ; /\>p> by (4.1.12)

m 1p
<<<;|zi|”> ,)\> by (4.2.3),
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and so it follows from (4.1.12) that

Sl <((5) )

This holds for each positive linear functional A\, and so

n m 1/10
Dl ajyi| < (Z scip> in E
j=1 i—1

for each (ai,...,ay,) € Bya. It now follows from (4.1.6) or (4.1.7) that

n 1/p m 1/p
($1) (S
j=1 i=1

and hence |y|~? < |lz|%?, giving the result.

Let F be a Banach lattice, and take p with 1 < p < co. It follows from Theorem 2.11
that

L, n
pon(@) < [z|" (€ E" neN),

A short calculation shows that we have equality in the case where E = C(K) for a
compact space K.

DEFINITION 4.24. Let E be a Banach lattice, and take p with 1 < p < oo0. Then the
sequence (| - Hﬁp) defined in (4.3.1) is the canonical lattice p—multi-norm based on E.

EXAMPLE 4.25. Take p with 1 < p < o0 and n € N. We give a specific example of a space
B(ep) = (7] - |57).

Indeed, we take r with 1 < r < oo, and consider the Banach lattice £ = ¢". The
space E({P) consists of n-tuples © = (x1,...,2,), where z; = (z;; : j € N) € £" for
1 € N,,, and the norm of such an element is

1/r

r/p
|l = Z (Z Ixul”> . (4.3.2)

j=1

Now consider the Banach space F' = ¢F. For 1 < r < oo, the space £"(F') consists of
sequences y = (y; : j € N), where y; = (y;; : i € N,,) € £2 for j € N, and the norm of

such an element is
1/r

r/p
p) . (4.3.3)

Thus E(¢P) with E = £" is isometrically isomorphic to £"(F') with F' = ¢P. m

o0 n
lyllerey = [ D] (Z Y.

j=1 \i=1

THEOREM 4.26. Let E be a Banach lattice, and take p with 1 < p < 0. Then the
canonical lattice p—-multi-norm based on E is p—convex if and only if E is p—convex as a
Banach lattice.
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Proof. Suppose first that E is p—convex as a Banach lattice, and suppose that m,n € N,
@ = (r1,...,2m) € E™ and y = (y1,..,yn) € E™ Set |- =|-|5" (neN)and

m 1/p n 1/p
() oo (5]
1=1

J=1

in E. It follows that

1
@ W)l = (0 + 07 < (Jul? + [0]7)7 = (Jl, + Iy )"

Hence the p—multi-norm (| - ||ﬁ’p ) is p—convex.

Conversely, suppose that the p—multi-norm (| - \ﬁ’p ) is p—convex, and take z,y € E.
Then
1 L,
G2+ 1w)7| = I )57 < (Jol” + 1),

and so F is a p—convex Banach lattice. m

COROLLARY 4.27. Take p with 1 < p < o0, and suppose that E is a p—convex Banach
lattice. Then

lely” < |2l (@cE" neN). s

It is shown in [20, §4.3.1] that the two sequences (| - Hﬁ :neN) and (|- HfL :neN)
are multi-norms and dual multi-norms, respectively, and that the duals of the lattice
multi-norm and the dual lattice multi-norm based on E are the dual lattice multi-norm
and the lattice multi-norm, respectively, based on E’. We now generalize these facts; the
proof is similar to one on pages 47 and 48 of [43] that shows (for the case of real Banach
lattices) that the dual space of E(£F) is E'(£F).

THEOREM 4.28. Let E be a Banach lattice, and take p with 1 < p < o0. Then the dual
of the canonical lattice p—multi-norm based on E is the canonical lattice p’'-multi-norm
based on E'.

Proof. The cases where p = 1 and p = o0 have already been covered, and so we may
suppose that 1 < p < 0. Set ¢ = p'. For n € N, we write || - H; for the dual of the norm
|- HyLL’p, so that || -]/, is defined on the space (E')™.

Take ne Nand A = (A1,...,\,) € (E")". For @ = (x1,...,x,) € E™, we have

n n 1/p n 1/q n 1/q
Ko, Ml < 3 [ M)l < <<Z |xi|p> , (2 w) > < (2 w) Ja 27
=1 =1 i=1 1=1

by Proposition 4.8(ii), and so

n 1/q
Il < <Z IAi|q> = |Al
i=1

L.q
nl
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For the reverse inequality, take z € E*, n e N, and = (z1,...,%,) € E" such that
>, |2;|")" < x. Then || 57 < [|z]. For each A = (Ay,..., \,) € (E')™, we have

Z@i, i)
i—1

and so it follows from Proposition 4.9 that

n 1/q
<w, (Z |/\i|q> > <AL ) -
i=1

Hence, by (4.1.3), we have

n 1/q
L,
IA = (Z I/\ilq> <[l -

i=1

< AL =]

This concludes the proof. m

Take p with 1 < p < c0. We now consider the canonical lattice p—multi-norms asso-
ciated with sublattices and quotients of a Banach lattice.

First, let F' be a closed sublattice of a Banach lattice E/, and consider the canonical
lattice p—multi-norm based on E. Then F' is a Banach lattice, and the p—multi-norm
induced on the family {F™ : n € N} is exactly the canonical lattice p-multi-norm based
on F.

Next suppose that F is a closed order-ideal in E, so that E/F is again a Banach
lattice; we again write Qp : E — E/F for the quotient map, so that Qp is a lattice
homomorphism. Then there are a quotient power-norm, temporarily called (] - Hn quot),

and a canonical lattice p-multi-norm, temporarily called (]| | , based on E/F. We

n,can)
claim that these two p—multi-norms coincide.

Take n e Nand « = (z1,...,2,) € E. Then
n 1/p n 1/p
QF (Z |x1yl|p> :QF (Z |xi|p> (y17"'ayn€F)7
i=1 i=1

and S0 H%’ + Fn”n,can < HSC + Fn”n,quot'
To prove that, conversely, we have |z + F"|, . < [& + F"[,, .., it suffices to show

that, for each n € N, each x1,...,2, € E, and each y € F', there exist y1,...,yn € F such

that
n 1/p n 1/p
(Z |Iiyi|p> < (Z |z,-,|P> —y|, (4.3.4)
i=1 1=1

and we shall do this. Set
n 1/p
u= (Z |xi|p> )
i=1

Without loss of generality, we may suppose that 0 < y < u, for otherwise, replacing y by
(Ry)* Aw will reduce the right-hand side of (4.3.4). It suffices to prove that, for each such
y, there exist y1,...,y, € E such that (4.3.4) holds and such that |y;| <y (i € N,), for
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the latter condition guarantees that yi,...,y, € F. We can work in the order ideal I,
which we can identify with C'(K) for a compact space K, and so it suffices to establish
the inequality (4.3.4) in the special case in which F = C(K).
For i € N,,, define y; such that
zi(t)

(1) = (a0 A y0)

and y;(t) = 0 when ¢t € K and z;(t) = 0. Then we see that y1,...,y, € C(K) and also
that |z; — y;| = |x;| — |ys| (¢ € N,,). By replacing each x; by |z;|, we may suppose that
x; 20 (i € N,) in (4.3.4). Hence y1,...,yn, € C(K)t and y; = z; A y for each i € N,
and so we see that it suffices to prove that

n 1/p n 1/p
(Z(% — T A y)p> < (Z xf) —y (4.3.5)

when te K and x;(t) #0

i=1
whenever z1,...,2, € C(K)" and y € C(K)" with y < u. Since the order in C(K,R)
is pointwise, it suffices to prove equation (4.3.5) in the case where z1,..., 7,y € RT.
Set x = (x1,...,2,) € R" and y = (y,y,...,y) € R™; without loss of generality, we
may suppose that |z[,» = 1, in which case 0 < y < 1. Thus we need to show that
l@—9) ly <1—v.
We may suppose that x1,...,z; = y and that zpy1,...,2, < y for some k € N,,.
Take aq,...,a, = 0 such that
k k
(@ —y)*|,., = Z(fﬂz —y)a; and 2043 =1,
i=1 i=1

where ¢ = p’. Then Zl L =1, and so

k
|(@—y)*],, < Z S lzlep Mlaas s an)lgg =y =1 -y,

as required. Thus we have proved the following theorem.

