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1. INFINITELY FINE PARTITIONS

Throughout this paper (X, A) always stands for a measurable space,
i.e., X is an arbitrary set and A is an algebra of its subsets.
By *X we denote the nonstandard extension of X. We assume that

the nonstandard model is k-saturated where « is the cardinality of A.

1.1. Definition. A measurable partition P of *X’ is said to be an in-
finitely fine partition (abbreviated ifp) if *A = |J{p € P|p C *A}
for every measurable set A, or, equivalently, if P is finer than every

standard partition.

It follows from the saturation principle that every measurable space
(and even a Boolean algebra) has a hyperfinite ifp. From now on the
symbol P stands for a fixed hyperfinite ifp of the measurable space
(X, A). Infinitely fine partitions were originally introduced in [Loe72].
Some properties of ifp’s were investigated in [Tro93].

Notice that if A contains all the singletons, then every standard

singleton belongs to P.

1.2. Definition. We say that p;, ps € P are equivalent (denoted p; ~
po) if P\ {p1,p2} U{p1 Upa} is again an ifp.

1.3. Theorem. An element of P is not equivalent to any other element
of P if and only if it is standard.

Proof. Obviously every standard elements of P is not equivalent to

another element of P. Suppose that p € P is non-standard. Consider
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the collection ¢ = {A € A | p C *A}. Let S be a finite subset of
q and put S = (S, then S € A. Evidently p C *S, but since p is
nonstandard, it follows that p # *S. Therefore, there exists p’ € P
such that p’ C %S and p’ # p. Since S was chosen as an arbitrary finite
sub-collection of ¢, by the saturation principle there exists an element
p1 € P distinct from p contained in the extension of every set belonging

to ¢, so that p ~ py. O

It was shown in [Loe72] that a standard bounded measurable func-

tion is approximately constant on every element of an ifp.

1.4. Lemma. Let py,po € P, then p1 ~ py if and only if every stan-
dard bounded measurable function f: X — R takes approzimately equal

values on p1 and ps.

Proof. The implication from left to right follows from the fact that
P\ {p1,p2} U{p1 Ups} is an ifp. The converse can be easily obtained

by considering characteristic functions of standard measurable sets. [

2. NONATOMICITY

In this section we present some interpretations of nonatomicity in
terms of infinitely fine partitions.

Suppose now that (X, .A) is endowed with a standard finitely additive
measure . We introduce the following notations:

P = {peP|up) >0} Py = {peP|ulp) =0}
A = {Ae Al u(4) >0} Ay = {AeAfp(A) =0}
The elements of P, will be referred to as the essential elements of P.
Notice that every points of an essential element of P is random (recall
that a point z € *X is said to be random if x ¢ *N for each N € A,).

2.1. Definition. Let p be an essential element of P. We say that p is
essentially joinable if p is equivalent to another essential element of
P. We call p essentially divisible if it can be written as a union of

two disjoint sets of positive measure.
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Recall that a set F' € A, is said to be an atom of p if for every
measurable set £ C F we have either u(E) = 0 or u(E) = p(F).
A measure is said to be nonatomsic if it has no atoms. A measure is
said to be strongly continuous if for every ¢ > 0 there exists a finite
measurable partition of X into sets of measure less than €. A measure
1 is said to be strongly nonatomic if for every set F' € A, and every
0 < ¢ < p(F) there exists a measurable set E' C F' such that u(E) = c.

It was shown in [BRBRS83] that strong nonatomicity implies strong
continuity, strong continuity implies nonatomicity, and all the three

properties are equivalent for sigma-additive measures.

2.2. Theorem. The following statements are equivalent:

(1) every essential element of P is essentially divisible;
(2) every essential element of P is essentially joinable;

(3) p is nonatomic.

Proof. To prove the implication (1)=(2), consider an essential element
p € P. By the assumption, it is essentially divisible. Let ¢ = {A €
A | p C *A}, and consider a finite sub-collection S of ¢. Let S =[S.
Evidently, S is a standard set and p C *S. Essential divisibility of p
implies that there exists p; € *A, such that 0 < *u(p1) < u(p) < u(S).
By the transfer principle there exists a standard set B C S such that
the both B and S\ B are of positive measure. Assume without loss of
generality that p; C *B. Obviously there is an essential element p, C
S\ *B C *S. Since S§ was chosen arbitrarily, it follows by saturation
that there exists p’ € P, distinct from p, such that p’ C *A for each
A € ¢, and it follows that p’ ~ p.

