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ABSTRACT. A semigroup & of non-negative n X n matrices is indecomposable if for
every pair i,j < n there exists S € & such that (S);; # 0. We show that if there
is a pair k,l such that {(S)x : S € &} is bounded then, after a positive diagonal
similarity, all the entries are in [0,1]. We also provide quantitative versions of this
result, as well as extensions to infinite-dimensional cases.

1. INTRODUCTION

The following general type of question has been of interest in various contexts,
including linear representations of groups and semigroups: if something about a group
or a semigroup & is "small” in some sense, then is & itself small? For example, it is
well known that if & is an irreducible group of matrices, and if the trace functional
takes a finite number of values on &, then & is itself finite (irreducible means no
common proper non-trivial invariant subspaces). Okninsky in [Ok98, Proposition 4.9]
generalizes this to irreducible semigroups. A further extension to another version of
“smallness” is given in [RRO§]: it replaces the trace functional with any nontrivial
linear functional. Yet another measure of ”smallness” is boundedness. For example,
if the values of a nontrivial linear functional on an irreducible semigroup & form a
bounded set, then & itself is bounded. For this and other instances of this local-to-
global phenomena see [RROS§].

In this paper we discuss another variation on this question which is more suitable in
the positivity setting. We consider semigroups of non-negative matrices, replace the
irreducibility assumption on & with the weaker hypothesis of indecomposablity, i.e.,
no common invariant ideals, and ask: if a non-negative linear functional has bounded
values on &, then is & necessarily bounded? The version of this problem in which

”smallness” is interpreted as finiteness has also been studied in [LMR].
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Throughout this paper, all the matrices are taken over R. For two n X n matrices
A and B, we write A < B if (A);; < (B);; for every pair ¢,j < n. A matrix A is
non-negative if A > 0 and positive if (A);; > 0 for every i, j.! We will write M,[(R)
for all non-negative n x n real matrices. By E;; we will denote the ¢j-th elementary
matrix.

A (multiplicative) semigroup & of M (R) is said to be indecomposable if for
every i,7 < n there exists S € & with (S);; > 0. The following two lemmas are

straightforward and standard; see [Min88| for more details.

Proposition 1. Let & be a semigroup in M, (R). Then the following statements are
equivalent.
(i) & is indecomposable;
(ii) & has no common non-trivial proper invariant ideals (i.e., subspaces spanned
by a subset of the standard basis);
(iii) No permutation of the basis reduces & to the block form [§7%].

Remark 2. Let A, D € M,(R) such that D is diagonal and invertible, A = (a;;) and
D = diag(dy, . ..,d,). Then the ij-th entry of D™'AD equals %aij' In particular, the
diagonal entries of A and of D~*AD agree.

Remark 3. Let & be a semigroup in M, (R). Since M, (R) is finite-dimensional, the

following are equivalent:

(i) & is norm bounded;
(ii) & is bounded entry-wise, i.e., sup{(S);; : S € &} < +oo for every pair
1,J <n;
(ili) & is order bounded, i.e., there exists 7' € M, (R) such that S < T for every
S € &. In this case, we write & < T

In this case, sup & is defined. That is, sup & is the matrix whose ¢j-th entry is
sup{(5);; : S € 6}.

Lemma 4. Let S be a bounded semigroup in M,F(R) and D a diagonal matriz with pos-
itive diagonal entries. Then D& D is again a bounded semigroup and sup(D~ 1S D) =
D~ (sup &)D.

A matrix T' = (¢;;) will be called compressed if T > 0 and t;;t;, < t;, for all 7, j,
and k. The following observations are straightforward.

INote that in Banach lattice theory, A > 0 is usually termed “positive”, while Vi, j (A4);; > 0 is
termed “strictly positive”.
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Lemma 5. (i) If T = (t;j) is compressed then t; < 1 for all i.
(ii) If & is a bounded semigroup in M (R) then T = sup & is compressed. In this
case, & s indecomposable iff T is positive.
(iii) Let T be a compressed matriz and D a diagonal matriz with positive diagonal

entries. Then D™'TD is compressed.