THEOREM 4.29. Let E be a Banach lattice, and suppose that F is a closed order-ideal
in E. Take p with 1 < p < 00. Then the quotient power-norm induced on E/F by the
canonical lattice p-multi-norm on E is the canonical lattice p-multi-norm on E/F. u

4.4. Interpolation between Banach lattices. We consider interpolation between
complex Banach lattices. In particular we wish to note first that in certain circumstances,
a particular interpolation space between two Banach lattices is itself a Banach lattice.
This topic has been previously considered; the seminal work is [11], and some works have
shown the result for Banach lattices of particular types. The result is also stated without
proof by Raynaud and Tradacete in [53, p. 96]. However we have not found exactly the
result that we seek, and so we provide details here; we are grateful to Michael Cwikel for
some valuable comments, based on [14].
The initial definition and results apply to both real and complex Banach lattices.
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DEFINITION 4.30. Let (Ey, | -|,) and (E1, |- |,) be Banach lattices such that {Ep, E1} is
a compatible couple of Banach spaces with an ambient space H that is a Banach lattice.
Suppose, further, that, for ¢ = 0,1, each E; is an order-ideal (not necessarily closed) in
H. Then {Ey, E1} is a compatible couple of Banach lattices.

Later, we shall use the following remark. Let Ey and F; be compatible couple of
Banach lattices, and take z € Fy + E7 such that 0 < x < yo + y1, where yg € Eg' and
y1 € Ef. Then

12l g+ &y < 90l + llwally -

Indeed, by the Riesz decomposition property, Proposition 4.1, there exist xg,2; € HT
such that x¢ < yo, 1 < y1, and z = o + x1. Since Ey and F, are ideals in H, we see
that zo € By and x1 € EY. Thus 2], 5 < 7ol + =1y < lwoly + |y1l;, as required.

THEOREM 4.31. Let {Ey, E1} be a compatible couple of Banach lattices. Then
(Eo n Bl gynw,) and  (Eo+ Ev (g, 5,)

are Banach lattices that are sublattices of the ambient space.

Proof. We know that Eg n Fy and Ey + E; are Banach spaces, and they are sublattices
of the ambient space.

Tt is clear that Fy n Fj is a Banach lattice; we shall show that Ey + Ey (with the
norm |- | = |||z, g, ) is a Banach lattice.

We first claim the following: Take z,y € Ey + Fy with 0 < z < y. Then |z| < |y|.
Indeed, fix € > 0. Then there exist yg € Eg and y; € F; such that y = yo + y1 and

lyollo + lyally < lyll + <.
We may suppose that yo € (Ep)r and y; € (E1)g. We have < y < yj +y; and

Hy(;rHo + HyirH1 <yl +e.

By the remark, |z| < Hyar Ho + Hyf Hl < |ly| + e. This holds true for each € > 0, and so
the first claim is proved.
Second, we claim the following: For each z € Fy + Fj, we have | |z| | = ||z
Indeed, take z € Fy + F; and fix € > 0. Then there exist zg € Fy and z; € E; such
that z = 29 + 21 and
l20llo + 220, < 2l + <.

Then |z| < [z0] + |21]- By the remark, |[[z] || < |[[20] [ + [I21] [} = lz0llg + [21];, and so
Izl | < [|z] + & Hence | |2] | < |z].

For the reverse inequality, again fix € > 0. There exist zg € Ey and z; € E; such that
|z| = zo + z1 and

[20llg + llzally < [[1z[ ] + .

Since |z] < |20| + |21], there exist zg € Ej and x; € E; such that zo < |20, 21 < |21,
and also |z| = xg + x1. Take e € HY such that z, zo, and z; belong to I.. Then I, is
lattice isomorphic to C(K) for a compact space K. By working in C'(K), we see that
there exist wg and w; in I, such that

wo(t) = xo(t) - argz(t), wi(t) =x1(t) - argz(t) (te K).
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Then |wg| = zg and |wy| = x1, so that wg € Ey and wy € E;. Further, we see that
wo +wy = |z| - argz = z in C(K), and hence z = wg + wy in I.. It follows that
Izl < wolly + lwilly = llzollo + 21l < 20l + llz1lly < [2[1 + -
Thus |z]| < |/|2] . The second claim follows.
Finally, suppose that z,w € Eg+E7 with |z] < |w|. Then | |z] | = |z] and || |w] || = |w]|
by the second claim, and | |z| | < |||w]| | by the first claim, and so ||z|| < |w]||. This shows
that (Ep + E1, | - ”E0+E1) is indeed a Banach lattice. m

We also note the following. Suppose that Fy and F; are complex Banach lattices that
are the complexifications of Fy and F7i, respectively. Then Ey n Fy and Ey + E; are the
complexifications of Fy n Fy and Fy + Fi, respectively.

Let H be a Banach lattice. Take z9, 71 € H™ and 6 € (0, 1). Then the element 2% ¢
is defined in H™; here we identify z§ %2¢ with lzo|* % |21|?, which is defined by the
Youdine—Krivine calculus, as in [43]. By [43 Propos1t10n 1.d.2(1)], we have

6~ ] < ol '~ ] - (4.4.1)
Recall from inequality (4.1.9) (with pg = p; = 1) that

LoN1-0 s N0
y; 2 < (Z yi) (Z Zi) (4.4.2)

i=1 i=1

-
INagb
I

foreachn e Nand y1,...,Yn,21,...,2n € HT.

DEFINITION 4.32. Let {Fy, E1} be a compatible couple of Banach lattices, and take 6
with 0 < 8 < 1. Then the Calderén—Lozanovskii space, denoted by Eé*QEf, is the set of
all z € Ey + F; such that |z| < 257%2¢ for some 29 € Ef and z, € Ef. For z € E}YEY,
set

|z|; = inf {c: |2| < cz)™ 009, x; € Bf (i=0,1)}. (4.4.3)

We see that
. 0 0 . _
Jol, = inf {Juolls ™ Jonl? < o) < w Ot we Y (=00} (ee OB, (444)

The following result is implicit in [53, §4], but no explicit proof was given in that
source.

PROPOSITION 4.33. Let {Ey, E1} be a compatible couple of Banach lattices, and take 0
with 0 < 6 < 1. Then the Calderdn—Lozanovskii space (Ey "EY, | -||,) is a Banach lattice
and also an intermediate space. Further, the closure of Eg n Ey in Eé_‘gEf is a Banach
lattice.

Proof. The ambient space for {Ey, F1} is H, say.

Set L = Ej YEY. Clearly ax € L and |az|, = |a||z]|, whenever a € F and z € L.
Now take x1,22 € L. We claim that x1 + x2 € L and that |z + 22|, < |21, + [lz2],,
and hence that || - |, is a semi-norm.

To see that x1 + x5 € L, it suffices to show that

|$1 + $2| < (y1 + y2)170(2’1 + 2’2)0 (4.4.5)



94 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

whenever y; € Ef, z; € Ef and |z;| < Jl o 2% in H for j = 1,2. Since we know that
|z1 + 22| < |x1| + |22, inequality (4.4.5) follows from (4.4.2). Hence x1 + x2 € L.
We now claim that
lzy + 2o, < il + 22l -

Let j € {1,2}. Given ¢; > |z;],, choose v; € BE and w] € BE with |z;] < c]vj1 ‘gwf,

and set y; = cjv; € Ef and z; = cjw; € Eff. Then |z;| < ] =0 j, so that
|21 + 22| < (11 +12)" % (21 + 22)°
by the inequality (4.4.5). Using equation (4.4.4), we see that

0
<y +2llg " 21 + 22\\1
0
< (e foilly + ez Jo2llg) ™0 (er Jwrlly + ez wal,)
< (

cl+02) ‘9(01+02) = + Co.

|z1 + 22|,

Since ¢1 > ||x1];, and cp > ||z2||; were arbitrary, the claim follows.

We have shown that (L, |- ||, ) is a semi-normed space.

We see easily that the inclusion map of Ey n Ey in L is contractive. To see that the
inclusion map of L into Ey + Fj is a contraction take x € L with ||z|, < 1. Then there
exist zo € Bf, and z; € Bf, with |z| < x . But 272§ < (1 — )z + 01 (for
xo, 1 € RT, this is [28, Proposition 4.1.3]), and SO

121 g1, = 11215y s, < (1 =0) |zollg + 621l <1

It follows that |z] 5, < |z, (z € L), and so the inclusion is indeed a contraction.
In particular, this shows that 2 = 0 when [|z|, = 0, and so |- |, is a norm on L. Hence
(L,]|-]) is an intermediate space.

