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Abstract. In this paper we find invariant subspaces of certain positive quasinilpo-
tent operators on Krein spaces and, more generally, on ordered Banach spaces with
closed generating cones. In the later case, we use the method of minimal vectors.
We present applications to Sobolev spaces, spaces of differentiable functions, and
C*-algebras.

0. Introduction and notations

Lomonosov proved in [Lom73] that if an operator T on a Banach space is not a

multiple of the identity and commutes with a non-zero compact operator, then there is

a closed (proper non-zero) subspace which is invariant under every operator commut-

ing with T . The following result shows that the situation is even better for positive

operators on Banach lattices.

Theorem 0.1 ([AAB94]). Let S and T be two positive commuting operators on a

Banach lattice such that S is quasinilpotent and dominates a non-zero positive compact

operator. Then T has a closed invariant subspace.

Moreover, this invariant subspace can be chosen to be a closed order ideal. Several

variations of this result can be found in [AAB93, AAB94, AAB98, AA02, Drn01]. In

particular, ST = TS may be replaced with ST 6 TS. In [AE98], the method of

minimal vectors was used to show that the presence of a compact operator can be

replaced with a weaker “localization” condition. In the present paper we extend some

of these results beyond Banach lattices. We show that many of them remain valid in

ordered Banach spaces with closed generating cones. We present applications to spaces

of differentiable functions, C∗-algebras, and Sobolev spaces.

The paper is organized as follows. In Section 1, we consider invariant subspaces

of operators on Krein spaces. In Sections 2, 3 and 4, we consider applications of the
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results of Section 1. In Section 5, we extend the method of minimal vectors to ordered

Banach spaces with generating cones, and in Section 6 we present applications of this

method.

We now introduce some notations from the theory of ordered Banach spaces; for

further details we refer the reader to [AB85, AT07]. A vector space X over R is an

ordered vector space if it is equipped with an order relation such that a 6 b implies

a+ c 6 b+ c and λa 6 λb for all a, b, c ∈ X and λ ∈ R+. The positive cone of X is

defined as X+ = {x ∈ X : x > 0}. Furthermore, X is said to be a vector lattice if

the order is a lattice order, hence x ∨ y and x ∧ y exist for all x and y. In particular,

x+ = x ∨ 0, x− = (−x) ∨ 0, and |x| = x ∨ (−x) are defined for every x ∈ X, and we

have x = x+ − x− and |x| = x+ + x−. We say that X is an ordered Banach space

if it is a Banach space and an ordered vector space such that X+ is norm-closed. If, in

addition, X = X+−X+, then we say that X is a Banach space with a generating

closed cone . A lattice-ordered Banach space is an ordered Banach space with

the order being a lattice order. A lattice-ordered Banach space is a Banach lattice

if |x| 6 |y| implies ‖x‖ 6 ‖y‖ for all x, y ∈ X.

A few examples can be mentioned. The classical spaces Lp(µ), where µ is a measure

and 1 6 p 6 ∞, as well as C0(Ω), where Ω is a locally compact Hausdorff space,

are Banach lattices. However, there are many important ordered Banach spaces with

generating cones which are not Banach lattices. One could mention, in particular,

the spaces Ck[0, 1] of all k times continuously differentiable functions on [0, 1], as well

as C*-algebras. Sobolev spaces W k,p(Ω) are ordered Banach spaces. Moreover, we

observe in Section 4 that for k = 1 they are lattice-ordered Banach spaces. However,

they fail to be Banach lattices as the norm is not monotone on X+.

Throughout this paper, X will usually stand for an ordered vector or Banach space.

By a subspace of X we will always mean a linear subspace. By an operator on X we will

understand a linear operator. If a < b in X, we write [a, b] = {x ∈ X : a 6 x 6 b}.
Sets of this form are called order intervals. An operator T on X is positive if

Tx > 0 whenever x > 0. In this case we write T > 0. We write T 6 S if S − T > 0.

If S and T are two operators on X, we say that T is dominated by S if ±Tx 6 Sx

whenever x > 0. If X is a vector lattice, this is equivalent to |Tx| 6 S|x| for every

x ∈ X because ±Tx = ±(Tx+ − Tx−) 6 Sx+ + Sx− = S|x|.
A subspace E of X is said to be invariant under a collection S of operators on X

if {0} 6= E 6= X and T (E) ⊆ E for every T ∈ S. For A,B ⊆ X and u ∈ X we write

u + B = {u + b : b ∈ B} and A + B = {a + b : a ∈ A, b ∈ B}. If A and B are two
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subsets of X, we say that A minorizes B if for each b in B there exists a ∈ A such

that a 6 b.

Suppose now that X is an ordered Banach space. It follows from [a, b] = (a+X+)∩
(b − X+) that order intervals are closed sets. We will write L(X) for the space of

all bounded operators on X. Note that L(X) is an ordered Banach space, so that

if T 6 S in L(X), we write [T, S] =
{
R ∈ L(X) : T 6 R 6 S

}
(in particular,

all the operators in [T, S] are bounded). The commutant of T ∈ L(X) is the set

{T}′ = {S ∈ L(X) : TS = ST}. Following [AA02], we define the super left-

commutant 〈Q] and the super right-commutant of [Q〉 of Q as follows:

〈Q] = {T > 0 : TQ 6 QT} and [Q〉 = {T > 0 : TQ > QT}.

We will make use of the following well-known theorem (see, e.g., [AAB92]).

