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Abstract. This note is a follow-up to [Tro05]. We provide several sufficient conditions
for the space M of bounded martingale on a Banach lattice F to be a Banach lattice
itself. We also present examples in which M is not a Banach lattice. It is shown that
if F is a KB-space and the filtration is dense then F is a projection band in M .

Introduction

This short note is a follow-up to [Tro05], where the second author introduced and

studied spaces of bounded martingales on Banach lattices. Let us briefly recall some

key definitions from [Tro05]. Throughout this paper, F is a Banach lattice. By a

filtration on F we mean a sequence (En) of positive contractive projections such that

EnEm = En∧m. A sequence (xn) in F is said to be a martingale (a submartingale)

relative to a filtration (En) if Enxm = xn (Enxm > xn, respectively) whenever n 6 m.

A (sub)martingale X = (xn) is bounded if it has finite martingale norm given by

‖X‖ = supn‖xn‖. We write M = M
(
F, (En)

)
for the space of all bounded martingale

on F relative to filtration (En). It is easy to see that M is a Banach space. Also, M

can be ordered component-wise, i.e., (xn) 6 (yn) if xn 6 yn for every n. It is easy to see

that, under this order, M is an ordered Banach space and the norm is monotone, i.e.,

0 6 X 6 Y implies ‖X‖ 6 ‖Y ‖. It was shown in [Tro05] that under certain conditions

on F the space M is itself a Banach lattice. In Section 1 of this note, we slightly improve

some of these conditions. However, the question whether M is always a Banach lattice

was left unanswered in [Tro05]. In Section 2 of this note, we answer this question in the

negative by providing examples in which M is not a Banach lattice.

Section 3 is concerned with the case when F is a KB-space. It was shown in [Tro05]

that in this case, M is a Banach lattice. It was also claimed in [Tro05] that in this case,

F can be identified with a projection band in M . However, the proof of the latter claim

in [Tro05] contained a gap. In Section 3 of this note, we present a complete proof of the

assertion.
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1. When is M a Banach lattice?

We start by extending Lemmas 5 and 6 of [Tro05] to weakly convergent sequences.

The proofs are analogous.

Lemma 1. Let X = (xn) and Y = (yn) be two bounded submartingales.

(i) For a fixed n, the sequence
(
En(xm ∨ ym)

)∞
m=n

is increasing, norm bounded by

‖X‖+ ‖Y ‖, and bounded below by xn ∨ yn.

(ii) If, in addition, this sequence converges weakly to some (zn) for each n, then

Z = (zn) is a bounded martingale, and it is the least martingale satisfying X 6 Z

and Y 6 Z.

Proof. (i) Let n 6 m, notice that En(xm∨ym) > (Enxm)∨(Enym) = xn∨yn. Furthermore,

En(xm+1 ∨ ym+1) = EnEm(xm+1 ∨ ym+1) > En(Emxm+1 ∨ Emym+1) = En(xm ∨ ym).

Finally, ∥∥En(xm ∨ ym)
∥∥ 6 ‖xm ∨ ym‖ 6 ∥∥|xm|+ |ym|∥∥ 6 ‖X‖+ ‖Y ‖.

(ii) Suppose that w-limmEn(xm∨ym) = zn for each n, and set Z = (zn). First, observe

that Z is a martingale. Indeed, for k 6 n we have

Ekzn = Ek
(
w-lim
m→∞

En(xm ∨ ym)
)

= w-lim
m→∞

EkEn(xm ∨ ym) = w-lim
m→∞

Ek(xm ∨ ym) = zk.