We now claim that (L,|-||,) is a Banach space. For this, it suffices to show that
Z;C=1 x; converges in L whenever (z;) is a sequence in L with |z;|, <277 (j € N); take
(x;) to be such a sequence.

For each j € N, there exist y;0 € By and y;1 € E; = |lyj1l, <277 and
|z;| < yj 0 yj 1 (j € N). The two series Z —1Yj,0 and Z] 1Yin converge say to yo € By
and y; € B}, respectively. Set

uk—zgnj (keN).

The sequence (uj) converges in (Eo + E1, | [, 1 5, ), say to @, and so (Jug|) converges to
|z| in the same space. For each k € N, we have

-0 , 6
|lug| < Z yjloey§1 < (Z Y5, 0) (Z yj,l)
Jj= j=1

by inequality (4.4.2), and so |ug| < yi~%yY. Since this holds for each k € N, it follows
that |z| < y3~%y¢, and this implies that z € L with [|z], < HyOHO 1 Hl by (4.4.4).
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Again take k € N. Then
b 1-6 b 0
|z — ug| < (yo -] yj,O) (yl -] yj,1> :
j=1 j=1

1-60

and so
0

1

o = el < =3

<

k k
Yo — Z Y5,0 Y1 — 2 Yi1
Jj=1 0 Jj=1

again using inequality (4.4.4). It follows that (ux) converges to = in (L,||-||;). We have
shown that (L, | - ||) is a Banach space.

It is clear that (L, || -|) is a Banach lattice, and that the closure of Eyn E; in Ey~7EY
is also a Banach lattice. m

We remark that, in the case where Ey and E; are the complexifications of real Ba-
nach lattices Fy and F}, respectively, the Calderén—Lozanovskii space Eé_gEf is the
complexification of the space Fj % FY.

Now suppose that {Ey, E1} is a compatible couple of complex Banach lattices, and
take 8 with 0 < # < 1. Then, as in §1.10, we can define the intermediate Banach space
((Eo, E1) 0, | - ll1¢7)- The following key result of Raynaud and Tradacete is [53, Theorem
9.

THEOREM 4.34. Let {Ey, E1} be a compatible couple of complex Banach lattices, and take
0 with 0 < 0 < 1. Then the intermediate space ((Eo, E1)o,| - [jg) is the closure in the
Calderdn—Lozanovskii space (EyEY, |- |,) of the space Eq N Ey. Further, |l = =l
foreachze Egn E;. m

COROLLARY 4.35. Let {Ey, E1} be a compatible couple of complex Banach lattices, and
take 6 with 0 < 6 < 1. Then the intermediate space ((Eo, E1)e, |- ;) is a Banach
lattice. m

THEOREM 4.36. Let E be a complex Banach lattice. Take 0 with 0 < 6 < 1, take n € N,
and take po,p1 with 1 < po,p1 < o0. Then the interpolation space

L, L,
(CE™ ) (B 0 1 Do
is isometrically isomorphic to the Banach lattice (E™, || - Hi’p), where

1 1-6 0
p Po P

Proof. We shall use Theorem 4.34. We may suppose that py # p1, for the result is trivial

when pg = p;.

Set F; = (E™,|-| for i = 0 and ¢ = 1. The space ¢°(E) plays the role of an
ambient Banach lattice for the Banach lattices Fj and F, where we note that the natural
injections of Fy and F} in £°(E) are continuous lattice homomorphisms and that Fj and
F are order-ideals in ¢°(E).

We denote the Calderén-Lozanovskii space Fy ?F{ specified in Definition 4.32 by

(L - 1z)-

L.pi
n)




96 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

The only non-trivial fact that we must show is that

n 1/p
|||, = (Z |33k|p> (x = (z1,...,2,) € E"), (4.4.6)
k=1

E
and we shall now do this. Fix © = (21, ...,2,) € E™; without loss of generality, we may
suppose that z,...,z, € ET.

As a preliminary, we set «; = p/p; and §; = ; — 1 for i = 0,1, so that 8; # 0. We
note that (1 —0)ap +0a; =1 and (1 —0)By + 651 = 0.

Consider the functions
n —Bi/p
(Z ltk|”> , R">R,
k=1

defined for j € N,, and i = 0, 1, where F}; ;(0,...,0) = 0. It is clear that each function F} ;
is continuous and positively homogeneous, and so operates on Er by the Youdine—Krivine
calculus. We note that

Fj’o(t)l_eFj’l(t)e = |tJ| (t = (tl, Ce ,tn) € an j € Nn) . (447)
Take t = (t1,...,t,) € R™, and set t;;, = F},;(t) for j € N,, and ¢ = 0,1. Then

n 1/pi n 1/pi s o —Bi/p n 1/pi—Bi/p
(Z Itj,i pi) = (Z It; aipi) <2 Itk|p> = (Z tkp> :
j=1 j=1 k=1 k=1

Also 1/p; — Bi/p = 1/p, and hence

n 1/pi n 1/p
(Z It pi) = (Z t,ﬂ) (i=0,1). (4.4.8)
j=1 k=1

For jeN, and i =0,1, set x;; = Fj;(x1,...,2,) € ET. It follows from equation (4.4.7)
that

Fj,i : (tl,...7tn) > |tj

zy =25’ (jeN,).

Set @; = (214,.-.,%n:) € (E)" for i = 0,1. Then = = )72, and so

LN\ n 1/p
) = X el
k=1

L,po 1-6
2l < (leol ™) (1]

E
by equation (4.4.8).
For the reverse inequality, again take = (x1,...,7,) € (E1)", and suppose that
xg, x1 € (E+)" satisfy & < @) xf, say o = (£1.0,---,Zn0) and &1 = (T1.1,...,Tn1)-

Since the lattice operations in £ °(E) are defined coordinatewise, we have
1-6,0 -
;< wio wiy (FEN,).

It follows from inequality (4.1.9) that

n 1/p n (1-0)/po n 0/p1
(32) <(5m)  (Z)
Jj=1 j=1 j=1
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n 1/p1 o
(Z ”3?11)
j=1
1-60 (4
L, L,
= (lzollz™) " (Jai)

Taking the infimum over all such choices of g and x1, we conclude that

n 1/p
(Z Imk|p> < ||, -
k=1

E

and so, by inequality (4.4.1),

n 1/p n 1/po 1
k=1 j=1

E

—6

We have established equation (4.4.6), and hence the theorem follows. m

We believe that a similar result holds when we start with a compatible couple {Ey, F1 }
of complex Banach lattices, rather than one fixed Banach lattice, but we do not have a
proof of such a general result; certain special cases are listed by Calderén in [11].

4.5. Regular and multi-bounded operators. Let F and F' be Banach lattices, take p
with 1 < p < o0, and consider the canonical lattice p—multi-norms based on FE and F'. As
before, the norm of a p-multi-bounded operator T € M,,(E, F') is denoted by |T'[, -
To be specific, we have T € M,,(E, F) if and only if there exists a constant C' > 0 with

n 1/p n 1/p
(Z |Txi|p> <C (Z |xi|p> (z1,...,2n € B, neN), (4.5.1)
i=1 i=1

and then ||

The space of multi-bounded operators between two Banach lattices F and F', each
equipped with the lattice multi-norm (| - Hfb), is discussed and often identified in [20, §6.4].
First, we note that each order-bounded operator T' from FE to F' is co—multi-bounded and
that |7 ,_., < 7], [20, Theorem 6.31}, so that

B,(E,F) c By(E,F) < My(E,F) < B(E,F),

p—mb is the infimum of the constants C.

and all the inclusions are contractions. There is a comprehensive statement of some
conditions for equality in the above inclusions in [20, Theorem 6.33]; here we state just
one result.

PROPOSITION 4.37. Let E and F' be Banach lattices, considered with their Banach lattice
multi-norms. Suppose that F is monotonically bounded and Dedekind complete. Then

B.(E,F)=By(E,F)=Mx(E,F). n
COROLLARY 4.38. Let E and F be Banach lattices. Then
B.(E,F') =By(E,F') = My (E,F').