Theorem 0.2 (Lozanovski). Every positive operator between ordered Banach spaces

with generating closed cones is bounded.

Recall that a subspace E of a vector lattice X is said to be an (order) ideal if a ∈ E
and |x| 6 |a| imply x ∈ E. If A ⊆ X, then I(A) stands for the smallest ideal in X

containing A. It is easy to see that

I(A) =
{
x ∈ X : |x| 6

n∑
i=1

λi|ai|, λ1, . . . , λn ∈ R and a1, . . . , an ∈ A
}
.

We now extend these concepts to ordered vector spaces. A subspace E in an ordered

vector space is said to be an (order) ideal if

(i) x ∈ E implies that there exists a positive a ∈ E such that x 6 a, and

(ii) ±x 6 a ∈ E implies x ∈ E.

Note that in a vector lattice this definition agrees with the usual one. Furthermore, if

X is an ordered vector space and A is a convex subset of X, we will write

I0(A) =
{
x ∈ X : ±x 6 λa for some λ ∈ R+ and some a ∈ A

}
.

Note that I0(A) need not contain A. The following three lemmas are elementary, we

leave the proofs to the reader.

Lemma 0.3. Suppose that X is an ordered vector space.

(i) If A is a convex subset of X then I0(A) is an ideal; I0(A) is contained in every

ideal containing A.

(ii) A subset E ⊆ X is an ideal iff E =
⋃
a∈E+

I0(a).



4 H. E. GESSESSE AND V. G. TROITSKY

(iii) Suppose that E and F are two ideals in X such that I0(a) ∩ I0(b) is an ideal

whenever 0 6 a ∈ E and 0 6 b ∈ F . Then E ∩ F is an ideal.

Lemma 0.4. Suppose that X is a vector lattice and A ⊆ X such that either

(i) A is a convex subset of X+, or

(ii) A is the range of a positive operator on X.

Then I0(A) = I(A).

Lemma 0.5. Let X be an ordered vector space with a generating cone and Q a positive

operator on X. Then I0(RangeQ) is an ideal invariant under 〈Q].

Note that if X is a Banach lattice and E is an ideal in X then E is still an ideal. This

remains true if X is a lattice-ordered Banach spaces with continuous lattice operations.

Since various lattice operations can be expressed via each other, the continuity of any

of the maps x 7→ x+, x 7→ x−, x 7→ |x|, x 7→ x∧y, and x 7→ x∨y implies the continuity

of the other maps and joint continuity of x ∨ y and x ∧ y.

Proposition 0.6. Suppose that X is a lattice-ordered Banach space with continuous

lattice operations and E is an ideal in X. Then E is again an ideal.

Proof. Suppose that x ∈ E. Take a sequence (xn) in E such that xn → x. Then E 3
|xn| → |x|, hence |x| ∈ E. Suppose now that 0 6 y 6 x ∈ E. Again, take a sequence

(xn) in E such that xn → x. Then for every n we have E 3 |xn| ∧ y → x ∧ y = y,

hence y ∈ E. �

1. Positive quasinilpotent operators on Krein spaces

Suppose that X is an ordered Banach space (in particular, X+ is closed). Recall

that u ∈ X+ is said to be a (strong) order unit if for every x ∈ X there exists λ > 0

such that x 6 λu or, equivalently, if I0(u) = X. We make use of the following standard

lemma.

Lemma 1.1 (c.f. [AAB92, Lemma 3.2]). Suppose that X is an ordered Banach space

and u ∈ X+. Then the following statements are equivalent:

(i) u is an order unit;

(ii) u ∈ IntX+;

(iii) λB0 ⊆ [−u, u] for some λ ∈ R+, where B0 is the unit ball of X.
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Proof. (iii)⇒(i) is trivial. To show (ii)⇒(iii), suppose that u ∈ IntX+. Then u+λB0 ⊆
X+ for some λ ∈ R+. It follows that for every x ∈ X with ‖x‖ 6 λ we have u± x > 0,

so that −u 6 x 6 u, hence λB0 ⊆ [−u, u].

To show (i)⇒(ii), suppose that u is an order unit. Then X =
⋃∞
n=1[−nu, nu]. By the

Baire Category Theorem, [−u, u] has non-empty interior, so that B(a, λ) ⊆ [−u, u] for

some a ∈ X and λ ∈ R+. Now suppose that x ∈ B(u, λ), then a± (x− u) ∈ B(a, λ) ⊆
[−u, u]. Now −u 6 a+(x−u) implies x+a > 0, while a−(x−u) 6 u implies x−a > 0.

Adding these two inequalities together we get x > 0, so that B(u, λ) ⊆ X+. �

An ordered Banach space with an order unit is said to be a Krein space . Clearly,

the positive cone in a Krein space is generating. We would like to mention the following

result, which is a corollary of Krein’s theorem [KR48], see also [AAB92, SW99, OT05].

Theorem 1.2. If T is a positive operator on a Krein space then there is a closed

subspace invariant under {T}′.

Suppose that X is an ordered Banach space. Recall that w ∈ X+ is said to be

quasi-interior if I0(w) is dense in X. Clearly, every order unit is quasi-interior.

Lemma 1.3. If X is a Krein space then every quasi-interior point is an order unit.

Proof. Let w ∈ X+ be quasi-interior. By Lemma 1.1 there exists u ∈ X+ such that

B0 ⊆ [−u, u]. It follows that 2u+B0 ⊆ [u, 3u]. Since I0(w) is dense, it meets 2u+B0.