To prove (2)=(3) take an arbitrary set A € A,. There exists p € Py
such that p C *A. Since p is essentially joinable, then there is p’ € P,
such that p’ C *A \ p and it follows that *u(p) < p(A). By using
the transfer principle we obtain the conclusion.

The implication (3)=-(1) is straightforward. O
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2.3. Theorem. A measure is strongly continuous if and only if the

measure of every element of P is infinitesimal.
Proof. The proof is elementary. O

2.4. Theorem. A measure i is strongly nonatomic if and only if (Vp €
Py)(vA €0, 1)) (3 € *A)( Cp & LB = ).

Proof. The implication from left to right is obvious. To prove the con-
verse implication, fix F' € A, and ¢ € (0, u(F')). Consider an internal

measurable subset E of *F' such that

(1) E=U{peP|pcCE}

(2) u(E) < ¢

(3) p € E implies *u(E Up) > ¢ for each p € P;.
Such a set exists because *F' is a union of a hyperfinite number of
elements of P. We claim that *u(E) = c. Indeed, if *u(E) < ¢, then we
could take any p C *F'\ E and split it into the disjoint union of p; and
pe so that *u(FE U p;) = ¢, which would contradict to the assumptions
on E. The transfer principle completes the proof. O

3. REPRESENTATION OF L,

In the following section we extend a results obtained by P. Loeb
in [Loe72]. For this subsection, let p be a standard sigma-additive
measure, P a hyperfinite ifp for a standard measurable space (X, .A4),
and L., stands for L. (X, A, ). In [Loe72] Loeb introduced a map
Ty: Loe — R by the following rule. For every p € P, pick a point
¢y € p. For f € Lo, define

_ [ fle) ifpe Py

@i, ={ J G En
Loeb showed in [Loe72] that the variation of a standard bounded mea-
surable function on each element of an ifp is infinitesimal, so that T

does not depend on the choise of ¢,’s. Loeb proved that a vector
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v € R? equals Ty(f) for some f € L, if and only if the following three
conditions hold:
(1) v, =0 for all p € Fy;
(2) rz?ggdvp| is nearstandard;
(3) for each p in P, and for each ¢ € R, there exists a set A € A
such that p C *A and |v, — vy| < ¢ for every essential p’ C *A.

3.1. Lemma. Condition (3) above is equivalent to the following state-

ment:

(37) p1 ~ po implies vy, = vy, for any pi,ps € P

Proof. Suppose that p; ~ py for p;,ps € P.. Then it follows from
(3) that |v,, — v,,| < € for every ¢ € Ry, hence v,, = v,,, so that
(3) implies (3’). To show the reverse implication, assume that there
exists p € P, and € € R, such that for each A € A satisfying p C *A
one can find p’ € P; such that p’ C *A and |v, — vy| > e. Let
q={A € A|pC*A} and consider a finite sub-collection S of ¢q. Let
S = \S. By the assumption, there exists an essential p’ C *S such
that |v, —v,| > €. By the saturation principle there exists an element
p' € Py, such that p’ C *A and |v, — v,#| > ¢, but this contradicts to
(3). O

4. MONADS OF IFP

Again, let P be an ifp for a standard measurable space (X, .A). For
p € P we denote by [p] the equivalence class of p, ie., [p]| = {p’ €
P | p¥ ~ p}. The union of the elements of [p] will be denoted by
m,, and referred to as a monad of P. Since “~” is an equivalence
relation, MM = {m,},cp is an partition of *X. It is easy to see that
M is exactly the partition of A generated by all standard measurable
sets. It implies, in particular, that the monads are independent of a
particular ifp.

Let Q be the Stone space of the algebra A. Recall that the points

of @ are the ultra-filters on A. It is well known that there exists a
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canonical boolean algebra isomorphism ¢ between A and the algebra
Clop @ of all clopen subsets of @ given by ((A) ={q€ Q| A € ¢q}.