Proof. For a Banach lattice F', the dual Banach lattice F’ is monotonically bounded and
Dedekind complete. m
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Let F and F be Banach lattices. As mentioned above, the ‘opérateurs réguliers’
of [45, Définition 3.2] are exactly the operators in our class My (E, F); this class is
denoted by B, (E, F) in [45, Définition 3.2]. Note that these ‘opérateurs réguliers’ are not
always the same as the usual ‘regular operators’. The ‘opérateurs ¢!-réguliers’ of [45]
are our 1-multi-bounded operators. It is shown in [45, Lemme 1.1] that, in our notation,
My (E, F) = My (E, F); this will also be a consequence of our Theorem 4.40, to be given
below. Our ‘p—multi-bounded operators’ correspond to the ‘opérateurs p-réguliers’ of [45,
Remarque, p. 21].

Take p with 1 < p < 0. It follows from equation (4.2.2) that each positive operator
in B(E,F) is p-multi-bounded, with [T, ,, < [7], and so each regular operator is
p—multi-bounded. In fact, the following stronger statement is true.

THEOREM 4.39. Let E and F be Banach lattices, and suppose that T € B(E, F) is pre-
reqular. Take p with 1 < p < o0. Then T is p—multi-bounded with
I <[, -

Proof. We write kT for kp o T : E — F"; by Theorem 4.21, (a) = (c), kT is regular.
Take ne N and z1,...,2, € E. Then

n 1/p n 1/p n 1/p
<2 |T»Tz'|p) = <2 |("6T)$z‘|p> (Z KT |i]) )
i=1 i=1 o =1

F

p—mb

F//
By equation (4.2.2),

n 1/p n 1/p
<Z(IHT| |i|)P ) < [[T] (Z xﬂ’) ;
=1 Fr = E
and so
n 1/p n 1/p
(Z ITxi|p> < | [&T]] <Z |='17i|p>
i=1 P i=1 2

In terms of the canonical lattice p—multi-norms, this says that
L, L,
[(Tx1,...,Tz,)|, " < |&T|, (21, ..,z -

By Theorem 4.21, |sT|, = ||T”],, and so the result follows. m

Thus, in the above setting, we have
B(E,F)" ¢ B.(E,F) c By(E,F) < By (E,F) c M,(E,F) c B(E,F)

for each p with 1 < p < 0.

We shall now show that, in the case where p = 1 or p = o0, the converse of Theorem
4.39 holds, in the sense that each p—multi-bounded operator is pre-regular, and, further,
that |7,
are 2-multi-bounded operators on certain Banach lattices that are not pre-regular and

= |7T7|,. for such operators T'. However Example 4.44 will show that there

that there are pre-regular operators T such that |T'[,_ ., # |T"],
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THEOREM 4.40. Let E and F be Banach lattices, and suppose that T € B(E, F). Then
the following conditions on T are equivalent:

(a) T is co—multi-bounded;

(b) T is 1-multi-bounded;

(¢) T is pre-regular.
Further, in this case, |T| ,_.p, = 1Tl s = 177],.-
Proof. Suppose that T satisfies (¢). Then, by Theorem 4.39, T satisfies (a) and (b), and
1T < 7], and [Ty, < IT7],-

w—mb

Suppose that T satisfies (a). Then «T is co—multi-bounded, again writing T for
kp o T :E — F” and so, by Corollary 4.38, kT is regular. By the implication (c¢) = (a)
of Theorem 4.21, T is pre-regular, and so T satisfies (c).

Suppose that T satisfies (b). Then, by Proposition 3.4, T’ : F' — FE’ is co-multi-
bounded, and so, by Corollary 4.38, T” is regular. Hence T satisfies (c).

Thus (a), (b), and (c) are equivalent.

To establish the equality of the three norms in the case where (a), (b), and (c¢) are
satisfied, fix x € ET, and set

Az{\/T:nl-|:xl,...,:ﬂneE+mAm,neN}.
i=1

Then we can regard A as an increasing net in both F'* and (F”)*; also
lall < 1T, 2] (a € A),

and so A has a supremum, say A, in F” with

|A] = sup{fa] : a € A} < [T, 2] -
It follows that

[KT|(x) = sup{[sT'(2)] : |2] < 2} < A,
and so

HETT @) < JAL < 1T oo, 2]

whence | ||| < |T|.,_p- By Theorem 4.21, |T"|, = |&T|,, and so |T"],. < [T
Finally, we have

o0—mb*

17—y = 1T o = 1771, = 1771,
again by Theorem 4.21. Thus [T, = [T],_p, = [77]],- =

COROLLARY 4.41. Let E and F be Banach lattices. Then My (E,F) = B(E, F) if and
only if T" € B,.(F',E") for each T € B(E,F). m

In [45], Banach lattices E such that M (E) = B(E) are said to be homogénes; by
[45, Corollaire 4.2], they are characterized as being the lattices that are lattice isomorphic
to either AL- or AM-spaces. (Here we are using [43, Theorem 1.b.12] and [46, 2.1.12] to
see that the definitions of AL- and AM-spaces in [45] coincide with the Banach lattices
that are lattice isomorphic to AL- or AM-spaces, in our terminology.)
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THEOREM 4.42. Let E and F be Banach lattices, and suppose that T € B(E, F). Then
T is 2-multi-bounded, and |T||,_ ., < Ka [T

Proof. This follows from Krivine’s theorem, Theorem 4.11. m

We summarize the above results in the following theorem; it follows from Theorems
4.39, 4.40, and 4.42, and from a remark on page 84.

THEOREM 4.43. Let E and F be Banach lattices, and take p with 1 < p < c0. Then

By(E,F)c B, (E,F) = M1(E,F) = M (E,F) c M,(E,F)c My(E,F)=B(E,F).

In the case where E and F are AL-spaces and 1 < p < o0, we have
B.(E,F)=By(E,F)=M,(E,F)=B(E,F). =

EXAMPLE 4.44. We claim that there is reflexive Banach lattice E with B,,.(E) < B(E).
Indeed, take E = ¢P, where 1 < p < o0, and assume towards a contradiction that each
2-multi-bounded operator in B(E) is pre-regular. Then each dual operator in B(E') is
regular, and so B,.(E’) = B(E’). But, as noted above, it is shown in [4] that B,.(E’) is
not even dense in B(E'). Since || - |,_ ., is equivalent to || - ||, it also follows from [4] that
| -|l, is not equivalent to | -|,_,, on B.(E). m

THEOREM 4.45. Let E and F be Banach lattices, and take p1,ps € R such that either
l<pi<pa<2or2<py<p <. Then

My(E,F) = My (E,F) < My, (E,F) € M,,(E,F) c My(E,F) = B(E,F). (4.5.2)

Proof. We suppose that 1 < p; < py < 2.

Take T' € M,, (E, F), say with [T, _,;, < 1. Then also T € B(E, F) = Ms(E, F),
with |T|,_,p < K¢

First, suppose that E and F' are complex Banach lattices, and take n € N. By Theo-
rem 4.36, the spaces E(£P?) and F(£F?) are isometrically isomorphic to (E(£P1), E(£2))e
and (F(€PV), F(£2))g, respectively, for a suitable choice of 6 € (0,1). Further, 7™ is a
linear map from E(¢21) + E(£2) to F(£PY) + F(£2) such that T : E(621) — F(£P1) is
bounded with norm at most 1 and T : E(¢2) — F(¢?) is bounded with norm at most
Kg. By Theorem 1.46, T(™ is a bounded linear map from E(£F?) to F(¢F?) with norm
at most K¢, a bound independent of n. It follows that T € M,, (F, F), and so equation
(4.5.2) holds.

Next, suppose that E and F' are real Banach lattices, and again take n € N. For an
arbitrary p with 1 < p < o0, we again write £2(R) and £2(C) for the appropriate spaces
taken over real and complex scalars, respectively. It is easy to see that the complexification
E((2(R)) @iE(P2(R)) of E(¢P(R)) may be identified with (E @ iE)(¢2(C)), and that
this identification is isometric. Using this identification, we may also identify the n'P
amplification (TC)(") of the complexification T¢ with the complexification of T namely
with

(T™)c: E(LR(R)) @1E((E(R)) — F(£F(R)) @iF(LE(R)).
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In particular, the two operators have the same norms, and so
()" (B @IE)(¢2 () — (F @ iF) (2 (C))]
is equal to
[(T0)e: B (R) @B (R) — F(E2 (R)) @ (61 (R)) -

The latter norm is bounded by 2 [T : E(¢21(R)) — F(¢2*(R))| < 2; this is because
|Tc| < 2|7 and | T, _, < 1. It follows from the first part of the proof that

[T Bz ®) - Fer®)
< |(@™)e: B (R) @E(LE (R) — F(£2(R)) @iF (2 (R))|
= | ®: (@) (©) — (F@iF) ()| < 2K,

and hence [T, ., < 2KY,. Thus the result follows in this real case.
The case where 2 < py < p; < 0 is similar. m

The following example leads to the determination of M,,(E, F') in some cases.