It follows that there exists x ∈ B0 such that u 6 2u + x 6 λw for some λ ∈ R+.

Therefore, w > 1
λ
u, hence I0(w) ⊇ I0(u) = X. �

Theorem 1.4. Suppose that Q is a positive quasinilpotent operator on a Krein space X.

Then 〈Q] has a non-dense invariant ideal.

Proof. Since X is a Krein space, there is an order unit u in X+. Let w = Qu. We

claim that w is not quasi-interior. Indeed, otherwise it would be a unit by Lemma 1.3,

so that u 6 λw for some λ ∈ R+. It follows that Qu > 1
λ
u, so that Qnu > 1

λnu, hence

λnQnu is contained in u + X+. Since λQ is quasinilpotent, we have λnQnu→ 0. But

u+X+ is closed, hence 0 ∈ u+X+, a contradiction.

Let x ∈ X, then ±x 6 λu for some λ ∈ R+, so that ±Qx 6 λw. It follows that

RangeQ ⊆ I0(w), so that I0(RangeQ) = I0(w), hence I0(RangeQ) is not dense. Now

apply Lemma 0.5. �
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2. Applications to C(K) and Ck(Ω) spaces and to C*-algebras

In this section we apply the results of the preceding sections to unital uniform alge-

bras. We will see that these algebras are Krein spaces, and apply Theorem 1.4 to find

invariant closed subspaces for positive quasinilpotent operators on them. Moreover,

these subspaces can be chosen to be the closures of non-dense invariant order ideals. It

should be pointed out that in this setting one has to distinguish between the algebraic

ideals and the order ideals. The non-unital case will be considered in Section 6.

Clearly, for every compact Hausdorff space K, the space C(K) is a Krein space with

1 being an order unit. Hence, Theorem 1.4 yields the following.

Corollary 2.1. If Q is a positive quasinilpotent operator on C(K) where K is a com-

pact Hausdorff space, then 〈Q] has a closed invariant ideal.

Let Ω be an open connected subset of Rn. Recall that the space Ck(Ω) consists of all

real-values functions f on Ω such that Dαf is bounded and uniformly continuous on

Ω whenever |α| 6 k. With the norm defined by ‖f‖ =
∑
|α|6k‖Dαf‖sup, the set Ck(Ω)

is an ordered Banach space, see, e.g., [KJF77]. Clearly, 1 is an order unit in Ck(Ω),

hence Ck(Ω) is a Krein space. Therefore, by Theorem 1.4 we have the following.

Corollary 2.2. If Q is a positive quasinilpotent operator on Ck(Ω) then 〈Q] has an

invariant non-dense order ideal. In particular, it has a closed invariant subspace.

Before we proceed to C*-algebras, we would like to make a remark about applicability

of our techniques to complex Banach spaces. In all our previous results we assumed

X to be an ordered Banach space over real scalars. By a complex ordered Banach

space we understand the complexification Xc = X + iX of an ordered Banach space

X over R (see [AA02] on complexifications of ordered Banach spaces). An operator

T ∈ L(Xc) is said to be positive if T (X+) ⊆ X+, where X+ is the positive cone of X.

Suppose that X+ is generating in X. Then every positive operator T in L(Xc) is the

complexification of its restriction to X, that is, T = (T|X)c. It is easy to see that if

a subspace V of X is invariant under S ∈ L(X), then V + iV is a subspace of Xc

invariant under Sc. Hence, in order to prove that a positive operator T on Xc has

an invariant subspace, it suffices to find an invariant subspace for the restriction of T

to X.

Let A be a C*-algebra. Then A is a Banach space over C. Observe that its self-

adjoint part Asa is a real Banach space. Recall that for x ∈ Asa we write x > 0

when σ(x) ⊆ [0,+∞). With this order, the positive cone A+ is closed and generating
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(generally, Asa is not a lattice). Furthermore, A can be viewed as the complexification

of Asa. Suppose that T is a positive operator on A. By the preceding paragraph, if

its restriction to Asa has an invariant subspace in Asa, then the T has an invariant

subspace in A. Hence, it suffices to look for invariant subspaces of positive operators

on Asa.

If, in addition, A is unital, then Asa is a Krein space. Indeed, suppose that x ∈ Asa

with ‖x‖ 6 1. Then σ(±x) ⊆ [−1, 1] and the Spectral Mapping Theorem yields

σ(e ± x) ⊆ [0, 2] ⊆ R+, so that ±x 6 e and, therefore, x ∈ [−e, e]. It follows from

Lemma 1.1 that Asa is a Krein space. Hence, Theorem 1.4 yields the following result.

Theorem 2.3. If Q is a positive quasinilpotent operator on a unital C*-algebra then

〈Q] has an invariant non-dense order ideal. In particular, it has a closed invariant

subspace.

3. Applications to Sobolev spaces W k,p(Ω)

Throughout this section we assume that Ω is a bounded open subset of RN , 1 6 p 6

∞, and k ∈ N. The Sobolev space W k,p(Ω) is defined as the set of all those functions

f ∈ Lp(Ω) for which the weak partial derivatives Dαf exist and are in Lp(Ω) for each

multi-index α with |α| 6 k. The norm on W k,p(Ω) is given by

‖f‖ =


[ ∑
|α|6k

∥∥Dαf
∥∥p
Lp

] 1
p

if p <∞,∑
|α|6k

∥∥Dαf
∥∥
L∞

if p =∞,

where ‖·‖Lp is the norm in Lp(Ω). As usually, we will write 1 for χΩ. For more details

on Sobolev spaces we refer the reader to [GT77, PW03, KJF77].