Notice that there is a one-to-one correspondences between the mon-
ads of P, the ultra-filters on A, the zero-one measures on A, and the
points of ). Consider a monad m of P. The corresponding ultra-
filter g, is {A € A | m C *A}, i.e., the elements of g, are exactly
the standard measurable sets containing the monad m. On the other
hand, since m = | J[p] where [p] is exactly the equivalence class of those
elements of P which are contained in each A in ¢,,, we have m = () ¢pn.

Any monad m corresponds to some zero-one measure on A defined
by

=10 rhersie
It is easy to see that ¢, = {A € A | §,(A) = 1}. Finally, for any
monad m we can consider the ultra-filter ¢,, as a point of the Stone
space () of A. Notice that the set [J{¢(p) | p € P,p C m} is the usual
topological monad of ¢, in Q. Notice also, that {g,, | m C *A} = +(A)
for any A in A.

It follows from [Loe72, Proposition 4.2] that there is a one-to-one
correspondence between the monads of P and the multiplicative linear
functionals on L. (X). Namely, if m is a monad of P, then the map
f = °(*f)m is the multiplicative linear functional corresponding to m.

Consider a monad m of P. Since ¢, is a standard ultra-filter on A,
it follows that *g,, contains exactly one element of P. This element
will be referred as the central element of m, we will denote it by p,,.
Obviously p,, € m. We mentioned before that {c(p) | p € P,p C m}
form a partition of the topological monad of the (standard) point g,,
in (). Then p,, can be characterized as the element of P for which
Gm € "t(pn). Finally, central elements can also be characterized in
terms of zero-one measures. Namely, p = p,, if and only if 9,,(p) = 1.
Denote by P. the collection of all central elements of P.

It will be shown that properties of measures are essentially deter-

mined by their values at the central elements. For the rest of this
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section we suppose that p is a standard finitely additive measure on

A. We assume for simplicity that p is finite.

4.1. Theorem. If p is a central element with *u(p) standard, then

(1) *u(p’) = 0 for any noncentral p' equivalent to p;
(2) There exists a set A € A such that p C*A and p(A) = "u(p).

Proof. 1t follows from p € P, that p = p,, for some monad m of P.
Since p € *g,, and *u(p) is standard, then by the transfer principle we
can find a standard set A € ¢, such that u(A) = *u(p). This proves
(2). Finally, (1) follows immediately from (2). O

4.2. Corollary. Suppose that p is a central element of measure zero.

If p' ~ p then p' is of measure zero.

4.3. Theorem. If p is a central element of P, then for every standard
e > 0 there exists a standard set A € A such that m, C *A and

(A) < u(pm) +¢.

Proof. Let A = "u(p) + 5, then "u(p) < °\. Since p € *g, then, by
the transfer principle, there exists a standard set A € ¢,, such that
1(A) <N <"ulpm) +e. O

4.4. Corollary. The measure of every noncentral element is infinites-
imal. Moreover, the union of any collection of non-central elements of
m has infinitesimal measure. Furthermore, if m is a monad of P and
D C m for some D € *A such that q,, ¢ *1(D), then *u(D) ~ 0.

4.5. Remark. There is another important consequence of Theorem 4.3.
We have noticed before that the monads do not depend on a particular
ifp, but only on the algebra. Now it follows immediately from The-
orem 4.3 that if m is a monad, then o(*,u(pm)) does not depend on a

particular ifp either.

4.6. Lemma. If p is a central element of P then “u(p) = °("u(p)).
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Proof. For every standard A € ¢,,, we have p C A, and, therefore,
°("u(p)) < p(A). By the transfer principle it follows that °("u(p)) <

“u(p)- O
5. SOBCZIK-HAMMER DECOMPOSITION THEOREM

The technique of ifp gives us an opportunity to present a simple

proof of the Sobczik-Hammer Decomposition Theorem.

5.1. Theorem (Sobczik-Hammer Decomposition Theorem). Let p be
a finite finitely additive measure on a measurable space (X, A). Then
there exists a sequence (0, )nen of distinct zero-one measures on A, a se-
quence (ap)nen of nonnegative real numbers, and a strongly continuous
measure i on A, such that Y " a, < 0o and p = L+ > " 4,0,.