ExXAMPLE 4.46. Let E and F' be Banach lattices, and take p with 1 < p < oo and n e N.
As before the space E™ with the canonical lattice p-multi-norm | - Hfl’p is denoted by
E(¢?) and the space E™ with the p—sum power-norm is denoted by ¢2(E). (We recall
that the p—sum power-norm is always a power-norm, and that it is a p—multi-norm for
certain Banach spaces F.) Thus we may consider the space of p—multi-bounded operators
from E to F' with respect to these power-norms.

Specifically consider two operators S € B(E,F) with S : ¢P(E) — F(¢P) and
T € B(E, F) with T™ : E(¢P) — ¢P(F). By the definitions given in [43, Definition 1.d.3]:
S is p—multi-bounded if and only if S is a p—convex operator, and the p—multi-bounded
norm of S is MP)(S); T is p-multi-bounded if and only if T is a p—concave operator,
and the p-multi-bounded norm of T is M, (T’). The Banach lattice £ is p-convex or
p—concave if the identity operator on E is p—convex or p—concave, respectively. Thus the
canonical lattice p—multi-norm and the p—sum power-norm based on E are equivalent if
and only if F is p—convex and p-concave; this holds for the spaces LP(Q) for a measure
space ).

By Theorem 4.28, (E(¢P))' = E'(£X"), and so it follows from our Proposition 3.4 that
an operator T between two Banach lattices is p—convex if and only if T” is p’—concave
and that T is p—concave if and only if 7" is p’—convex, as in [43, Proposition 1.d.4]. m

PROPOSITION 4.47. Let €2 and ¥ be measure spaces, and suppose that 1 <r < p< s < .
Then

My(L7(9), () = B(L (), L* (%)), (4.5.3)

with equality of norms.
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Proof. Set E = L"(Q2) and F = L*(X), and take T € B(E, F). The Banach lattice F is
p—convex with constant 1, and so

1/p

n l/p n
(Z |Tfi|p> < (Z |Tf,-|P> (fi,- s fn€ E,neN).
=1 i=1

The Banach lattice E is p—concave with constant 1, and so

n 1/p n 1/p
(Z |fi|p> < (Z |fi|p> (fis-sfne B,neN).
im1 i=1

It follows that T € M, (E, F) with || T, _,,, < [T'[. Since the inequality [T’ < [T
always holds, we obtain equality of norms in (4.5.3). =

p—mb

COROLLARY 4.48. Let Q2 and X be measure spaces, and take r,s with 1 <r < s <2 or
2<r<s<ow. Then

Mp(L7(Q), L(X)) = B(L"(Q), L*(X)) (4.5.4)
for each p € [r,2] or each p € [2, s], respectively.

Proof. First suppose that 1 < r < s <2 and that p = r. Then equation (4.5.4) holds by
Proposition 4.47. Thus (4.5.4) holds for each p € [r, 2] by Theorem 4.45. The case where
2<r<s<oissimilar. m

The following result essentially contains a converse to Corollary 4.48 in a special case.

PRrROPOSITION 4.49. Take r with 1 < r < o0.
(i) Suppose that 1 < p < 2. Then M,(£") = B(L") if and only if 1 <r < p.
(ii) Suppose that 2 < p < 0. Then M,(¢") = B(") if and only if r = p.

Proof. The facts that M,(¢") = B({") for p € [r,2], and hence for r € (1,p], when
1 <p <2, and for p € [2,r], and hence for r > p, when 2 < p < o0 are special cases of
Corollary 4.48. We must show that these are the only cases for which M, (¢7) = B(¢7).

In the case where p = 1, it follows from Theorem 4.40 that My (¢£") = B, (¢") for
each r € (1,00]. Further, B, (¢") = B, (¢") for each r € (1,00), and we have noted that
B, (£7) is not even dense in B(¢"). Thus My (") # B(L").

Now suppose that 1 < p < o0, that 1 < r < o0, and that M,(¢") = B(¢"). Thus
there exists C' > 1 such that

[T <C|T| (TeB(m)). (4.5.5)

p—mb

Take m,n € N. As in Example 4.25, we see that there is an isometric isomorphism

from ((¢7)", |- |57) onto (¢5,(2), ] -1, (¢ry) formed by ‘taking transposes’. Now take

T e B(¢},) and regard T as an m x m matrix (T} ;) and as an element of B(¢"), and take
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x=(x1,...,2,) € ({))", where x; = (z; 1 : k € Ny,) for i € N,,. Then
HT(n)w " <<2 Tjpig i€ Nn> e Nm>
! k=1 enen)
m S lm p i\ "
(& (5] )
j=1 \i=1|k=1
On the other hand,
m " r/p 1/r
m?=§%2m#>
j=1 \i=1

Thus equation (4.5.5) implies that
1T 5,(B) — ,(B)| < C|T+ 7, — ¢5]

m

for each T € B(¢}) and m € N, where E = ¢P. It follows from Theorem 1.43, (d) =
(a), (with r replacing p in the notation) that £ is C—isomorphic to an r—space for each
n € N. By the final claim of Corollary 1.44, r € [p,2] when 1 < p < 2 and r € [2, p] when
2 < p < o0, as required. =

COROLLARY 4.50. Take p1,p2 such that 1 < py1,p2 < 0. Then the inclusion
My, (B) @ My, (E)
holds for every Banach lattice E in each of the following three cases:
(i) p1 € {1, 0};
(i) 1< p <p2 <2
(iii) 2 < pa < p1 < 0.
For all other pairs {p1,p>}, there is a Banach lattice E such that My, (E) & M,,(E).

Proof. The proof of the inclusions M, (E) € M, (E) in the specified cases follows from
Theorem 4.45. To show that the inclusion fails in all other cases, take E to be the Banach
lattice {P. m
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5. Representation theorems

We now seek canonical representation theorems for certain p—multi-normed spaces.

5.1. Representations as subspaces of lattices. Let F be a Banach space. The mem-
oir [45] contains a representation theorem for spaces cg ® E satisfying property (P),
which was defined on page 51, and hence gives a representation theorem for multi-normed
spaces, in terms of closed subspaces of Banach lattices, or as ‘sous-espaces de treillis’; the
theorem is [45, Théoreme 2.1], where the result and proof are attributed to Pisier. The
theorem is also stated as [20, Theorem 4.56]. We now give a simpler and shorter version
of this proof in the language of multi-norms; further, we shall generalize the result to
apply to certain p—multi-norms.

After the relevant part of this memoir was completed, we discovered that a different
proof of Pisier’s representation theorem was given by Casazza and Nielsen in [12, Theorem
1.7]; this proof uses ultraproducts and is also different from our proof. Further, a proof
of our Theorem 5.5 (in a different language) is contained in the thesis [44] of McClaran;
again, the proof is different from ours. We are grateful to Professor W. B. Johnson for
discussing this thesis with us.

We commence by setting the scene for the results.

Let (E,|-||) be a normed space. We write K for the closed unit ball Bg: of E’, so
that K is a compact space with respect to the relative weak* topology o(E’, E), and
the space (C(K),|-|,,) is a Banach lattice. As before, to every element x € E one can
associate the element Z in E” defined by Z(\) = (x, Ay (A € E'); with a slight abuse of
notation, we also denote the restriction of z to K by T, so that we are considering T as
an element of C'(K). The map

w=T, (B ]-]) = (CE) |- e)

is a linear isometry. Throughout this section V' denotes the order-ideal in C'(K) generated
by (the image of) E. Thus, for each f € C(K), we have f € V if and only if | f| < \/]_, |Zi]
holds in C(K) for some n € N and zy,...,2, € E.

