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Abstract

In a seminal contribution, Ross (1976) showed that a static finite state-

space market can be completed by supplementing the primitive securities

with ordinary call and put options. Galvani (2009) extends this result to

norm separable Lp-spaces, with 1 6 p < ∞. This study concludes that

options maintain the same spanning power in the space of bounded payoffs

topologized by the duality with the space of the state price densities. In

particular, under mild assumptions on the probability space, options written

on a claim that is a.s. equal to an injective function complete the market.
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1. Introduction

In the finite dimensional setting, Ross (1976) showed that options on an

injective contingent claim complete a static securities market in the same
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way that adding Arrow securities would in an incomplete Arrow–Debreu

economy.2 This finding supports the view that the market structure necessary

to span all contingent claims needs not to involve a complex set of securities,

but rather a large number of ordinary call or put options.3 (Galvani, 2009,

Theorem 1) proved that options maintain the same spanning power in the

Lp-spaces, with 1 6 p < ∞, that are defined over a separable measure

algebra of the state-space. A similar result holds with respect to notion of

approximation offered by the pointwise convergence of sequences for spaces

of measurable functions (Galvani, 2009, Corollary 7). In addition, underlyers

for which options obtain market completeness are shown to be dense in the

Lp-spaces (Galvani, 2009, Corollaries 6 and 7).4

This work analyzes the spanning power of options in spaces of bounded

random variables. We identify the space of contingent claims with the space

L∞(P ) of bounded measurable functions that are defined over a probability

space. This space is equipped with the weak-star (or w∗) topology defined

by the duality with the space of the state-price densities, L1(P ). We choose

to equip the L∞-space with the weak* topology to maintain the equivalence

between market completeness and the uniqueness of a strictly positive state

price density, under suitable no-arbitrage conditions.5

2Baptista (2003, 2005) discussed the multi-period model in the finite-dimensional

framework.
3However, it might be the case that options are not replicated by any portfolio of

primitive securities (Aliprantis and Tourky (2002); Baptista (2007)).
4Galvani (2005, 2007a,b) discuss the generalization of Ross’ spanning proposition for

continuous underlying asset in the space of continuous payoffs and in the Lp-spaces.
5See the discussion of Artzner and Heath’s paradox in Jarrow et al (1999).
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Options are said to complete the space of contingent claims L∞(P ) when-

ever finite-component portfolios of plain call and put options form a weak*

dense subspace of the L∞-space. One of the results of this study is that the

ability of ordinary put and call options to complete the space L∞(P ) is equiv-

alent to the weak* separability of this space. An implication of this result is

that under very mild assumptions—namely that the probability measure on

the state-space is atomless—the familiar space L∞[0, 1] is essentially the only

L∞-space for which an attempt to generalize Ross’ spanning proposition is

not futile.

This work also sheds some light on the class of underlying assets for

which options complete the market. A general result is that these underlyers

are pervasive in the sense that they form a weak* dense subset of a weak*

separable L∞-space that is defined on an atomless probability space. A more

compelling characterization can be obtained when the state-space is assumed

to be a completely separable metric space equipped with the completion of

its Borel σ-algebra and, once more, measured by an atomless probability.

In this case options on a claim that is a.s. equal to an injective function

(i.e., that is a.s. injective) complete the market. This amounts to a direct

generalization of Ross’ finite-dimensional spanning result for a class of L∞-

spaces that are extremely common in the extant literature. Also, this result

extends the findings of Section 3 in Galvani (2009) to L∞(P ).

The structure of the paper is the following. The next section provides

some background. Section 3 presents our main results. A few concluding

remarks can be found in Section 4.
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2. Background

Throughout this section, (Ω,Σ, P ) will be a non-atomic probability space.

We write Lp(P ) for Lp(Ω,Σ, P ) as 1 6 p 6 +∞. We denote by ΣP the

measure algebra associated to the space equipped with metric induced by

the norm of L1(P ). We write Lp[0, 1] for the Lp space corresponding to the

Lebesgue measure on [0, 1]. By the weak* (or w∗) topology on L∞(P ) we

mean the topology induced by L1(P ). That is, fn
w∗
−→ f in L∞(P ) if∫

Ω

(fn − f)x dP → 0

as n → ∞ for every x in L1(P ). Recall that the weak* topology of L∞(P )

is weaker than the norm topology. In particular, if fn → f in the norm of

L∞(P ) then fn
w∗
−→ f , and a subset of L∞(P ) which is dense in the norm

topology is also dense in the weak* topology.

For each claim x in L∞(P ) we define the option space of x by:

Ox = span
{

(x− k)+ : k ∈ R
}
.