We equip W k,p(Ω) with the a.e. order, i.e., the order inherited from Lp(Ω). Note that

X+ is norm-closed. Indeed, let (fn) be a sequence in X+ such that fn → f in W k,p(Ω).

Then ‖fn − f‖Lp → 0, so that f > 0 because the positive cone of Lp(Ω) is closed.

Thus, W k,p(Ω) is an ordered Banach space. It is well known that as a Banach space

W k,p(Ω) is isomorphic to Lp(0, 1) when 1 < p < ∞, see, e.g., [PW03, Theorem 11].

However, we will see that the order structure of W k,p(Ω) is very different from that of

Lp(Ω).

Remark 3.1. Observe that the norm of Sobolev spaces is generally not monotone.

For example, let f ∈ W 1,1[0, 1] be defined as follows: f(t) = t for all t ∈ [0, 1]. Then

0 6 f 6 1, but ‖f‖ > ‖1‖.
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The question of existence of invariant subspaces of positive operators on Sobolev

spaces was investigated in [IM04], and a variant of Theorem 0.1 for W 1,p(Ω) was

proved there.

If p = ∞ then 1 is an order unit in W k,∞(Ω). It follows that W k,∞(Ω) is a Krein

space, so that if Q is a positive quasinilpotent operator on W k,∞(Ω) then 〈Q] has an

invariant non-dense ideal by Theorem 1.4. For this reason, from now on we assume

that p <∞.

Let X = W k,p(Ω) such that Ω is regular (i.e., ∂Ω is of class C0,1, see, e.g., [GT77]

for the precise definition of regular domains) and p > N/k or p = N/k = 1. The

classical Sobolev embedding theorem asserts that in this case there exists C > 0 such

that ‖f‖∞ 6 C‖f‖ for every f ∈ X. It follows that the unit ball of X is contained

in [−C1, C1]. Combining this observation with Lemma 1.1, we obtain the following

result.

Theorem 3.2. If Ω is regular and p > N/k or p = N/k = 1 then W k,p(Ω) is a Krein

space.

In particular, W 1,p[0, 1] is a Krein space for any 1 6 p < ∞. The next result now

follows immediately from Theorems 0.2, 3.2, 1.2, and 1.4.

Theorem 3.3. Suppose that Ω is regular and p > N/k or p = N/k = 1. If Q is a

positive operator on W k,p(Ω) then Q is bounded and there is a closed subspace invariant

under {Q}′. If, in addition, Q is quasinilpotent, then 〈Q] has a non-dense invariant

ideal.

4. A special case: W 1,p(Ω)

In this section we consider the case k = 1. The following fact from [GT77] shows

that W 1,p(Ω) is a sublattice of Lp(Ω).

Lemma 4.1 ([GT77, Lemma 7.6]). If f ∈ W 1,p(Ω) then f+, f−, and |f | are also in

W 1,p(Ω) and

∂f+

∂xi
=

{
∂f
∂xi

if f > 0

0 if f 6 0
,

∂f−

∂xi
=

{
0 if f > 0
∂f
∂xi

if f < 0
,

∂|f |
∂xi

=


∂f
∂xi

if f > 0

0 if f = 0

− ∂f
∂xi

if f < 0

for each i = 1, . . . , N (the equalities are a.e.).
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As usually, |f |, f+, and f− are defined pointwise. Hence, W 1,p(Ω) is a vector lattice

and
∥∥|f |∥∥ = ‖f‖ for every f ∈ W 1,p(Ω) (recall that W 1,p(Ω) is generally not a Banach

lattice by Remark 3.1). In particular, the positive cone of W 1,p(Ω) is generating.

Together with Theorem 0.2 this immediately yields the following.

Corollary 4.2. Every positive operator on W 1,p(Ω) is bounded.

Theorem 4.3. The Sobolev space W 1,p(Ω) is a lattice-ordered Banach space with con-

tinuous lattice operations.

Proof. Let X = W 1,p(Ω). In view of the preceding discussion, we only need to verify

the continuity of the lattice operations in X. Take (fn) in X such that fn → f for

some f ∈ X. It follows that ‖fn − f‖Lp → 0 and
∥∥∂fn

∂xi
− ∂f

∂xi

∥∥
Lp
→ 0 for each i. Since

Lp(Ω) is a Banach lattice, ‖f+
n −f+‖Lp → 0. It is left to show that

∥∥∂f+
n

∂xi
− ∂f+

∂xi

∥∥
Lp
→ 0

for every i. Consider the following subsets of Ω: A+ = {f > 0}, A− = {f < 0}, and

A0 = {f = 0}. Also, for every n define A+
n = {fn > 0} and A0−

n = {fn 6 0}. In order

to show that ∫
Ω

∣∣∣∂f+
n

∂xi
− ∂f+

∂xi

∣∣∣p → 0,

we split it into integrals over the following six sets: A+ ∩ A+
n , A+ ∩ A0−

n , A− ∩ A+
n ,

A− ∩A0−
n , A0 ∩A+

n , and A0 ∩A0−
n . In fact, by Lemma 4.1, the integrand vanishes a.e.

on A− ∩ A0−
n and A0 ∩ A0−

n , so that there is nothing to do about these two sets.