Let E be a normed space, and fix p with 1 < p < o0. We shall be especially interested
in functions on K of the form

n 1/p
fz = (Z |§3\i|p> for = (x1,...,2,)€ E",
i=1

where n € N; here we interpret fp as max{|Zi|,...,|Z,|} in the case where p = 0.
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Since the lattice operations in C(K) are defined pointwise, we have

n 1/p
— (Z (s, A>|P> Ne K), (5.1.1)

and so f; € C(K)*. We note that f; depends on p, although this is not shown explicitly
in the notation. Take « € F, m,n e N, ¢ € E™, and y € E". Then foz = |a| fo and

Fraom) = (24 )7 < fu + 1y (5.1.2)
Further, f, < fp in (C(K)",<) if and only if y <, « (in the notation of Definition
1.37), and so, in the particular case that (E™,|-|,) is a strong p—multi-normed space,
lyll,, < |x[,, whenever f, < fp in (C(K)*,<). (Indeed, this fact motivated us to
formulate the definition of a strong p—multi-norm.)
Take n € N. There are constants C; and Cy (depending on n) such that

Ci Y Ifil < (Z fi|p> <02\/|fi|
i=1 i=1 i=1
for f1,..., fn € C(K), and so f € V if and only if |f| < fg for some n € N and « € E".

DEFINITION 5.1. Let (E™,|-|,,) be a power-normed space, and take p with 1 < p < o0.
For each f eV, set
pp(f) =inf {|x|,, : |f| < fo for some x € E" and n e N} . (5.1.3)
Thus p,(f) € RT for each f € V. The first lemma is immediate.

LEMMA 5.2. Let (E™,|-|,,) be a power-normed space, and take p with 1 < p < co. Then:
(i) pplaf) = lalpp(f) (a€F, feV);
(ii) pp(1f]) = pp(f) (fEV);
(ill) pp(f) < pp(g) whenever f,g eV with |f] < |g| in C(K)"
(

iv) pp(fz) < |z|,, whenever m e N and x € E™. =

LEMMA 5.3. Let (E",|-|,,) be a strong p-multi-normed space, where 1 < p < 0. Then
pp(fz) = |[,, (zeE™ meN).

Proof. Take m € N and € E™. By Lemma 5.2(iv), pp(fz) < |x],,.- Now suppose that

y € E", where n € N, and that |fz| < fy. Then |y|,, > |x],,, and so p,(fz) = |],,

Suppose that (E™, | -|,,) is a power-normed space and that 1 < p < co. In addition,
assume that p, is subadditive, so that
po(f+9) < pp(f) +pplg) (fr9€V). (5.1.4)

Then p, is a lattice semi-norm on V', and so ker p, = {f € V' : p,(f) = 0} is an order-ideal
in V and V/ker p, is a normed lattice with respect to the norm induced by p,. Let X be
the completion of this normed space, so that X is a Banach lattice, and define

J:x—ZT+kerp, E—X.
Then J is a linear map and (3, |Jz;|")Y/P = fz + kerp for x = (21,...,2,) € E™.
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As in Definition 4.22, we write (|- %)
on the Banach lattice X, and we suppose throughout that this is the p—multi-norm that
is based on X.

for the canonical lattice p-multi-norm based

LEMMA 5.4. Let (E",|-|,) be a power-normed space, and take p with 1 < p < .
Further, assume that p, is subadditive. Then J : E — X is a multi-contraction. In the
case where (E™, | -|,,) is a strong p-multi-normed space, J : E — X is a multi-isometry.

Proof. Take ne N and x = (z1,...,2,) € E™. Then

L n 1/p
|sma] " - (2 |in|P> = | fo + kerp| = pp(fa) < |, (5.1.5)
i=1

by Lemma 5.2(iv). Thus J : E — X is a multi-contraction. In the case where (E", | -|,,)
is a strong p-multi-normed space, p,(fz) = ||z, by Lemma 5.3, and so equation (5.1.5)
shows that J : E' — X is a multi-isometry. =

Clearly the point to be resolved before we can claim a satisfactory representation
theorem is when the above map p,, is subadditive. We shall first show that this is certainly
the case when we are considering multi-norms themselves, so recovering the theorem of
Pisier.

THEOREM 5.5. Let (E™,|-|,,) be a multi-Banach space. Then there are a Banach lattice
X and a closed subspace Y of X such that (E™,|-|,,) is multi-isometric to (Y™, - H{;)

Proof. The multi-norm (|| - [,,) is a strong multi-norm by Theorem 2.25. As we remarked,
it suffices to show that the function p = py, defined above (in the case where p = o) is
subadditive.

Take f,g € V, and fix € > 0. Then we can find m,n € N, x € E™, and y € E" such
that

fl< e M9l <ty 2l <p(f)+e and |yl <plg) +¢.
Set G = 0,2 @1 ¢,°, so that
[ o) = lullgp + 0l (e 62,0 e€2).
By Proposition 1.9, there exist k € N and a linear embedding 7" : G — £,° such that
[(w, )| < [T(w,0)| < (T +&) [(w,v)]  (uely ,velyr). (5.1.6)
Clearly there are linear mappings A : {7 — ¢,° and B : £ — {;° for which
max{[[A[,[Bl} < |T| <1+¢

such that each element T'(u,v) can be written in the form Au + Bwv.
We can regard T as a matrix, and hence as a linear map from E™ x E™ to E*.
Similarly, we can regard A and B as linear maps from E™ and E™, respectively, to E*.
Define z = T(x,y) € E*, say 2 = (21,...,21), and take X € E'. Then it follows from
(1.4.3) that

(2, 0 = A (T(2,y)) = T (@, y)) = T (@), A (y)).
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Combining this with (5.1.6), we obtain

1111 ZC,;O

> 0@ A @)| = @)+ @), = 0+ R0,

and hence f, > fo + fy = |f| + |g| = |f + g|. This shows that
p(f +9) < |zl = Az + Byl < |Az], + | Byl
< (@ +e)lzl,, + lyl,) < @ +e)lp(f) + plg) + 2¢).

The above inequality holds true for each £ > 0, and so p(f + g) < p(f) + p(g), which
shows that p is indeed subadditive.
This completes the proof of the theorem. m

We next consider the representation of 1-multi-norms, i.e., of dual multi-norms. As
we saw in Example 2.33, there are 1-multi-norms that are not strong 1-multi-norms,
and so we must impose this condition on the 1-multi-norm. Indeed, since the canonical
lattice 1-multi-norm (|| - [2*) = (|- |5") of the following result is strong (by Theorem
4.23), the hypothesis that the 1-multi-norm based on E be strong is clearly necessary
for the following theorem to hold.

THEOREM 5.6. Let (E™,|-|,)) be a strong 1-multi-Banach space. Then there are a Ba-

nach lattice X and a closed subspace Y of X such that (E™,|-|,,) is multi-isometric to
O - 7)-

Proof. Again it suffices to show that the function p = p; defined above (in the case where
p = 1) is subadditive.

Take f,g € V, and fix € > 0. Then we can find m,n e N, x € E™ and y € E" such
that

I < for 19l < fyo ), <p(f)+e, and |yl <plg) +¢.
Then |f + g| < fo + fy = f(z,y), and so

p(f +9) <@ y)lyn < 2l +lyl, < p(f) +p(g) +2¢.
This holds true for each £ > 0, and so p(f + g) < p(f) + p(g), as required. =

We now seek a result that is applicable in the case where 1 < p < o0. In the fol-
lowing theorem, we impose the extra condition that the p—multi-norm be strong, which
is certainly a necessary condition, and that the p—multi-norm be p—convex; for each p,
this latter condition is necessary if we require that the Banach lattice be p—convex, for
then the corresponding canonical p—multi-norm is p—convex by Theorem 4.26, and so the
initial p—multi-norm must be p—convex, where we note that p—convexity passes to closed
subspaces. In Example 5.9, we shall exhibit a strong 2-multi-Banach space (that is not
2-convex) which is not multi-isometric to (Y™, |- HTLLQ) for any closed subspace Y of a
Banach lattice.
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THEOREM 5.7. Take p with 1 < p < o, and let (E™,|-|,) be a strong p-multi-Banach

space that is p—convex. Then there are a p—convexr Banach lattice X and a closed subspace
Y of X such that (E™,|-|,,) is multi-isometric to (Y, | - |5p)

Proof. To establish the existence of X and Y such that (E™, |||, ) is multi-isometric to
Y™ |- HTLL”D)7 it suffices to show that p, defined above is subadditive. Set ¢ = p'.
Again take f,g € V, and fix € > 0. Then we can find m,ne N, x € E™, and y € E"
such that
(fl< e Mgl <ty |2l <pp(f) +e and Jyl, < pplg) +e.