Furthermore, by properties of weak convergence, we have

‖zn‖ 6 lim inf
m→∞

∥∥En(xm ∨ ym)
∥∥ 6 ‖X‖+ ‖Y ‖

for every n, so that Z is bounded. Since En(xm ∨ ym) > xn ∨ yn whenever m > n, we

have zn > xn ∨ yn for all n. Thus, Z > X and Z > Y . On the other hand, suppose that

Z̃ = (z̃n) is a martingale such that Z̃ > X and Z̃ > Y . Then z̃m > xm ∨ ym for all m, so

that z̃n = Enz̃m > En(xm ∨ ym) for all m > n. As w-limmEn(xm ∨ ym) = zn, this yields

z̃n > zn, so that Z̃ > Z. �

Corollary 2. Suppose that w-limmEn|xm| exists for each n and for each martingale

(xn) in M . Then M is a Banach lattice with lattice operations given by (X ∨ Y )n =

w-lim
m→∞

En(xm ∨ ym), |X|n = w-lim
m→∞

En|xm|, etc, for any X, Y ∈ M with X = (xn) and

Y = (yn).

Proof. Let X, Y ∈ M , put Z = X − Y , then Z ∈ M . Write X = (xn), Y = (yn), and

Z = (zn). Then for n 6 m we have

En(xm ∨ ym) = En

(xm + ym
2

+
|xm − ym|

2

)
=
xn + yn

2
+ 1

2
En|zm|,
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which converges weakly as m → +∞ by the hypothesis. Thus, by Lemma 1, X ∨ Y
is a bounded martingale. Hence, M is a vector lattice with lattice operation as in the

statement.

It remains to show that
∥∥|X|∥∥ = ‖X‖ for every X ∈M . Let Z = |X|. Write X = (xn)

and Z = (zn). Then zn = w-limmEn|xm| for every n. Let U =
{
f ∈ F ∗+ : ‖f‖ 6 1

}
.

Then

(1) ‖zn‖ = sup
f∈U

f(zn) = sup
f∈U

lim
m→∞

f
(
En|xm|

)
.

Note that for every f ∈ U we have f
(
En|xm|

)
6 ‖f‖‖En‖‖xm‖ 6 ‖X‖, so that

‖Z‖ 6 ‖X‖. On the other hand, for n 6 m we have |xn| = |Enxm| 6 En|xm|, so

that f
(
En|xm|

)
> f

(
|xn|
)
. It follows from (1) that ‖zn‖ >

∥∥|xn|∥∥ = ‖xn‖, hence

‖Z‖ > ‖X‖. �

It was shown in [Tro05] that if F is a KB-space then M is a Banach lattice. We can

now prove the following stronger result.

Corollary 3. Suppose that every increasing norm bounded sequence in F converges

weakly. Then M is a Banach lattice. If X, Y ∈ M with X = (xn) and Y = (yn)

then (X ∨ Y )n = w-lim
m→∞

En(xm ∨ ym).

Proposition 4. If En is a band projection for every n then M is a Banach lattice with

coordinate-wise lattice operations.

Proof. Let X = (xn) ∈M . Then for every m > n we have En|xm| = |Enxm| = |xn|. The

conclusion now follows from Corollary 2. �

Theorem 5. If F is order continuous, then the following statments are equivalent.

(i) M is a Banach lattice.

(ii) For each n,
(
En|xm|

)
m

converges weakly for each (xn) ∈M .

(iii) For each n,
(
En|xm|)m converges in norm for each (xn) ∈M .

Proof. (i)⇒(ii) Suppose M is a Banach lattice and let X = (xn) ∈ M . Then |X| exists

in M , say, |X| = (yn) ∈ M . It follows from |xm| 6 ym that 0 6 En|xm| 6 Enym = yn

whenever n 6 m. Thus, the sequence
(
En|xm|

)∞
m=n

is increasing and bounded above.

Since F is order continuous, order interval in F are weakly compact, see, e.g. [AB85,

Theorem 12.9]. Hence
(
En|xm|

)
has a weakly convergent subsequence. It follows from

Lemma 1(i) that
(
En|xm|

)
is increasing, hence the entire sequence converges weakly.

(ii)⇒(iii) By Lemma 1(i),
(
En|xm|

)
m

is increasing, and every increasing weakly con-

vergent sequence is norm convergent (see, e.g., Proposition 1.4.1 of [MN91].
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(iii)⇒(i) This is just a special case of Corollary 2. �

2. Examples when M is not a Banach lattice

Example 6. In this example we construct a filtration (En) on c0 such that M
(
c0, (En)

)
is not a Banach lattice.