Next, we consider A+ ∩ A+
n and A0 ∩ A+

n . Lemma 4.1 yields that ∂f+
n

∂xi
= ∂fn

∂xi
a.e. on

A+
n and ∂f+

∂xi
= ∂f

∂xi
a.e. on A+. Further, on A0 we have ∂f−

∂xi
= 0, hence ∂f

∂xi
= ∂f+

∂xi
a.e..

Therefore,∫
(A+∪A0)∩A+

n

∣∣∣∂f+
n

∂xi
− ∂f+

∂xi

∣∣∣p =

∫
(A+∪A0)∩A+

n

∣∣∣∂fn
∂xi
− ∂f

∂xi

∣∣∣p 6 ∫
Ω

∣∣∣∂fn
∂xi
− ∂f

∂xi

∣∣∣p → 0.

For the remaining two sets, we show first that the sequences m(A+ ∩ A0−
n ) and

m(A− ∩A+
n ) tend to zero as n→∞, where m stands for the Lebesgue measure on Ω.

Indeed, since ‖fn−f‖Lp → 0, by passing to a subsequence we may assume that fn
a.e.−−→ f

on Ω. In particular, fn
a.e.−−→ f on A+. By Egoroff’s theorem we can find B ⊆ A+ such

that fn → f uniformly on B and m(B) > m(A+) − ε. Since A+ =
⋃∞
k=1{f >

1
k
}, we

have m
(
{f > 1

k
}
)
> m(A+)− ε for some k. It follows that fn > 0 on {f > 1

k
} ∩B for

all sufficiently large n, so that A0−
n ∩ {f > 1

k
} ∩B = ∅. Therefore, m(A+ ∩A0−

n )→ 0.

Similarly, we show that m(A− ∩ A+
n )→ 0. Now Lemma 4.1 yields∫

A+∩A0−
n

∣∣∣∂f+
n

∂xi
− ∂f+

∂xi

∣∣∣p =

∫
A+∩A0−

n

∣∣∣ ∂f
∂xi

∣∣∣p → 0,
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and∫
A−∩A+

n

∣∣∣∂f+
n

∂xi
− ∂f+

∂xi

∣∣∣p =

∫
A−∩A+

n

∣∣∣∂fn
∂xi

∣∣∣p
6 2p

∫
A−∩A+

n

∣∣∣∂fn
∂xi
− ∂f

∂xi

∣∣∣p + 2p
∫
A−∩A+

n

∣∣∣ ∂f
∂xi

∣∣∣p
6 2p

∫
Ω

∣∣∣∂fn
∂xi
− ∂f

∂xi

∣∣∣p + 2p
∫
A−∩A+

n

∣∣∣ ∂f
∂xi

∣∣∣p → 0.

It follows that
∥∥∂f+

n

∂xi
− ∂f+

∂xi

∥∥
Lp
→ 0. �

Combining Theorem 4.3 with Proposition 0.6, we immediately obtain the following

result.

Corollary 4.4. The closure of every ideal in W 1,p(Ω) is again an ideal.

Recall that Theorem 0.1 asserts that an operator on a Banach lattice satisfying a

certain condition has an invariant closed ideal. As we mentioned before, a variant of

Theorem 0.1 for W 1,p(Ω) proved in [IM04] states that an operator on W 1,p(Ω) satisfying

the same condition has a closed invariant subspace. In fact, this subspace is produced

in [IM04] as the closure of a certain ideal. In view of Corollary 4.4, this closure is itself

an ideal. Hence, the following result holds.

Corollary 4.5. Let S and T be two positive commuting operators on a W 1,p(Ω) such

that S is quasinilpotent and dominates a non-zero positive compact operator. Then T

has a closed invariant ideal.

As in [IM04], instead of S being quasinilpotent, it is sufficient that S be locally

quasinilpotent at a positive vector.

Theorem 3.3 and Corollary 4.4 together yield the following result.

Theorem 4.6. Suppose that Ω is regular and p > N or p = N = 1. If Q is a positive

operator on W 1,p(Ω) then Q is bounded and there is a closed subspace invariant under

{Q}′. If, in addition, Q is quasinilpotent, then 〈Q] has a closed invariant ideal.

5. Minimal vectors in spaces with a generating cone

The method of minimal vectors was originally developed in [AE98] to prove the

existence of invariant subspaces for certain classes of operators on Hilbert spaces. The

method was later extended to Banach space in [JKP03, And03, CPS04, Tro04, LRT].

Following [LRT], we say that a collection F of linear bounded operators on a Banach

spaceX localizes a subset A ⊆ X if for every sequence (xn) in A there is a subsequence
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(xni
) and a sequence (Ki) in F such that the sequence (Kixni

) converges to a non-zero

vector. It was proved in [Tro04] that if T is a quasinilpotent operator on a Banach

space X such that the unit ball of the commutant of T localizes a closed ball in X,

then T has a hyperinvariant subspace. This implies Lomonosov’s theorem [Lom73] for

quasinilpotent operators.

In [AT05], the method of minimal vectors was used to produce several generalizations

of Theorem 0.1 and of other related results. In this section we show that the technique

developed in [AT05] extends naturally to ordered Banach spaces with generating cones.

In fact, it is even simpler and more transparent in this more general setting, and the

proofs are shorter. The crucial tool in extending the method is the following well-known

theorem (see, e.g., [AAB92]).

Theorem 5.1 (Krein and Šmulian). Let X be a Banach space with a generating closed

cone X+. There exists a constant ∆ > 0 such that for each x ∈ X there exist x1, x2 ∈
X+ such that x = x1 − x2 and ‖xi‖ 6 ∆‖x‖, i = 1, 2.