2. MAIN RESULTS

Let & be an indecomposable semigroup in M,F(R). In this section we show that
if © is bounded then, after a positive diagonal similarity, all its entries are bounded
by 1. Moreover, it suffices to assume only that the set {(S);; : S € &} is bounded for
some pair (i,j). Next, we will show that if the diagonal entries in & are (uniformly)
bounded by some € > 0, then, after a positive diagonal similarity, all the entries are
uniformly bounded by /e.

Given r > 0, we write M, ([0,7]) for the set of all n x n matrices with entries in
[0,7].

Lemma 6. Suppose that r > 1 and T € M, ([0,r]) is compressed. Then there exists
D = diag(d,,)"—, with (d,,) C [X,7] such that D™'TD € M,([0,1]).

Proof. Let T' = (t;;). Since T is compressed, t; < 1 for all i. We will inductively

construct (d,,)"_,. For every m < n we will put
D,, = diag(dy,...,dmn,1,1,...,1).

Note that for every m > 1, D;'T'D,, can be obtained from D' ,TD,,_; by scaling the
m-th column of the latter by d,, and the m-th row by i. It follows that the upper
left m X m corners of D,;lTDk are the same for all £ > m and agree with the upper
left m x m corner of D™'T'D. Therefore, it suffices to show that the m x m upper left
corner of D'TD,, is in M,,([0,1]) for every m =1,...,n.

Put d; = 1. Suppose that dy, ..., d,,_1 have already been constructed (in the interval
[2,7]) so that U := D,,' \TD,,_y is in M,([0,7]) and its (m — 1) x (m — 1) upper left
corner is in M,,_1([0,1]). Put U = (u;;). Once we assign a value to d,,, we will write
V =D, 'TD,,, V = (v;j). Put

a= max U, and b= max Up;.
i=1,....m—1 7j=1,...,m—1

Suppose first that both a and b are less then or equal to 1. In this case, the m x m
upper left corner of U is already in M,,([0,1]). Take d,, = 1; then V' = U. Suppose
now that max{a,b} > 1.
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Case a > b. Then 1 < a < r and there exists k < m such that u,, = a. In this case,
we put d,,, = %, then % < d,, < 1. Since the m-th column of V' is obtained by dividing
the m-th column of U by a (except vy, which equals ¢,,,, < 1), we have v;,, < 1 as
i=1,...,m and v;, < Uy, < 7 asi > m. Also, vy, = 1. Since V is compressed, for
every j # m we have

Umj = UkmUmj < Ugj = Ug;
because k < m. It follows that v,,,; <1 for j =1,...,m and v,,; < r for every j > m.
Hence, V is in M, ([0, 7]) and its m x m upper left corner is in M,, ([0, 1]).

Case b > a. This case is similar. We have 1 < b < r and there exists k& < m such
that u,,, = b. Put d,,, = b. Since the m-th row of V' is obtained by dividing the m-th
row of U by b (except vp, which equals t,,,, < 1), we have v,,,; < lasj=1,...,m

and vVp,; < Up; <7 as j > m. Also, v, = 1. Since V' is compressed, for every 7 # m

we have

Vim = VimVUmk S Uik = Uik
as before. It follows that v;,, <1 fori=1,...,m and v;,, < r for ¢ > m. Hence, V is
in M, ([0,r]) and its m x m upper left corner is in M,,([0, 1]). O

Theorem 7. Let r > 1 and & be a semigroup in M, ([O r]). Then there exists D =
diag(dy,)—y with (dy,) C [%,7] such that D7*&D € M,([0,1]).

m=1

Proof. Let T'=sup &. Then T is compressed. Let D be as in Lemma 6. Now Lemma 4
yields D™1&D < D7'T'D, and the result follows. O

Proposition 8. Let & be an indecomposable semigroup in M (R). Suppose that there
exists a non-zero non-negative functional ¢ € (M,(R))" such that the set {¢(S) : S €
G} is bounded. Then & is bounded.