As usually, an operator T ∈ L(c0) can be represented by an infinite matrix where the

j-column is Tej. For n = 0, 1, 2, . . . , put

En =



1
. . .

1
1/2 1/2
1/2 1/2

1/2 1/2
1/2 1/2

. . .


with 2n ones in the upper-left corner. In other words,

Enei = ei if i 6 2n, and Ene2k−1 = Ene2k = 1
2
(e2k−1 + e2k) when n < k.

Note that E0 has no 1’s at all. It is easy to see that (En) is a dense filtration. Furthermore,

for n = 0, 1, 2, . . . , put

xn = (−1, 1, . . . ,−1, 1︸ ︷︷ ︸
2n

, 0, . . . ).

It is easy to see that (xn) is a bounded martingale relative to (En). On the other hand,

E0|xn| = (1, 1, . . . , 1, 1︸ ︷︷ ︸
2n

, 0, . . . ).

Clearly, E0|xn| diverges, so that M is not a Banach lattice by Theorem 5.

Example 7. This is another example where M is not a Banach lattice. For the definition

and properties of vector-valued Lp-spaces we refer the reader to [DU77]. Suppose that X

is a Banach space, and let a sequence (an)∞n=0 in X be a tree, that is, an = 1
2
(a2n+1+a2n+2)

for every n. Now define a sequence (xn) in L1

(
[0, 1], X

)
via

x0 = a0χ[0,1],

x1 = a1χ[0, 1
2
) + a2χ[ 1

2
,1],

x2 = a3χ[0, 1
4
) + a4χ[ 1

4
, 2
4
) + a5χ[ 2

4
, 3
4
) + a6χ[ 3

4
,1],

etc.

Then (xn) is a martingale in the sense of [DU77] relative to the dyadic filtration of [0, 1].
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Now, suppose that X is a Banach lattice. Then L1

(
[0, 1], X

)
also is a Banach lat-

tice. Next, we define a sequence of projections on L1

(
[0, 1], X

)
as follows. For f ∈

L1

(
[0, 1], X

)
, we put

E0f =
(∫ 1

0
f
)
χ[0,1],

E1f = 2
[(∫ 1/2

0
f
)
χ[0, 1

2
) +
(∫ 1

1/2
f
)
χ[ 1

2
,1]

]
,

E2f = 4
[(∫ 1/4

0
f
)
χ[0, 1

4
) +
(∫ 2/4

1/4
f
)
χ[ 1

4
, 2
4
) +
(∫ 3/4

2/4
f
)
χ[ 2

4
, 3
4
) +
(∫ 1

3/4
f
)
χ[ 3

4
,1]

]
,

etc.

It is easy to see that (En) is a filtration on L1

(
[0, 1], X

)
, and (xn) is a martingale in

L1

(
[0, 1], X

)
relative to this filtration.

Now put X = c0 and let F = L1

(
[0, 1], c0

)
. Let (xk) be defined as above with

a0 = (0, . . . ),

a1 = (1, 0, . . . ), a2 = (−1, 0, . . . ),

a3 = (1, 1, 0, . . . ), a4 = (1,−1, 0 . . . ), a5 = (−1, 1, 0, . . . ), a6 = (−1,−1, 0, . . . ),

etc. In other words, xn = (r1, . . . , rn, 0, . . . ), where rk is the k-th Rademacher function.

Then ‖xn‖ = 1 for every n. However,

E0|xn| = (1, . . . , 1︸ ︷︷ ︸
n times

, 0 . . . ).

Again, E0|xn| diverges, so that M is not a Banach lattice by Theorem 5.

3. How does F sit in M?

Again, throughout this section we assume that F is a Banach lattice, (En) is a filtration

on F , and M = M
(
F, (En)

)
. Moreover, we will assume that (En) is dense , i.e., Enx→ x

for every x ∈ F . It was observed in Section 8 of [Tro05] that in this case a bounded

martingale (xn) converges iff it is fixed , i.e., there exists x ∈ F such that xn = Enx for

every n. Clearly, in this case we have xn → x.

