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Abstract. We extend the method of minimal vectors to arbitrary
Banach spaces. It is proved, by a variant of the method, that
certain quasinilpotent operators on arbitrary Banach spaces have
hyperinvariant subspaces.

The method of minimal vectors was introduced by Ansari and Enflo

in [AE98] in order to prove the existence of invariant subspaces for

certain classes of operators on a Hilbert space. Pearcy used it in [P] to

prove a version of Lomonosov’s theorem. Androulakis in [A] adapted

the technique to super-reflexive Banach spaces. In [CPS] the method

was independently generalized to reflexive Banach spaces. There has

been hope that this technique could provide a positive solution to the

invariant subspace problem for these spaces. In this note we present a

version of the method of minimal vectors (based on [A]) that works for

arbitrary Banach spaces. In particular, it applies in the spaces where

there are known examples of operators without invariant subspaces,

e.g., [Enf76, Enf87, Rea84, Rea85]. This shows that the method of

minimal vectors alone cannot solve the invariant subspace problem for

“good” spaces.

Suppose that X is a Banach space. For simplicity, we assume that

X is a real Banach space, though the results can be adapted to the

complex case in a straightforward manner. In the following, B(x0, ε)

stands for the closed ball of radius ε centered at x0 while B◦(x0, ε)

stands for the open ball, and S(x0, ε) stands for the corresponding

sphere.
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Let Q be a bounded operator on X. Since we will be interested

in the hyperinvariant subspaces of Q, we can assume, without loss of

generality, that Q is one-to-one and has dense range, since otherwise

ker Q or Range Q would be hyperinvariant for Q. By {Q}′ we denote

the commutant of Q.

Fix a point x0 6= 0 in X and a positive real ε < ‖x0‖. Let K =

Q−1B(x0, ε). Clearly, K is a convex closed set. Note that 0 /∈ K and

K 6= ∅ because Q has dense range. Let d = infK‖z‖. Then d > 0.

It is observed in [AE98, A] that if X is reflexive, then there exists

z ∈ K with ‖z‖ = d. Such a vector is called a minimal vector for

x0, ε and Q. Even without the reflexivity condition, however, one can

always find y ∈ K with ‖y‖ 6 2d; such a y will be referred to as a

2-minimal vector for x0, ε and Q.

The set K ∩B(0, d) is the set of all minimal vectors; in general, this

set may be empty. If z is a minimal vector, since z ∈ K = Q−1B(x0, ε)

then Qz ∈ B(x0, ε). Since z is an element of minimal norm in K, then,

in fact, Qz ∈ S(x0, ε). Since Q is one-to-one, we have

QB(0, d) ∩B(x0, ε) = Q
(
B(0, d) ∩K) ⊆ S(x0, ε).

It follows that QB(0, d) and B◦(x0, ε) are two disjoint convex sets.

Since one of them has nonempty interior, they can be separated by a

continuous linear functional (see, e.g., [AB99, Theorem 5.5]). That is,

there exists a functional f with ‖f‖ = 1 and a positive real c such that

f|QB(0,d) 6 c and f|B◦(x0,ε) > c. By continuity, f|B(x0,ε) > c. We say that

f is a minimal functional for x0, ε, and Q.

We claim that f(x0) > ε. Indeed, for every x with ‖x‖ 6 1 we

have x0 − εx ∈ B(x0, ε). It follows that f(x0 − εx) > c, so that

f(x0) > c + εf(x). Taking sup over all x with ‖x‖ 6 1 we get f(x0) >
c + ε‖f‖ > ε.

Observe that the hyperplane Q∗f = c separates K and B(0, d). In-

deed, if z ∈ B(0, d), then (Q∗f)(z) = f(Qz) 6 c, and if z ∈ K,

then Qz ∈ B(x0, ε) so that (Q∗f)(z) = f(Qz) > c. For every z with

‖z‖ 6 1 we have dz ∈ B(0, d), so that (Q∗f)(dz) 6 c. It follows
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that
∥∥Q∗f

∥∥ 6 c
d
. On the other hand, for every δ > 0 there exists

z ∈ K with ‖z‖ 6 d + δ. Then (Q∗f)(z) > c > c
d+δ
‖z‖, whence∥∥Q∗f

∥∥ > c
d+δ

. It follows that
∥∥Q∗f

∥∥ = c
d
. For every z ∈ K we have

(Q∗f)(z) > c = d
∥∥Q∗f

∥∥. In particular, if y is a 2-minimal vector, then

(1) (Q∗f)(y) > 1
2

∥∥Q∗f
∥∥‖y‖.

We proceed to the main theorem.

Theorem. Let Q be a quasinilpotent operator on a Banach space X,

and suppose that there exists a closed ball B such that 0 /∈ B and for

every sequence (xn) in B there is a subsequence (xni
) and a sequence

(Ki) in {Q}′ such that ‖Ki‖ 6 1 and (Kixni
) converges in norm to a

nonzero vector. Then Q has a hyperinvariant subspace.