Proof. Write .
=) cyay, A= (ay),
=
where ¢;; > 0. Since ¢ is non-zero, there exist k, [ such that ¢, # 0. Since ¢(A) > crap
for every positive matrix A = (a;;), the set {(S)g : S € &} is bounded.

To finish the proof, it suffices to show that the set {(5);;: S € &} is bounded for
every pair of indices i, j < n. Suppose that this statement is not true: there exist two
indices 7, j < n and a sequence (S,,) in & such that (S,,);; — oo as m — oco. There
are two matrices A = (a;;) and B = (b;;) in & such that ay; # 0 and b;; # 0. Then

ari(Sm)ijbj < (AS B) <sup{(S)g: S €S} <
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holds for every m € N, which is impossible. O

Combining Theorem 7 with Proposition 8, we immediately get the following results.

Corollary 9. Let & be an indecomposable semigroup in M (R) such that o(&) is
bounded for some positive functional ¢ € (MR(R))* Then there exists a diagonal
matriz D with positive diagonal entries such that D~*&D C M, ([0,1]).

Corollary 10. Let & be an indecomposable semigroup in M, (R) such that the set
{(S)ij . S e 6} is bounded for some pair (i,j). Then there exists a diagonal matriz
D with positive diagonal entries such that D™*&D C M,([0,1]).

We have proved that if & is bounded at a single entry then, after a positive diagonal
similarity, all its entries are bounded by 1. Next, we will try to replace “bounded”
with “small”. We will show that if all the diagonal entries of & are small then all the

entries are small (after a positive diagonal similarity).

Lemma 11. Let T' = (t;;) be an n x n positive compressed matriz and € > 0. Ift; < e

for all i < n then there exists a diagonal matriz D with positive diagonal entries such

that D~'TD € M, ([0, ¥/2]).

Proof. 1If ¢ = 1, the result follows immediately from Lemma 6. So we assume for the
rest of the proof that ¢ < 1. Let
— ] -1 ..
(1) d= 1%f{HZ12X(D TD);;},
where the infimum is taken over all diagonal matrices D with positive diagonal entries.

Let tmax = max; jt;; and tmn = min, j¢;;. Note that ¢, > 0 as T' is positive. Put

tmaX .
D:{diag(dl,...,dn) 1<d; < forallzzl,...,n}.

We claim that the infimum in (1) can be taken over all D € D. Indeed, let D be a
diagonal matrix with positive diagonal entries. Scaling D by a positive scalar we may
assume that mind; = 1 without changing D™'T'D. Let iy < n be such that d;, = 1;
put V.= D7 'TD, V = (v;). If there is a pair (i, j) such that v;; > ¢y then replacing
D with I will only decrease max(D~'T'D);;; and I € D. So we may assume that

i,
V;j < tmax for all 2 and j. Then, for every j we have

d;
tmax 2 Vigj = tiojd_ 2 tmind;
10

so that d; < max hence D € D. This completes the proof of the claim.

tmin
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Since D is compact, it follows that the infimum in (1) is, actually, attained at some D.
Let D = diag(dy,...,d,) and put V.= D'TD, V = (v;;). Then § = max;;v;;.
Moreover, we may choose D so that the number of occurrences of § in V' is the smallest
possible. Note that V' is compressed by Lemma 5. Tt is left to show that ¢ < {/e.
Suppose that, on the contrary, § > {/e.

It follows that 0 > e, so that  never occurs on the diagonal of V. Hence, after
a permutation of the basis, we may assume that v; = 0. We claim that vy; = ¢
for some j. Indeed, otherwise, we could slightly decrease ds so that the non-diagonal
entries in the second row of V increase but stay below §, but then the non-diagonal
entries in the second column of V' would decrease, so that v;5 would become less then
0; but this would contradict our assumption that V' has the smallest possible number
of occurrences of 4. Since ¢ never occurs on the diagonal of V' we know that j # 2.