The smallest such ∆ will be denoted ∆(X). We will write B(u, r) for the closed

ball of radius r centered at u ∈ X. We will also write Bu = B(u, 1). In particular,

B0 stands for the unit ball of X. Suppose that Q is a positive bounded operator

on an ordered Banach space X, u ∈ X+, and C ∈ R+. Following [AT05], we say

that y ∈ X is a C-minimal vector for Q and u if y > 0, y ∈ Q−1(Bu + X+) and

‖y‖ 6 C dist
{

0, Q−1(Bu +X+)
}

.

Lemma 5.2. Suppose that X is a Banach space with a generating closed cone with

∆ = ∆(X) and Q is a positive operator on X such that I0(RangeQ) is dense in X.

Suppose that u ∈ X+ such that 0 /∈ Bu +X+. Then there exists a (2∆)-minimal vector

for Q and u.

Proof. Note first that Q is bounded by Theorem 0.2. Since I0(RangeQ) is dense, it

meets Bu. Let x ∈ Bu∩I0(RangeQ). Then x 6 Qh for some h, so that Qh ∈ Bu+X+,

hence RangeQ ∩ (Bu + X+) is non-empty. Put D = Q−1(Bu + X+), then D is non-

empty. Since Q is continuous, 0 /∈ D. It follows that d := dist{D, 0} > 0. Find

z ∈ D such that ‖z‖ 6 2d. By Theorem 5.1 there exists y ∈ X+ such that z 6 y

and ‖y‖ 6 2d∆. It follows from Qz ∈ Bu + X+ and Q > 0 that Qz 6 Qy, so that

Qy ∈ Bu +X+, hence y is a (2∆)-minimal vector. �

Proposition 5.3. Suppose that Q is a positive bounded operator on an ordered Banach

space X, u ∈ X+ such that 0 /∈ Bu +X+, and C ∈ R+. Suppose that y is a C-minimal
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vector for Q and u. Then there exists f ∈ X∗ (called a minimal functional) such

that

(i) f is positive, and f(u) > 1 = ‖f‖;
(ii) There exists c > 0 such that f|Q(B(0,d)) 6 c and f|Bu+X+ > c, where d =

dist
{

0, Q−1(Bu +X+)
}

;

(iii) 1
C
‖Q∗f‖‖y‖ 6 (Q∗f)(y) 6 ‖Q∗f‖‖y‖;

(iv) f(Qy) 6 C‖u‖;
(v) ‖Q∗f‖ 6 C2‖u‖

‖y‖ .

Proof. (i), (ii), and (iii) are proved exactly as the corresponding statements in [AT05,

Lemma 6]. Note that C−1y ∈ B(0, d), hence C−1Qy ∈ Q
(
B(0, d)

)
. Since u ∈ Bu +

X+, (ii) and (i) imply C−1f(Qy) 6 c 6 f(u) 6 ‖u‖, which proves (iv). Finally,

combining (iii) and (iv) we get (v). �

For the rest of this section we will make the following assumptions.

(1)

(i) X is a Banach space with a generating closed cone;
(ii) u ∈ X+ such that 0 /∈ Bu +X+;

(iii) A ⊆ X+ such that A minorizes (Bu +X+) ∩X+;
(iv) Q is a positive quasinilpotent operator on X.

The goal of this section is to show that under these assumptions plus some extra

conditions, 〈Q] has a closed invariant subspace. Before we proceed, we would like to

make a few comments on these assumptions.

For A one can always take, e.g., the entire set (Bu + X+) ∩X+. However, in what

follows, we will be localizing A, so that we will be interested in having A as small as

possible. If X is a vector lattice, one can always take A =
[
u ∧

(
Bu + X+

)]
∩ X+.

In [AT05], where X was a Banach lattice, the set Bu ∩ [0, u] served as A.

Clearly, 0 /∈ Bu +X+ implies ‖u‖ > 1. The converse is also true if the norm is

monotone on X+, i.e., when 0 6 x 6 y implies ‖x‖ 6 ‖y‖. In particular, this holds if

X is a Banach lattice. The following example shows that the converse fails in general.

Example. Let X = R
2 ordered so that X+ is the first quadrant. Norm X so that the

unit ball is the absolute convex hull of (0, 1) and (2, 2). Let u = (0, 2), then ‖u‖ = 2.

However, (−2, 0) ∈ Bu and (2, 0) ∈ X+, so that (0, 0) ∈ Bu +X+.

Finally, note that under assumptions (1), Theorem 0.2 guarantees that Q is bounded.

Proposition 5.4. Suppose that X, u, and Q are as in (1) and I0(RangeQ) is dense

in X. Put ∆ = ∆(X). Then for every n ∈ N there exists a positive (2∆)-minimal
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vector yn and a minimal functional fn for Qn and u. Furthermore, there exists a

subsequence (ni) such that
‖yni−1‖
‖yni‖

→ 0 and fni

w∗−→ g for some non-zero g ∈ X∗+.

Proof. The existence of sequences of minimal vectors (yn) and minimal functionals

(fn) follows from Lemma 5.2 and Proposition 5.3. Suppose that there exists δ > 0

such that ‖yn−1‖
‖yn‖ > δ for all n, so that ‖y1‖ > δ‖y2‖ > . . . > δn‖yn+1‖. Let again

D = Q−1
(
Bu +X+

)
. Then Qnyn+1 ∈ D, so that∥∥Qnyn+1

∥∥ > dist
(
0, D) >

‖y1‖
2∆
>

δn

2∆
‖yn+1‖.