Define ϕ : F → M via ϕ(x) = (Enx)∞n=1. It is clear that ϕ is an isometry. We claim

that ϕ is a lattice homomorphism, so that F is lattice isometric to a closed subspace

of M .

Indeed, take any x, y ∈ F and put xn = Enx and yn = Eny for all n. Since the lattice

operations are continuous, we have xn ∨ yn → x ∨ y. Hence, for every n we have

lim
m→∞

En(xm ∨ ym) = En
(

lim
m→∞

xm ∨ ym
)

= En(x ∨ y).
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It follows from Lemma 1 that ϕ(x) ∨ ϕ(y) = ϕ(x ∨ y). Finally,

ϕ(x ∧ y) = −ϕ
(
(−x) ∨ (−y)

)
= −

(
ϕ(−x) ∨ ϕ(−y)

)
= ϕ(x) ∧ ϕ(y).

Lemma 8. Suppose that F is order continuous and M is a Banach lattice. Then M is

order complete. If, in addition, (En) is dense, then ϕ(F ) is an ideal in M .

Proof. First, show that M is order complete. Suppose that 0 6 X(α) ↑6 X in M . Put

X = (xn) and X(α) = (x
(α)
n ). Then 0 6 x

(α)
n ↑6 xn for every n. Since F is order

continuous, for every n there exists yn such that we have x
(α)
n → yn. Put Y = (yn). It is

easy to see that Y is a martingale. It follows from 0 6 Y 6 X that Y is bounded, hence

Y ∈M .

Now suppose that (En) is dense. Put M0 = ϕ(F ). Then F is lattice isometric to M0.

Show that M0 is an ideal in M . Suppose that 0 6 X 6 Y for some X ∈M and Y ∈M0.

Put X = (xn) and Y = (yn). Then 0 6 xn 6 yn for every n and there exists y ∈ F such

that yn = Eny for all n. Fix ε > 0. It follows from yn → y that there exists n0 such that

‖yn − y‖ < ε whenever n > n0. It follows that

|xn − xn ∧ y| = |xn ∧ yn − xn ∧ y| 6 |yn − y|,

so that ‖xn − xn ∧ y‖ < ε. If follows from xn ∧ y ∈ [0, y] that xn ∈ [0, y] + Bε for all

n > n0. Therefore, (xn) is almost order bounded. Hence, it converges by Corollary 19

of [Tro05]. Hence, X ∈M0. Now suppose that Y ∈M0 and X ∈M such that |X| 6 Y .

Then 0 6 X+, X− 6 Y , so that X+, X− ∈ M0 and, therefore, X ∈ M0. Thus, M0 is an

ideal. �

Now we are ready to present a new proof of Proposition 16 of [Tro05].

Theorem 9. If F is a KB-space and (En) is dense then ϕ(F ) is a projection band in M .

Proof. By Theorems 7 of [Tro05] and Lemma 8, M is an order complete Banach lattice.

Again, denote M0 = ϕ(F ). By Lemma 8, M0 is an ideal in M . It is left to show that

M0 is a band because every band in an order complete lattice is a projection band by

Theorems 3.8 of [AB85].

To show that M0 is a band, suppose that 0 6 X(α) ↑ X for some net (X(α)) in M0 and

some X ∈ M . Put X = (xn) and X(α) = (xαn). Let X(α) = ϕ(x(α)) for some x(α) ∈ F .

Clearly, ‖x(α)‖ = ‖X(α)‖ 6 ‖X‖ for every α, hence the net (x(α)) is norm bounded.

Since F is a KB-space, this net converges in norm to some y ∈ F , see [AB85, p. 225]. It

follows also that x(α) ↑ y in F . Put Y = ϕ(y), Y = (yn). For every α we have x(α) 6 y,

so that X(α) 6 Y , hence X 6 Y . On the other hand, x(α) → y implies limα x
(α)
n = yn for
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every n. Together with x
(α)
n 6 xn this implies yn 6 xn, so that Y 6 X. Thus, X = Y ,

so that X ∈M0. �
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