Note also that j # 1 as, otherwise,
0" < 6% =vipva Swvpp =t <&

would contradict our assumption that 6 > {/e. Thus, j > 2. Again, by a permutation
of the basis vectors €3, ..., €,, we may assume that j = 3, so that vy3 = 4.
As in the preceding paragraph, we observe that vs; = 0 for some j. Again, we must

have 5 > 3 because

if j = 1 then 6" < §°

< 0% = v1aU23U31 < U1 = t11 < €,
if j =2 then 0" < 6% = vy3v3p < vy = gy < €,
<4

1f]:3then5" :U33:t33<8;

each case contradicts 6 > {/e. Again, by a permutation of the basis vectors €, . .., €,
we may assume that j = 4, so that vsy = 4.

Proceeding inductively, we show that for each m < n we have (after a permutation
of the basis) vig = - -+ = vp_1,» = 9, and that v,,; = J for some j. Furthermore, j > m
as, otherwise, we would get 6" < 6™ < €. But this leads to a contradiction for m =n

as j > n is impossible. ([l

Theorem 12. Let S be an indecomposable semigroup in M,F(R) and € > 0. If all the
diagonal entries in all the matrices in G are less than or equal to € then there exists a
diagonal matriz D with positive diagonal entries such that D~'&D C Mn<[0, {L/E])

Proof. By Proposition 8, & is bounded. Let T" = sup&. Then T is positive and

compressed by Lemma 5. By Lemma 11, there exists a diagonal matrix D with positive
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diagonal entries such that D™'TD € M, ([0, {/z]). By Lemma 4, D"'&D < D™'TD,
so that D™'&D C M, ([0, {/z]). O

The following example shows that the estimate obtained in Theorem 12 is sharp.

Example 13. Take any € € (0,1] and put § = {/e. Let

0 6 0 O 0]
00 o0 O 0
00 ... 0 4 O
00 ... ... 0 9
50 ... ... 0 0]

Let & = {P* : k = 1,2,...}. Clearly, & is an indecomposable semigroup. The
diagonal elements of P* are all zeros for each 1 < k <n—1, and P" = §"I = ¢l. Also,
pttn — pkpr — gnpk < Pk Thus, the maximal value for every diagonal element
over all the matrices in & is . On the other hand, (P); ;41 = (P)p1 = d = /e for
all 1 <7 < n. It is clear that this bound cannot be decreased by a positive diagonal

similarity.

It might be natural to ask whether the assumption about the smallness of the diag-
onal entries in Theorem 11 could be replaced with smallness of some other functionals.
For example, could it be sufficient to assume that a certain entry is small in all the

matrices of &7 The following example shows that the answer is negative.

Example 14. Let € > 0. Generate a semigroup & by the following matrices:

O O B T B O A R

Clearly, © is indecomposable. Also, it can be easily checked that
B*=(C*=AC=BA=DA=DB=CD =0,

AB < B, CA<C,BOC<A CB<D,BD=DB,DC=C, A2< A, and D? = D.
Hence, (5)11 < ¢, (S)12 < g, and (S)2; < € for all S € &. Nevertheless, (D)g = 1,
and this cannot be made any smaller by applying a diagonal similarity since a diagonal

similarity does not change diagonal entries of matrices.

3. AN EXTENSION TO INFINITE MATRICES

In this section, we extend Lemma 6 and Theorem 7 to the infinite-dimensional case.
We start with extending our terminology. By an #nfinite non-negative matrix we

will mean a double sequence S = (s;;)75-; with s;; > 0 for all i,5 € N. The set of
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all such matrices will be denoted M (R). We will write S € My ([0, r]) if s;; < r for
some fixed r > 0. We say that T' = (t;;) € ML (R) is compressed if t;ty; < t;; for
all 4, j, and k. For S,T, R € M (R), we write R = ST if r;; = >, sily; for every i
and j in N (in particular, the series converges). A subset & of M} (R) will be called a
semigroup if ST exists and belongs to & whenever S, T € &. It is easy to see that
in this case the multiplication is associative on &. A semigroup & in M1 (R) is said
to be indecomposable if for every i, j € N there exists A € & such that (A);; # 0. A
semigroup & in MF(R) is said to bounded entry-wise if ¢;; := sup{(S);; : S € &}
is finite for every pair ¢, j. In this case, we write 7' = sup & where T' = (t;;). It is easy
to see that, in this case, 1" is compressed. Then & is indecomposable iff ¢;; > 0 for all
¢ and 7.