It follows that ‖Qn‖ > δn

2∆
, which contradicts the quasinilpotence of Q. Hence,

‖yni−1‖
‖yni‖

→ 0 for some subsequence (yni
). Since ‖fn‖ = 1 for every n and the unit

ball of X∗ is weak*-compact, we can assume by passing to a further subsequence that

fni

w∗−→ g for some g ∈ X∗. Clearly, g > 0. Since fn(u) > 1 for each n, it follows that

g(u) > 1, hence g 6= 0. �

Theorem 5.5. Suppose that X, u, A, and Q are as in (1). If the set of all operators

dominated by Q localizes A then 〈Q] has an invariant closed subspace. Furthermore,

if [0, Q] localizes A then 〈Q] has a non-dense invariant ideal.

Proof. Let ∆ = ∆(X). By Theorem 0.2, every operator in 〈Q] and [0, Q] is bounded. In

view of Lemma 0.5 we may assume without loss of generality that I0(RangeQ) is dense

inX. Let (yni
), (fni

), and g be as in Proposition 5.4. ThenQni−1yni−1 ∈ (Bu+X+)∩X+

for each i. It follows that there exists ai ∈ A such that ai 6 Qni−1yni−1. By passing

to a further subsequence, we can find a sequence (Ki) such that Q dominates Ki for

every i and Kiai converges to some w 6= 0. Then ±Kiai 6 Qai 6 Qniyni−1. For every

T ∈ 〈Q] we have

± fni
(TKiai) 6 fni

(QniTyni−1) = (Q∗nifni
)(Tyni−1)

6 ‖Q∗nifni
‖‖T‖‖yni−1‖ 6

4∆2‖u‖
‖yni
‖
‖T‖‖yni−1‖

by Propositions 5.3(v). It follows from
‖yni−1‖
‖yni‖

→ 0 that fni
(TKiai)→ 0. On the other

hand, fni
(TKiai)→ g(Tw). Thus, g(Tw) = 0 for every T ∈ 〈Q].

If Tw = 0 for all T ∈ 〈Q] then the one-dimensional subspace spanned by w is

invariant under 〈Q]. Suppose Tw 6= 0 for some T ∈ 〈Q]; let Y be the linear span

of 〈Q]w. Then Y is non-trivial and invariant under 〈Q]. Finally, Y ⊆ ker g implies

Y 6= X, hence Y is a required subspace.
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Suppose now that [0, Q] localizes A. Then we can assume that the vector w con-

structed in the preceding argument is positive. Put E = I0

(
〈Q]w

)
. Then E is an ideal

by Lemma 0.3(i); E is invariant under 〈Q], and E is non-trivial as w ∈ E. Finally,

g > 0 implies E ⊆ ker g, hence E 6= X. �

Theorem 5.6. Suppose that X, u, A, and Q are as in (1), and I0(RangeQ) is dense.

Suppose also that F is a family of positive contractive operators on X such that F
localizes A and S ⊆ L(X) is a semigroup such that SF ⊆ 〈Q]. Then S has an

invariant closed subspace. Furthermore, if S consists of positive operators then it has

a non-dense invariant ideal.

Proof. Again, let (yni
), (fni

), and g be as in Proposition 5.4 with ∆ = ∆(X). Since

Qni−1yni−1 ∈ (Bu+X+)∩X+ for every i, we can find ai ∈ A such that ai 6 Qni−1yni−1.

By passing to a further subsequence, we can find a sequence (Ki) in F such that Kiai

converges to some w 6= 0. Let T ∈ S. Since TKi ∈ 〈Q], Propositions 5.3(v) yields

0 6 fni
(QTKiai) 6 fni

(QniTKiyni−1)

6 ‖Q∗nifni
‖‖T‖‖yni−1‖ 6

4∆2‖u‖
‖yni
‖
‖T‖‖yni−1‖ → 0

since
‖yni−1‖
‖yni‖

→ 0. It follows that g(QTw) = 0 for every T ∈ S.

Let Y be the linear span of Sw; then Y is invariant under S. Since I0(RangeQ)

is dense and g > 0 we have Q∗g 6= 0. This yields Y 6= X because Tw ∈ kerQ∗g for

every T ∈ S. Finally, if Y = {0}, then Tw = 0 for each T ∈ S, so that spanw is a

one-dimensional subspace invariant under S.

Suppose now that S consists of positive operators. Then w can be chosen to be

positive. Let A be the convex hull of Sw and put E = I0(A); then E is an ideal by

Lemma 0.3(i) and E is invariant under S. It follows from Q∗g > 0 that Q∗g vanishes

on E, hence E 6= X. If E 6= {0}, we are done. Otherwise, Tw = 0 for each T ∈ S.

Put F = I0(w); then F is a non-trivial ideal; F is invariant under S since every T ∈ S
vanishes on F . Also, F 6= X as otherwise every operator in S is zero. �

Corollary 5.7. Suppose that X, u, A, and Q are as in (1). If the set of all contractions

in 〈Q] localizes A then 〈Q] has a non-dense invariant ideal.

Proof. By Lemma 0.5 we may assume that I0(RangeQ) is dense. Now apply Theo-

rem 5.6 with F =
{
K ∈ 〈Q] : ‖K‖ 6 1

}
and S = 〈Q]. �
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Remark 5.8. In view of Proposition 0.6, if X is a lattice-ordered Banach space with

continuous operations then the invariant ideals in Theorems 5.5 and 5.6 and Corol-

lary 5.7 can be taken to be closed.