We may suppose that  and y are non-zero. We set

1 1
" ( ], ) SR ( |yl ) fa
[l + 9l ) [l + [yl )

so that a? + $7 = 1. By Holder’s inequality applied pointwise in C(K), we have

y
f|+|g|<('f'p+"‘"p> "

oP ﬁp

Set z = (x/a,y/B) € E™T™ say z = (z1,..., Zmsn). Then

/p m+n 1/p
N |g|”)1 ( )
LB < (S ) =1,
(a” pgr =

and so0 p,(f + 9) < pp(fz) = |2, Since the multi-norm (| - [,,) is p—convex, we have

1
< (12l lyln)
m+4n aP Bp )

and the expression on the right-hand side is just |«|,, + |y/,,- Therefore

po(f +9) < ], +yl, < pp(f) + pplg) + 22
This holds true for each € > 0, and so p, is indeed subadditive.
We must also show that the Banach lattice X is p—convex. For this, take f,g € V, as
above. Then

1 1
oo (517 +19)77) < @9l < (2l + 1yl

< ((pp(f) + )P + (pplg) + €))7

This also holds true for each £ > 0, and so
1 1
oo (17 41977 < (u (£ + pole))7
This implies that the Banach lattice X is p—convex. m
Recall that a sequential norm is a 2-multi-norm that is 2-convex.

COROLLARY 5.8. Let E be a Banach space, and let (|- |,,) be a sequential norm based on
E. Then there are a 2-conver Banach lattice X and a closed subspace Y of X such that
(E™, |- |,,) is multi-isometric to (Y™, |-|2?).

Proof. By Theorem 2.25, every 2-multi-norm is a strong 2-multi-norm. m
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ExXaMPLE 5.9. First, for each p with 1 < p < oo, we shall construct an example of a
p—multi-normed space based on a Banach space F that is not multi-isomorphic to any
closed subspace of a Banach lattice with the canonical p—multi-norm.

Let (E, | -||z) be a Banach space, and consider the dual weak p-summing norm (v, )
based on E, as in Example 2.7(iv); we recall from Theorem 2.11 that (v,,) is the max-
imum p-multi-norm based on E and that, for n € N, v, ,, corresponds to the projective
tensor norm |- [ on (P ® E. Suppose that X is a Banach lattice equipped with the

canonical lattice p—multi-norm (|| - HTLZ’p ) and that T : F — X is an embedding onto a
closed subspace Y of X; we may suppose that [T = 1. Define M,, = |[(T=")™| (neN).

In fact we take E = ¢9(R), where ¢ = p’. We write (0,,) for the standard basis in
¢P(R), as before, and now write (d],) for the standard basis in E. Fix n € N, and set
e=(d1,...,8,,) € E™. Then, using equation (1.5.10), we have

ié ® 4,

Consider A = (01,...,6,) € (E")" = (£P)". By equation (1.5.3), pgn(X) = 1, and so
n = {e,A) < vp,(e). Thus v, ,(e) = n.

Take n € N, and set 2; = 70} (i € N,,) and & = (21,...,2,) € Y™, so that TWe = x.
Then

Vp,n (

™,mn

0= vpn(e) < M, ||

n 1/p
Lp — M, (2 |xi|p> : (5.1.7)

i=1

By Proposition 4.10,

1 n ) 1/2 1 n
—_ i < — iTi
ﬂ<2x> 2nzi;5$

1=1

3

where the outer sum on the right-hand side is taken over all choices of ¢; = +1 for i € N,,.
We have

n

e

=1

n 1/2
(Z |$z‘2> <
1=1

Suppose that p = 2. Then

n 1/p n 1/2
i=1 i=1

and hence, using (5.1.7), we see that

1/p
<V (ZI) =

and so M,, > (1/+/2)n'/? (neN).

n
! 1
<[ e| —ni,

and so

= nl/a

n
)R H<;
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Suppose that 1 < p < 2. Then

" 1/p N 1/2
(Z xip> < nl/P—l/Q (2 |xz|2> 7
=1 =1

1/p

and so M, 71/2)1/2 (neN).
In each case, M,, — o as n — o0, and so there is no embedding of E onto a closed

and now

subspace of a Banach lattice such that the inverse is multi-bounded.
In the case where p = 2, the multi-norm (5 ) is a strong 2-multi-norm. This shows
that the convexity condition in Corollary 5.8 is not redundant. m

5.2. Representations as quotients of lattices. We now give a related representation
theorem for dual multi-normed spaces and certain other p—multi-normed spaces. We state
two theorems, but we shall give one combined proof.

THEOREM 5.10. Let (E™,|-|,) be a 1-multi-Banach space. Then there are a Banach
lattice X and a closed subspace Y of X such that (E™,|-|,,) is multi-isometric to the
space (X/Y)",|||-1ll,,), where (|||-1|l,,) is the 1-multi-norm based on X /Y that is the
quotient of the canonical lattice 1-multi-norm (| - |£1) = (|- HSL) based on X.

The above theorem is related to [44, Theorem 4.18].

THEOREM 5.11. Take p with 1 < p < o0, and let (E",|-|,) be a p-multi-Banach space.
Suppose that (E™,||-|,) is p-concave and that, for each finite-dimensional subspace F
of E, equipped with the p-multi-norm inherited from (E™, | -|,), the dual p’'-multi-norm
based on F' is a strong p'—multi-norm. Then there are a Banach lattice X and a closed

subspace Y of X such that (E™,|-|,,) is multi-isometric to
(X))
where (||| -||],,) is the p-multi-norm based on X /Y that is the quotient of the canonical

p-maulti-norm (||| ") based on X.

Before giving the proof, we make a preliminary remark.

The hypothesis that arises in Theorem 5.11 implies that the dual p’~multi-norm based
on F’ is a strong p'~multi-norm. Indeed, set ¢ = p’, take m,n € N, and suppose that
A€ (E)™ and p e (E')™ satisty

Ko, Mgy, < @, )y (@€ E). (5.2.1)
For each € > 0, there is a unit vector y = (y1,...,¥m) in E™ with [(y, )| = |A[],, —
Set F' = lin{y1,...,Ym}, a finite-dimensional subspace of E. For each x € F, inequality

(5.2.1) holds, and so, by the hypothesis in Theorem 5.11, we have |X | F™| < |u | F™|,.
Hence
Il = e [ 2 = X T E™ ] = Ky, M1 = [ AL,



Multi-normed spaces 111

This holds true for each € > 0, and so |pll,, = ||A[,,,- Thus the p’-multi-norm based on
E’ is strong. Unfortunately, the converse to this statement does not hold in general; we
shall show this in Example 5.13, below.

Proof of Theorems 5.10 and 5.11. Set ¢ = p' (with p = 1 and ¢ = o0 in the case of
Theorem 5.10), and set

I= U{meE”:Han=1}.

neN

For each @ = (z1,...,2,) € Z, set Ep = lin{z1,...,2,}, so that (Eg,|-|) is a finite-
dimensional, and hence closed, subspace of E. As such, E, inherits a p-multi-norm from
(E™, | -,)); we equip Ej, with the dual ¢-multi-norm. (By assumption when p > 1, or by
Theorem 2.25 when p = 1, this ¢—multi-norm is strong.) Then there is a multi-isometry
Sy of E, into some Banach lattice Yy, equipped with its canonical lattice g—multi-norm.
Indeed, this is immediate from Theorem 5.5 for ¢ = oo, from Theorem 5.6 for ¢ = 1
(taking into account the preliminary remark), and from Theorem 5.7 and Proposition
2.41 for ¢ with 1 < g < 0.

Being finite-dimensional, the space E,, is reflexive, so that we may consider S, as an
operator from Y, onto E,; the relevant power-norm based on Y, is the dual p-multi-
norm which agrees with the canonical p-multi-norm based on the Banach lattice Y, by
Theorem 4.28. Since S;") is an isometry for each n € N, equation (1.3.20) and Proposition
1.4(ii) imply that (S;(cn))’ = (S2)(™ is an exact quotient operator, and so this operator
maps the closed unit ball of (V)" onto the closed unit ball of E.

Define X to be the £!-sum of the family {Y) : & € Z}, so that X is the space of
functions f :Z — |J,.7 Ya such that

xel " x

f@)eY, (@eI) and Y [f(@)] <.

xel

Then X is a Banach lattice with respect to the pointwise-defined vector lattice operations;
we equip {X™ : n € N} with its canonical p—multi-norm (| - \|Tfp)

We shall now show that, for each n € N, the n'® amplification 7" of the linear
mapping T : X — F that is defined by the formula

Tf=> S(f(x) (feX)

xel

maps the closed unit ball of X™ onto the closed unit ball of E™. This will clearly imply
that 7 maps the open unit ball of X™ onto the open unit ball of E™, and hence
complete the proof by Proposition 3.7.