The following lemma is straightforward.

Lemma 15. Suppose that D = diag(d,,)5s_, € ME(R) such that d,, > 0 for all i.
(i) D71 :=diag(d,') € MZ(R) and D'D=DD ' =1.
(ii) For every A € M (R), A = (a;;), the matriz D~'AD € M (R) and its ij-th
entry equals aijfjl—j. If S is compressed then so is D™'AD.
(iii) If & € MZE(R) is an entry-wise bounded semigroup then so is D™'&D. More-
over, if & is bounded entry-wise, then D™'&D is bounded entry-wise and

sup D7'6D = D tsup &D.

The proofs of Lemma 16 and Theorem 17 repeat almost verbatim the proofs of

Lemma 6 and Theorem 7; just replace n with oco.

Lemma 16. Suppose thatr > 1 and T € MOO([O,T]) is compressed. Then there exists
D = diag(d,,) with (d,,) C [2,7] such that D™'TD € M([0,1]).

Theorem 17. Let r > 1 and & be a semigroup in M ([0,r]). Then there exists
D = diag(d,,) with (dy,) C [£,7] such that D7'&D € M([0,1]).

Next, we will prove an analogue of Corollary 10.

Lemma 18. Suppose that T € MF(R) is positive and compressed. Then there exists
D = diag(d,,) with d,, > 0 for all m such that D™'TD € M, ([0,1]).

Proof. Put d; = 1. Inductively define positive numbers ds, ds ..., so that, for D =
diag(d,,), V.= D™'TD, V = (v;), we have for every m:

(1) vim < 1 whenever i < m, and

(ii) there exists i,, < m such that v;_,, = 1.



INDECOMPOSABLE SEMIGROUPS 9

Indeed, once dy, . .., d,,_; are chosen, put D,,_; = diag(ds,...,dn,_1,1,1,...), and take
d,, to be the reciprocal of the maximal element in the m-th column of D;{lTDm,l
above the diagonal.

By Lemma 15, V is compressed and v; = t; < 1 for every i. To show that V €
M, ([0,1]), we will prove by induction on m that the m x m upper-left corner of V'
is in M,,([0,1]). For m = 1 we have v;; = t;; < 1. Suppose that m > 1 and the
(m—1) x (m—1) upper-left corner of V' is in M,,,_1([0, 1]). Take i, j < m; we will show
that v;; < 1. If 4, j < m, there is nothing to prove. If j = m then we are done by (i).
Suppose that j < i =m. Note that v;,, ,, = 1 by (ii). By Lemma 15, V' is compressed,
so that

Vij = Umj = Vi, mUmj < Vi <1

by the induction hypothesis, as i,, < m and j < m. 0J

Theorem 19. Let & be an indecomposable semigroup in M, (R) If there exist k,l € N
such that the set {(S)u : S € &} is bounded then there exists D = diag(d,,) with
dm > 0 for all m such that D™'&D € M, ([0, 1]).

Proof. First, we will show that & is entry-wise bounded. Suppose not. Then there
exist 4,7 € N and a sequence (S,) in & such that (S,);; = +00 as n — +o0. Since
S is indecomposable, there exist A, B € & such that (A); # 0 and (B);; # 0. Then
(AS,B)i = (A)ki(Sn)ij(B)ji — +00; a contradiction. Hence, & is entry-wise bounded.

Put T'= sup G, then T' is compressed. Let D be as in Lemma 18. Lemma 15 yields
D™'&D < D7TD, so that D™'&D € M,([0,1]). O

We would like to mention an immediate application to discrete Banach lattices.
For the relevant terminology and more details, we refer the reader to [AA02, LT77].
Suppose that X is a Banach lattice where the order is generated by a 1-unconditional
basis (e,,), that is, Y 7 ane, < >0 Buey iff oy, < B, for all n (for example, X could
be £, with 1 < p < 1 or ¢p). By scaling the vectors of the basis, we may usually assume
without loss of generality that the basis is normalized, i.e., ||e;|| = 1 for every i.