Remark. The hypothesis of the theorem is slightly weaker than the

condition (∗) in [A], where it is required that for every ε ∈ (0, 1), there

exists x0 of norm one such that the ball B(x0, ε) satisfies the rest of

the condition.

Proof. Without loss of generality, Q is one-to-one and has dense range.

Let x0 6= 0 and ε ∈ (
0, ‖x0‖

)
be such that B = B(x0, ε). For every

n > 1 choose a 2-minimal vector yn and a minimal functional fn for

x0, ε, and Qn.

Since Q is quasinilpotent, there is a subsequence (yni
) such that

‖yni−1‖
‖yni‖

→ 0. Indeed, otherwise there would exist δ > 0 such that
‖yn−1‖
‖yn‖ > δ for all n, so that ‖y1‖ > δ‖y2‖ > . . . > δn‖yn+1‖. Since

Qnyn+1 ∈ Q−1B, we have

∥∥Qnyn+1

∥∥ > d > ‖y1‖
2

> δn

2
‖yn+1‖.

It follows that ‖Qn‖ > δn/2, which contradicts the quasinilpotence

of Q.

Since ‖fni
‖ = 1 for all i, we can assume (by passing to a further

subsequence), that (fni
) weak*-converges to some g ∈ X∗. Since

fn(x0) > ε for all n, it follows that g(x0) > ε. In particular, g 6= 0.
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Consider the sequence (Qni−1yni−1)
∞
i=1. It is contained in B, so that

by passing to yet a further subsequence, if necessary, we find a sequence

(Ki) in {Q}′ such that ‖Ki‖ 6 1 and KiQ
ni−1yni−1 converges in norm

to some w 6= 0. Put

Y = {Q}′Qw =
{
TQw | T ∈ {Q}′}.

One can easily verify that Y is a linear subspace of X invariant under

{Q}′. Notice that Y is nontrivial because Q is one-to-one and 0 6=
Qw ∈ Y . We will show that Y ⊆ ker g, so that Y is a proper Q-hyper-

invariant subspace.

Take T ∈ {Q}′; we will show that g(TQw) = 0. It follows from

(1) that
(
Q∗nifni

)
(yni

) 6= 0 for every i, so that X = span{yni
} ⊕

ker
(
Q∗nifni

)
. Then one can write TKiyni−1 = αiyni

+ ri, where αi is a

scalar and ri ∈ ker
(
Q∗nifni

)
. We claim that αi → 0. Indeed,

(2)
(
Q∗nifni

)(
TKiyni−1

)
= αi

(
Q∗nifni

)
(yni

),

and, combining this with (1), we get

(3)
∣∣(Q∗nifni

)(
TKiyni−1

)∣∣ > |αi|
2

∥∥Q∗nifni

∥∥‖yni
‖.

On the other hand,

(4)
∣∣(Q∗nifni

)(
TKiyni−1

)∣∣ 6
∥∥Q∗nifni

∥∥ · ‖T‖ · ‖yni−1‖.
It follows from (3) and (4) that

|αi| 6 2‖T‖‖yni−1‖
‖yni

‖ → 0.

Then (2) yields that
∣∣∣fni

(
QniTKiyni−1

)∣∣∣ =
∣∣∣αifni

(
Qniyni

)∣∣∣
6 |αi| · ‖fni

‖ · ‖Qniyni
‖ 6 |αi| · 1 ·

(‖x0‖+ ε
) → 0,

so that fni

(
QniTKiyni−1

) → 0. On the other hand, since T,Ki ∈ {Q}′
we have

QniTKiyni−1 = TQKiQ
ni−1yni−1 → TQw

in norm, while fni

w∗−→ g, so that fni

(
QniTKiyni−1

) → g(TQw). Hence,

g(TQw) = 0. ¤
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Clearly, the argument will work as well for λ-minimal vectors for any

λ > 1.

Suppose that Q is a quasinilpotent operator commuting with a com-

pact operator K. Then Q satisfies the hypothesis of the theorem.

Indeed, without loss of generality, ‖K‖ = 1. Fixing ε = 1
3
, there ex-

ists x0 with ‖x0‖ = 1 such that ‖Kx0‖ > 2
3

and 0 /∈ KB(x0, ε). For

every sequence (xn) in B(x0, ε), the sequence (Kxn) has a convergent

subsequence (Kxni
). Take Ki = K for all i; since 0 /∈ KB(x0, ε) then

limi Kixni
6= 0. It follows from the theorem that if Q is a quasinilpotent

operator on a real or complex Banach space commuting with a nonzero

compact operator, then Q has a hyperinvariant subspace. This fact is

not new though: for complex Banach spaces it is a special case of the

celebrated Lomonosov’s theorem [Lom73], and for real Banach spaces

it follows from Theorem 2 of [Hoo81].
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