Let n € N. On the one hand, the following calculation for f = (f1,...,f,) € X"
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shows that 7™ maps the closed unit ball of X™ into the closed unit ball of (E™,|-|,):

[ros], - | (g s o)
xel

n

DS ()],

j=1 xel n
1\ (n) n n Lyp
< Y@ (@) <X w@,
xel " xel "
n 1/p n 1/p
L,
“T(Bwr) |- (Zer) | -
xel Jj=1 j=1
On the other hand, let * € Z, say * € E" for n € N. Then « € E}, so that
x = (S.)™(X) for some unit vector A = (A1,...,\,) € (Y2)". Moreover, since « € T, we

can define f = (f1,..., fn) € X™ by setting f;(y) = A, if y = x and f;(y) = 0 otherwise,
for j € N,,. Then we have

n 1/p n 1/p n 1/p
L, L,
I£1" = (Z |fj|p> = (Z |fj(y)|p> = <Z |>\j|p> = AL
j=1 yeT | \j=1 j=1
and T f = (S%Aj)j—1 = x, and so T maps the closed unit ball of X™ onto the closed
unit ball of (E™, |- |, ).
As indicated, this completes the proof of Theorems 5.10 and 5.11. =

ExXAMPLE 5.12. This example shows that the quotient of a canonical lattice 1-multi-
norm is not necessarily a strong l-multi-norm. (We have seen a similar example of a
strong p—multi-norm with a quotient that is not a strong p—multi-norm in the case where
1 < p<ooandp+# 2 in Example 2.39.)

Indeed, let (E™,||-|,,) be a 1-multi-Banach space. Then, by Theorem 5.10, there are a
Banach lattice X with the canonical lattice 1-multi-norm (| - HT[L)L) and a closed subspace
Y of X such that (E™,|-|,) is multi-isometric to ((X/Y)™,||-||],). Now (|-[2*) is a
strong 1-multi-norm by Theorem 4.23, but the quotient ((X/Y)",||[-[||,,) is not neces-
sarily a strong l-multi-norm; this would imply that every 1-multi-norm is strong, and
this is not true by Example 2.33. =

EXAMPLE 5.13. Take p with 1 < p < oo, let (E™,|-|,,) be a p—concave p-multi-Banach
space, and suppose that the dual p’~multi-norm based on E’ is a strong p'-multi-norm.
As we remarked before the proof of Theorems 5.10 and 5.11, above, it is not in general
true that this implies that the hypotheses of Theorem 5.11 are satisfied. To substantiate
this remark, we shall now show that, for certain values of p, there exists a p—concave
p—multi-norm based on a Banach space E such that: (i) the dual p’~multi-norm based on
E’ is strong; (i) E has a finite-dimensional subspace F' such that the dual p’—multi-norm
based on F’ is not strong.

Indeed, take p with 1 < p < 2, set ¢ = p’, and let E be the Banach space LP(I).
We consider the p—sum power-norm based on E. By Theorem 2.28, this is a strong p-
multi-norm, and it is p—concave; the dual multi-norm based on E’ = L4(I) is the ¢g—sum
power-norm based on E’, and this is also a strong g—multi-norm by Theorem 2.28.
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Now take r with p < r < 2, and set s = r’. Then it follows from Proposition 1.22
that /" embeds isometrically into F, and so, for each n € N, the space F has a subspace
F,, that is isometrically isomorphic to £,,. We have F, = {3 (n e N).

For n € N, consider the p—sum power-norm based on F,, and the dual ¢-multi-norm,
which is the g—sum power-norm based on F, = £73. Since 2 < s < ¢, it follows from
Corollary 2.29(iii) that there exists n € N such that the ¢—sum power-norm based on F},
is not strong.

Although E does not satisfy the hypotheses of Theorem 5.11, it obviously does satisfy
the conclusions of the theorem. m
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A

almost isometric, 11
ambient space, 39
amplification, 9, 67
annihilator, 13
AL-, AM-space, 77
AM-unit, 78

B

Banach lattice, 75
AlL-space, 77
AM-space, 77
complex, 75
Dedekind complete, 77
dual, 76
Fatou property, 77
monotonically bounded, 77
Nakano property, 77
p—concave, p—convex 82
real, 75

Banach—Mazur distance, 11

base norm, 6

C

Calderén—Lozanovskii space, 93
Chevet—Saphar norms, 23
compatible couple, 39

Banach lattices, 91
complemented, 13

A-, 13
concatenation, 9
conjugate index, 8
contraction, 11
cross-norm, 19

D

dual operator, 11
dual multi-norm, 5, 59, 62, 69
dual multi-normed space, 5

Index of Terms
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E

embedding, 12
embedding constant, 12, 67

F

Fatou property, 77
finitely representable, 12

1

inequality, Holder, 59, 79
inequality, Khintchine, 59, 81
injective, 13

A-, 13
intermediate space, 40
interpolation norm, 40, 49
interpolation space, 50, 58
isometric embedding, 12
isometrically isomorphic, 12
isomorphic, 11

C-, 11
isomorphism, 11

L

lattice embedding, 77

lattice homomorphism, 77

lattice isomorphic, lattice isometric, 77
lattice isomorphism, lattice isometry, 77
linear isomorphism, 9

M

matrix, special, 10

modulus, 75

modulus of surjectivity, 12
multi-bounded operator, 67
multi-embedding, 67
multi-continuous operator, 69
multi-contraction, 67
multi-isometry, 67
multi-isomorphism, 67
multi-norm, 5
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canonical lattice, 88 dual, 42
dual 5, 59, 62, 69 power-norm, 5, 42
dual lattice, 87 dominates, 43
lattice, 87 interpolation, 49, 50
maximum, 6 minimum, maximum, 42
maximum dual, 50 p—concave, p—convex, 65
minimum, 6, 50 p-sum, 45, 46, 49, 50, 56, 57
(p,q)-, 48 quotient, 42
multi-normed space, 5 power-normed space, 5, 49
multi-null sequence, 69 interpolation, 49

power-norms, equivalent, 43
N L
projection, 13

Nakano property, 77 projection constant, 13, 61

norm, £~ {P— co—, 51 property (P), 51
p—multi-Banach space, 43
p—multi-bounded operator, 67
p—multi-norm, 43, 50
O maximum, 48, 60, 62
minimum, 48
strong, 54, 60
p—multi-normed space, 43
strong, 54
p-operator space, 65
p—space, 34, 38, 46
p-sum norm, 14

norm, p—sum, 14
nuclear operator, 19

operator sequence space, 65
operator
nuclear, 19
order-bounded, 83
p—concave, p—convex, 101
positive, 83
pre-regular, 85

regular, 83 p-sum power-norm, 45

/. i
summing, 68 p'—multi-norm, dual, 45

(Qap)fa 68 Q

opérateurs

¢1-véguliers, p-réguliers, 97 quotient operator, 12, 13

réguliers, 72, 97 exact, 12
order-bounded quotient power-norm, 42

set, 82 R

operator, 83
order-ideal, 76 regular operator, 83

Riesz decomposition property, 77

p Riesz—Kantorovich formulae, 76, 80, 84
positive S

linear functional, 76

cone, 75 Schechtman’s space, 30

operator, 83 sequential norm, 65
positively homogeneous, 78 special matrix, 42

power-Banach space, 6 strong p—multi-normed space, 54
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strong unit, 78

sub-cross-norm, 19
reasonable, 19

sublattice, 76

subquotient, 13, 24

summing operators, (¢, p)—, 68

T

tensor norm
cross-norm, 19
injective, 18
projective, 18
sub-cross-norm, 19
theorem Banach’s isomorphism, 11
Bourgain, 27
fundamental isomorphism, 9
Herz, 34
Kakutani, 77
Kwapien, 34, 38
Pisier, 104

Raynaud and Tradacete, 95
Riesz—Thorin, 41
transpose, 10

U

uniform norm, 15
unit
AM-, 78
strong, 78

w

weak 1-summing norm, 6
weak p-summing norm, 21, 46, 56, 63,
68
dual, 23, 46, 57
weak, weak * topology, 10

Y

Youdine—Krivine calculus, 75, 79
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