6. Applications of minimal vector technique

Non-unital uniform algebras. Consider Asa for a non-unital C*-algebra A. An

important special case is the space C0(Ω) of continuous functions on a locally compact

Hausdorff space which vanish at infinity; equipped with sup-norm.

These spaces are ordered Banach spaces with closed generating cones (but not Krein

spaces). Hence, Theorems 5.5 and 5.6, as well as Corollary 5.7, guarantee that if Q

is a positive quasinilpotent operator on any of these spaces satisfying the conditions

described in the theorems, then 〈Q] has a common invariant closed subspace.

Observe that for every u ∈ A+ with ‖u‖ > 1 we automatically have 0 /∈ Bu +A+

(this is one of the assumptions in (1)). Indeed, suppose that 0 ∈ Bu +A+, then there

exist sequences (xn) in B0 and hn ∈ A+ such that u + xn + hn → 0. It follows that

‖u + hn‖ − ‖xn‖ → 0. However, in a C*-algebra, 0 6 a 6 b implies ‖a‖ 6 ‖b‖; see,

e.g., [SW99, VI.3.2.ii]. Hence ‖u+ hn‖ − ‖xn‖ > ‖u‖ − 1 > 0, a contradiction.

Sobolev spaces. Finally, we present an application of the localization technique de-

veloped in Section 5 to W 1,p(Ω). In the following theorem, we do not require that Ω

is regular or that p and N are related.

Being a lattice-ordered space, W 1,p(Ω) clearly has a generating cone. Combining

Corollaries 4.2 and 4.4 with Theorem 5.5 and Corollary 5.7, we obtain the following

result.

Theorem 6.1. Let X = W 1,p(Ω) and suppose that Q is a positive quasinilpotent

operator on X, u ∈ X+ with 0 /∈ Bu +X+, and A ⊆ X+ such that A minorizes

(Bu +X+) ∩X+.

(i) If the set of all operators dominated by Q localizes A then 〈Q] has an invariant

closed subspace.

(ii) if either [0, Q] or the set of all contractions in 〈Q] localizes A, then 〈Q] has an

invariant closed ideal.

Next, we show that the assumptions in Theorem 6.1 are not as restrictive as they

might seem.

Lemma 6.2. If X = W k,p(Ω) and u ∈ X+ with ‖u‖Lp > 1 then 0 /∈ Bu +X+.



16 H. E. GESSESSE AND V. G. TROITSKY

Proof. Suppose not. Then there exist sequences (xn) in the unit ball of X and (hn)

in X+ such that u + xn + hn → 0. This implies ‖u + xn + hn‖Lp → 0, so that

‖u + hn‖Lp − ‖xn‖Lp → 0. However, ‖u + hn‖Lp − ‖xn‖Lp > ‖u‖Lp − 1 > 0, a

contradiction. �

Remark 6.3. Let X be a lattice ordered Banach space such that
∥∥|x|∥∥ = ‖x‖ for

every x ∈ X (for example, X = W 1,p(Ω)). Let u ∈ X+ such that 0 /∈ Bu +X+. Then,

of course, ‖u‖ > 1. Let A = {y+ : y ∈ Bu}. We claim that then A is norm-bounded,

A ⊆ (Bu +X+) ∩X+ so that 0 /∈ A, and A minorizes (Bu +X+) ∩X+.

Indeed, suppose that y ∈ Bu. We have y+ = y+|y|
2

, hence ‖y+‖ 6 ‖y‖ 6 ‖u‖+ 1, so

that A is bounded. Also, y+ = y+ y− ∈ Bu +X+, so that A ⊆ (Bu +X+)∩X+. Now,

let z ∈ (Bu + X+) ∩X+. Then z = y + h for some y ∈ Bu and h > 0. It follows from

z > 0 and z > y that z > y+, hence A minorizes (Bu +X+) ∩X+.

We now show that Theorem 6.1 implies an analogue of Theorem 0.1 for W 1,p(Ω).

Theorem 6.4. Suppose that Ω is a regular domain and Q is a positive quasinilpotent

operator on X = W 1,p(Ω) and 0 6 K 6 Q for a non-zero compact operator K. Then

〈Q] has a closed invariant ideal.

Proof. Since K 6= 0 we have K1 6= 0 as, otherwise, K would vanish on all bounded

functions, but bounded functions are dense in X. It follows that there exists ε > 0

such that 0 /∈ K
(
B(1, ε)

)
. Let u = 1

ε
1, then 0 /∈ K(Bu). By scaling u even further we

may also assume that ‖u‖Lp > 1, hence 0 /∈ Bu +X+ by Lemma 6.2.

As in Remark 6.3, take A = {y+ : y ∈ Bu}; then A minorizes (Bu + X+) ∩ X+.

Since u is a multiple of 1, it follows from Lemma 4.1 that ‖y+ − u‖ 6 ‖y − u‖ 6 1 for

every y ∈ Bu; hence A ⊆ Bu.

Observe that [0, Q] localizes A. Indeed, let (xn) be a sequence in A. Since K ∈ [0, Q]

and K is compact, there is a subsequence (xni
) such that Kxni

→ w for some w.

Clearly, w ∈ K(A) ⊆ K(Bu), hence w 6= 0. Now apply Theorem 6.1. �
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