Recall that an operator 7': X — X determines an infinite matrix ¢;; via Te; =
> o2, tijei. The product of any two bounded operators agrees with the matrix product
of their infinite matrices. An operator T is said to be positive if Tx > 0 whenever

x > 0 or, equivalently, if its matrix is non-negative. In this case, T is automatically
bounded (see, e.g., [AA02]).
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An operator D is called diagonal if its infinite matrix is diagonal. Suppose D =
diag(d,,)°_;, then D is bounded iff the sequence (d,,) is bounded; D is invertible with

m=1>

D! = diag(d,!) as long as inf d,, > 0.

Corollary 20. Let X be a Banach lattice with the order given by a 1-unconditional
basis, and & a semigroup of positive operators on X. If there exists r > 1 such that
(S)ij <r for all S € & and i,j € N then there exists D = diag(d,,) with (d,) C [, 7]
such that all the entries of D~*&D are in [0, 1].

Corollary 21. Let X be a Banach lattice with the order given by a I-unconditional
normalized basis, and & a semigroup of positive operators on X. If & < T for some
bounded operator T, then there exists an invertible positive diagonal operator D such
that all the entries of D™'&D are in [0, 1].

Proof. The matrix of T is entry-wise bounded because t;;e; < Te; yields ¢;; < ||T'| for
all 7, j. Now apply Corollary 20 with r = ||T||. OJ

The following example shows that Theorem 19 cannot be extended to bounded

operators on discrete Banach lattices.

Example 22. An entry-wise bounded semigroup & of bounded positive operators on
{1 such that there is no positive diagonal operator D: {1 — {1 with all the entries of
D™'&D in [0,1].

Let & = {%Ew : 4,5 € N} U{0}. It can be easily verified that & is an entry-
wise bounded semigroup & of bounded positive operators on ¢;. Suppose that D =
diag(d;)22, such that d; > 0 for all i and all the entries of D™'&D are in [0,1]. In
particular, for any ¢ € N we have iE;; € & and the (¢,1)th entry of D™!(iE;;)D is i%?
so that d; — +o00 as 1 — 4o00. It follows that D is not an operator on /.

Note that & is the semigroup generated by nF,; and %Em for all n € N. If, instead,
we generate G by FEqq, %Elg, 3E3, }LEM,... and 2F5q, %Egl, 4Fy, etc, then neither D

nor D~! can be chosen to be bounded so that D~'&D in [0, 1].

Finally, we should mention that there seems to be no reasonable extension of Theo-
rem 12 to the infinite-dimensional case because the estimate there essentially depends

on the dimension.

4. THE CONTINUOUS CASE

Let K be a compact Hausdorff space, and p be a Borel measure on K. Then K x K
equipped with the product topology is also a compact Hausdorff space. As usual, C'(K)



INDECOMPOSABLE SEMIGROUPS 11

and C(K x K) will stand for the spaces of all real-valued continuous functions on K
and K x K, respectively. It is well known that these spaces are Banach lattices with

respect to point-wise order. We equip C'(K x K) with convolution defined via

(S % T)(xy) = /K S(a, Tt y) dp

for 5,7 € C(K x K).

Let us introduce some terminology. Let F be a subset of C'(K x K). We say that
F is a convolution semigroup in C'(K x K) if it is closed under convolution. We
say that F is equicontinuous if for every a,b € K and every ¢ > 0 there exists a
neighborhood V' of (a,b) in K x K such that |S(z,y) — S(a,b)| < € for every S € F
and every pair (x,y) € V. We say that F is bounded at some (a,b) in K x K if the
set {S(a,b) : S € F} is bounded. We write ker F for the set of all pairs (z,y) such
that S(z,y) = 0 for all S € F. That is, ker F is the intersection of the kernels of all
members of F. It follows that ker F is closed.