More generally, if J is a countable subset of L∞(P ), we put

OJ = span
{

(x− k)+ : x ∈ J, k ∈ R
}
,

where OJ is the option space of the set J .6

An element x in L∞(P ) is called a.s. injective if it is a.s. equal to an

injective function on Ω, or, more precisely, if x has an injective representative.

6Because we can always make positive a claim in L∞(P ) by adding a constant, in this

work we do not need to treat separately the case of options with positive strike prices (c.f.,

Galvani (2009)).
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The following fact is an extension (with the same proof) of Lemma 2 of

Galvani (2009) to the case of L∞[0, 1].

Lemma 1. The set of all a.s. injective elements in L∞[0, 1] is dense in

L∞[0, 1] in the norm and, therefore, in the weak* topology.

The following fact will be used hereafter.

Lemma 2. If M is a norm dense sublattice of L1[0, 1] and 1 ∈M ⊆ L∞[0, 1]

then M is weak* dense in L∞[0, 1].

Proof. Let f ∈ L∞[0, 1], show that there exists a sequence (xn) in M such

that fn
w∗
−→ f . Since f = f+− f−, we may assume without loss of generality

that f > 0. Let λ = ‖f‖∞. By assumption, there exists a sequence (gn)

in M such that gn
‖·‖1−−→ f . Put fn = (gn ∧ λ1)+, then 0 6 fn 6 λ1 and

fn
‖·‖1−−→ f . Also, since M is a sublattice containing 1, we have (fn) ⊆M .

It is left to show that fn
w∗
−→ f in L∞[0, 1]. Indeed, take any x ∈ L1[0, 1].

Take any ε > 0. There exists K ∈ R+ such that
∫
A
|x| dP < ε

4λ
, where

A =
{
t : |x(t)| > K

}
. We write AC for the complement of A in [0, 1]. There

exists n0 such that ‖fn − f‖1 <
ε

2K
whenever n > n0. It follows that∣∣∣∫

Ω

(fn−f)x dP
∣∣∣ 6 ∫

Ω

|fn−f ||x| dP =

∫
A

|fn−f ||x| dP +

∫
AC

|fn−f ||x| dP

6 2λ

∫
A

|x| dP +K

∫
AC

|fn − f | dP 6 2λ
ε

4λ
+K‖fn − f‖1 < ε.

(Ross, 1976, Theorem 4) proved that options on an injective claim com-

plete the Euclidean space. This result can be generalized to the space

L∞[0, 1], as stated hereafter.
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Corollary 3. If x ∈ L∞[0, 1] is a.s. injective then Ox is weak* dense in

L∞[0, 1].

Corollary 3 follows immediately from Lemma 2 and Theorem 1 in Galvani

(2009).

We conclude this introductory section by stating few classical facts.

Theorem 4. Suppose that (Ω,Σ, P ) is a non-atomic probability space. The

following statements are equivalent.

1. ΣP is separable;

2. ΣP is isomorphic to the measure algebra of the Lebesgue measure on

[0, 1];

3. L1(P ) is separable.

4. L∞(P ) is weak* separable.

In this case, Lp(P ) is lattice isometric as a Banach lattice to Lp[0, 1] whenever

1 6 p 6 +∞.

Proof. The equivalences (1)⇔(2)⇔(3) and the statement about Lp(P ) can be

found in Section 13.5 of Aliprantis and Border (2005); c.f., also, Theorem 15.4

in Royden (1988). The Banach space L1(P ) is weakly compactly generated,

see Definition 11.1 in Fabian et al (2001). Hence by Amir–Lindenstrauss

Theorem (see Theorem 11.3 in the same book), the density character of L1(P )

and the weak* density character of L∞(P ) coincide.7 This gives (3)⇔(4).

7The density character of a topological space X is the minimal cardinality of a dense

subset of X.

6



3. Option Spanning

Let C(P ) be the set of all x ∈ L∞(P ) such that Ox is weak* dense in

L∞(P ). The following can be viewed as an extension of Theorem 4.

Theorem 5. Suppose that (Ω,Σ, P ) is a non-atomic probability space. The

following statements are equivalent.

1. C(P ) is norm dense in L∞(P );

2. C(P ) is weak* dense in L∞(P );

3. there exists x in L∞(P ) such that Ox is weak* dense in L∞(P );

4. OJ is weak* dense in L∞(P ) for some countable set J in L∞(P );

5. L∞(P ) is weak* separable.

Proof. The implications (1)⇒(2)⇒(3)⇒(4) are trivial.