Further, this decomposition is unique up to the order of terms.

Proof. Let P be a hyperfinite ifp for (X, A). Let p; be an element
of P of maximum measure, put a; = (("u(p1)). For & we take the
zero-one measure corresponding to my,. If p is strongly continuous,
then a; = 0 by Theorem 2.3. Otherwise, it follows from Corollary 4.4
that p; is central. Then Lemma 4.6 implies that a; < *u(p;). It follows
that 4y = p — a16; is a standard measure which is nonnegative on
each element of P, hence p; is nonnegative. We proceed in the similar
fashion defining 1,11 = pn — an0,, etc. This process may stop after
a finite number of steps if a, = 0 for some n. In this case we get
=", a0 + p, where i, is a strongly continuous measure, so that
the conclusion of the theorem is satisfied. Otherwise, we and obtain a
decreasing sequence (a,)nen Of standard non-negative reals, a sequence
(0 )nen of standard distinct zero-one measures, and a sequence (ft,,)nen
of standard non-negative measures, such that p,, = g — Y ., a;0; for
every n € N. In particular, pu(X) > >0, a;0;(X) = >, a; for every
natural n € N; it follows that > "% a; < oo.

It can be easily verified that fi defined by i = p — Y7, a,0, is
a standard nonnegative measure, and i < pu, for all n € N. As-

sume that p is not strongly continuous, then there exists p € P such
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that st(*(p)) > 0. Since lim, a,, = 0, we can find n € N such that
st(a(p)) > an = st(*un—1(p)); but this contradicts to the fact that
i < iy, for each n € N.

We see that the numbers a,, and measures ¢,, are completely deter-
mined by the values of ;1 on the central elements of P up to the order.

Thus, the constructed decomposition is unique. O

The concept of an infinitely fine partition also gives us an opportu-
nity to prove the Sobczik-Hammer Decomposition Theorem for vector
measures. Let Y be a standard Banach space, and let F': A — Y be
a standard Y-valued measure on (X', A). Recall that the variation of F'
is a real-valued measure given by |F|(A) = sup, > 5. || F(B)||, where
sup is taken over all finite measurable partitions m of A. A vector mea-
sure is said to be nonatomic (strongly continuous, strongly nonatomic)
if the same is true for its variation.

To prove a vector analogue of Sobczik-Hammer Theorem we need

the following lemma. As usually, we assume that P is a hyperfinite ifp
for (X, A).

5.2. Lemma. If F s a standard vector measure of bounded variation
on (X, A); then [*F|(p) = ||*"F(p)|| for each p € P.

Proof. Clearly |F|(A) > ||F(A)|| for any measurable A. If p € P\ F.
then |*F'|(p) ~ 0 by Corollary 4.4, so that [*F|(p) =~ ||*F(p)| holds
trivially.

Suppose that p € P.. Fix an infinitesimal € > 0 and consider a hyper-
finite measurable partition 7 of p such that ['F|(p) < >, . [I"F (") || +e.
Then P\ {p} U is again a hyperfinite ifp. Let p, be the central ele-
ment of this new ifp, corresponding to the monad of p. By Corollary 4.4
I*F|(p \ pr) = 0, so that

Flp)|| <IFlp) <D _|'F@)|+e < > [FIR)+

p'en p'Em,p' #pr

= [P0\ p2) + [ F @]+~ [P

F(ps) ||+
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It follows that ||*F(ps)|| ~ [*F|(p). On the other hand, it follows from

F(p) = "F(pz) + "F(p\ px) and |"F(p \ p=)|| < I'F|(p \ px) = 0 that
F)| = ||'F @), so that |[F(p)|| = [*F|(p). O

Now we can proceed with the vector-valued version of the Sobczik-
Hammer Theorem. A similar result can be found in [KM89], but

the proof presented there is based on completely different concepts.

5.3. Theorem (Sobczik-Hammer Decomposition Theorem for vector
measure). Let F' be a standard Y -valued measure of bounded variation
on (X, A) such that the range of F is relatively compact. Then there
exists a strongly additive vector measure F, a sequence (xp)neny C F,
and a sequence (0,)nen of distinct zero-one measures on (X, A), such
that F = F + > Tnlpn. Further, this decomposition is unique up to

the order of terms.