(4)⇒(5) Suppose that OJ is weak* dense in L∞(P ) for some countable

set J in L∞(P ). Similarly to the definition of OJ , let OQJ be the set of all

the linear combinations with rational coefficients of (x − k)+ where x runs

through J and k runs through Q. Clearly, OQJ is countable. Since lattice

operations are continuous in L∞(P ), we have OQJ is norm dense in OJ . It

follows that OQJ is weak* dense in L∞(P ).

(5)⇒(1) Suppose that L∞(P ) is weak* separable. By Theorem 4, we

may assume without loss of generality that P is the Lebesgue measure on

[0, 1]. By Corollary 3, C(P ) contains all a.s. injective elements of L∞[0, 1];

now Lemma 1 completes the proof.

Theorem 5 establishes the equivalence between the weak* separability of

the L∞-space and options’ ability to complete the market. An obvious gener-

alization of the proof shows that only separable L∞-spaces can be completed

7



by options, so that a generalization of Ross’ spanning proposition to nonsep-

arable L∞-spaces is unfeasible. To make an example, options fail to complete

the familiar space of claims L∞[0, 1] equipped with the norm of the essential

supremum.8 Moreover, the theorem shows that the class of underlying assets

for which options complete the market are pervasive, in the sense that they

are dense in the space of contingent claims.

Theorem 5, coupled with Theorem 4, also indicates that L∞[0, 1] is es-

sentially the only L∞-space for which options might obtain the allocative

efficiency of a complete market structure. This uniqueness is defined up to

lattice homeomorphisms that preserve the constants, i.e. the riskfree asset’s

payoff.

The following result, our last before the discussion, characterizes the un-

derlying claims for which options complete L∞(P ) in terms of injectivity,

much as done in Ross (1976) for the finite dimensional case. Of course, since

we demand to identify these underlyers by means of a pointwise relation-

ship, we must allow some latitude in what is taken as to be the standard

state-space structure, which until now, besides separability, has been left

unconstrained. When we add the requirement that the space of states of

nature is a complete and separable topological space which is measured by

a non-atomic Borel probability, options on a.s. injective claims are shown to

complete L∞(P ). In line with the density results proposed in Theorem 5,

these underlying assets form a weak* dense subset of the space of contingent

claims.

8The space L∞[0, 1] is non-separable in the norm topology, see, e.g., (Fabian et al,

2001, Proposition 1.27).
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Theorem 6. Let Ω be an uncountable complete separable metric space and

P a non-atomic probability Borel measure on Ω.9 Then

1. If x ∈ L∞(P ) is a.s. injective then Ox is weak* dense in L∞(P );

2. The set of all a.s. injective functions is norm dense in L∞(P ).

Proof. By (Royden, 1988, Theorem 15.16), our probability space is isomor-

phic to [0, 1] with the Lebesgue measure. Let ϕ : [0, 1] → Ω be such an

isomorphism. For f in L∞(P ), put Hf = f ◦ ϕ. Clearly, H is a lattice

isometry from L∞(P ) onto L∞[0, 1]. Moreover, suppose that f is an element

of L∞(P ) which is a.s. injective. Without loss of generality, we may consider

f to be itself injective. Since ϕ is one-to-one, Hf is an a.s. injective element

of L∞[0, 1]. Therefore, H takes a.s. injective elements of L∞(P ) into a.s.

injective elements of L∞[0, 1]. Similarly, H−1 takes a.s. injective elements of

L∞[0, 1] into a.s. injective elements of L∞(P ). Now (2) and (1) follow from

Lemma 1 and Corollary 3, respectively.

4. Brief Discussion of the Results

In the framework proposed by Green and Jarrow (1987), and Nachman

(1987, 1989), a payoff x is efficient with respect to a collection N of at most

countable many claims whenever σ(x) and σ(N) coincide, where σ(N) is the

σ-algebra generated by the claims in N . A derivative written on one or on

more than one portfolios of the securities in N can be identified with a σ(N)-

measurable function. Hence, an efficient asset has the role of summarizing all

information that is payoff-relevant for derivatives written on the portfolios

9Following (Royden, 1988, p. 406), we assume that Borel measures are complete.
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of the N securities. (Nachman, 1989, Corollary 5) proved that options on

an asset that is efficient for a collection of N securities are pointwise dense

in the space of σ(N)-measurable claims. In particular, when all claims are

also p-integrable, then options on an efficient asset x complete the space of

p-integrable and σ(N)-measurable claims with respect to the Lp-norm. In

this terminology, this work shows that an a.s. injective claim is efficient with

respect to the entire space of all contingent claims when the state-space is

a completely separable probability space equipped with a non-atomic Borel

probability. This is because it can be easily shown that an a.s. injective

function generates the whole Borel σ-algebra. Hence, among other results,

this article presents an extension of Nachman’s spanning propositions to

spaces of bounded claims.
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