Proof. The proof is analogous to the proof of Theorem 5.1. Consider
a hyperfinite ifp P for (X, A). Let p; be an element of P of maxi-
mum value of |*F'|. Since F' has compact range we are guaranteed that
*F(p1) is nearstandard. Let x; = st(*F(p1)), let §; be the zero-one
measure corresponding to [p], and let F} = F — x10;. It follows that
*F1](p) = [|*Fi(p1)|| = [’F (p1) — st(F(p1))]| = 0. Further, follows from
the transfer principle, that |Fy| < |F].

Iterating this process we obtain standard sequences (F},)nen, (Zn)nen,
and (0, )nen such that F, = F — > x;0;, |Fq] < |F| < |F|, and
|Zns1ll < |lzall for each n € N. Let FF = F — > x;6;, then an
argument similar to the one in the proof of Theorem 5.1 shows that £

is strongly continuous. 0

6. HORN-TARSKY THEOREM

6.1. Theorem. Let A be an algebra of subsets of a set X, C a subalgebra
of A, and p a finitely additive measure on C. Then p can be extended

to a finitely additive measure on A.
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Proof. Let P, and P, be hyperfinite ifp’s for A and C respectively.
Without loss of generality we can assume P, is a refinement of Fp.
Take p € Pr and let py, po, ..., py be a hyperfinite partition of p into
elements of P4. Next, we assign a weight w(p;) € R4 to each p; as
1 <4 < N sothat 320 w(ps) = *u(p).

We apply this procedure to every p € Fe. Now each element of Py
is assigned a weight. For a set A € A we put

st Y ).

pEP4, pC*A

It can be easily verified that A is a standard finitely additive measure
and A\¢ = p. O

Obviously, the same reasoning can be used to prove Horn-Tarsky
Theorem for a Banach-valued measure, but again we would need the
range of the measure be relatively compact so that we could take stan-

dard parts when defining .

7. ERGODIC TRANSFORMATIONS

Let (X,.A) again be a measurable space, and let 7: X — & be a
measurable transformation, i.e., 7 '(A) € A for each A € A. We
say that a set A is T-invariant if 771(A) = A. If Pis an ifp for (X, A),
we say that P is 7-tnvariant if 71(p) € P for each p € P. In this case
771 induces a permutation of elements of P. Let u be a probability
measure on (X, A). Recall that a measurable transformation 7 is said
to be measure-preserving if ;i(77*(A)) = pu(A) for each A € A, and
ergodic if each T-invariant set has measure zero or one. If P is an ifp,
we write Py = {p € P | *u(p) > 0}.

7.1. Proposition. If 7 is ergodic and measure preserving, and P is a

T-invariant ifp, then Py is hyperfinite and T-invariant, all the elements

1

of Py have the same measure, and 7~ induces a cyclic permutation of

elements of P,.
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Proof. Fix p € P, and consider the sequence {7 %(p) | k € N}, ie.,

the orbit of p in P under 77!

. Since 7 is measure-preserving, all the
sets in the orbit have the same measure. If all of them were distinct,
hence disjoint, this would contradict to p being a probability measure.
Thus, we have 77"(p) = 77™(p) for some distinct m and n. Without
loss of generality we can assume that m = 0, i.e., 77"(p) = p for some
n € N. Then A = |J}—) 77%(p) is a 7-invariant set of positive measure.
Since T is ergodic, we have p(A) = 1. This implies that every element
of P, is contained in A, so that P, = {77%(p) | k=0,...,n —1}. It
follows immediately that P, is hyperfinite and that 7 acts as a cyclic

permutation of the elements of P, . 0

Unfortunately, one cannot always find an invariant ifp. For example,
it is easy to see that no ifp is invarial under a strongly mixing transfor-
mation. Recall, that a measure-preserving transformation 7 is called a
strong mizing if u(AN77"(B)) — p(A)u(B) for any two A, B € A.
Indeed, if P were a 7-invariant ifp, then by Proposition 7.1 P has to
be hyperfinite, and 77! induces a cyclic permutation of the elements of
P, . But then ,u(pl N T‘”(pQ)) does not converge for any pi,ps € P, a

contradiction.
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