Theorem 23. Suppose that p is positive on the non-empty open subsets of K. Let &
be an equicontinuous convolution semigroup of non-negative functions in C(K x K)
such that

(i) ker & contains no non-empty open sets, and
(ii) there exists (a1,a2) € K x K such that & is bounded at (ay,as).

Then & is relatively norm compact in C(K x K).

Proof. Equicontinuity of & implies that there exists a neighborhood U of (ay, as) such
that & is uniformly bounded on W. Without loss of generality, W = W; x W5, where
W, and Wy are open neighborhoods of a; and as, respectively.

We claim that {S(ul,uQ) S e G} is uniformly bounded on K x K. First,
show that it is bounded at every point of K x K. Suppose not. Then there exists
a point (u1,us) € K x K and a sequence S, € & with S, (u1,uz) > n + 1. Since &
is equicontinuous, we can find a neighborhood U of (uy,us) such that S, > n on U.
Again, without loss of generality, U = U; x U, where U; and U, are open neighborhoods
of u; and us, respectively.

Since W7 x U;p is open, it is not contained in ker &, so that there exists a pair
(by,v1) € Wy x Uy and A € & such that A(by,v1) > 0. Similarly, there exist by € W,
vg € Uy, and B € & such that B(vy,by) > 0. Since A and B are continuous, we can
find € > 0 and open neighborhoods V; of v; and V5 of vy such that V; C Uy, Vo C Us,



12 H. GESSESSE, A. I. POPOV, H. RADJAVI, E. SPINU, A. TCACIUC, AND V. G. TROITSKY

A(by,-) > e on Vi, and B(-,by) > ¢ on V. Then

(A% Sy * B) (b1, b2) :/ A(br,5)Sn(s, 1) B(t, b2) dp @ pu
KxK

> / / (b, 5)Sa(s, ) B(t,ba) dp ® g
(8 t)EV1><V2

> ' np(Vi)u(Va) — +oo.

This contradicts the fact that & is bounded at (b1, by) because (by, by) € W. Therefore,
G is bounded at every point of K x K.

For every point (uj,us) € K x K, put T(uj,up) = sup{S(ul,UQ) S e 6}.
By the preceding claim, T'(u,us) is finite. Equicontinuity of & implies that T is
continuous. Since K x K is compact, there exists M > 0 such that T'(uy, ug) < M for
all (uy,uz) € K x K. Hence S(uj,us) < M for all S € & and all (uy,us) € K x K.

The result now follows by Arzela-Ascoli’s Theorem. OJ

Clearly, condition (i) in the preceding theorem is analogous to indecomposability
of &. Since ker & is closed, (i) is equivalent to ker & being nowhere dense. In particular,
it is satisfied when ker & has zero measure. On the other hand, viewing the elements
of C(K x K) as kernels of integral operators on L,(p) for 1 < p < oo (under the
assumption that y is finite), we can consider the natural embedding of C'(K x K) into
the space L(L,(u)) of all bounded operators on L, (). Moreover, the corresponding
integral operators are Hilbert-Schmidt. Thus, C'(K x K) embeds into the space of
Hilbert-Schmidt integral operators on Ls(u) equipped with the Hilbert-Schmidt norm.
Since the two embeddings are clearly continuous, Theorem 23 guarantees that & is
relatively compact as a subset of L(Lp(u)) and as a subset of the space of Hilbert-
Schmidt integral operators.

The following example shows that the natural analogue of Corollary 10 or Theo-
rems 17 or 19 fails in the case of convolution semigroups, where instead of D™1SD we

consider S(z, y) for some g € C[0,1].

Example 24. A convolution semigroup & of non-negative functions in C’([O, 1]2) such
that S(m a:) 1 for all S € &, but there is no g € C[0,1] with infg > 0 such that
S(x, y) ©l L <1 forall S € & and all x,y € [0,1]%.

Let S(z,y) = 3(z — y)?, and let & consist of the convolution powers of S. Observe
that if 0 < z < § then S(z,2) = S(z,2) < S(z,1) for every z € [0,1], and if § < 2 < 1
then S(z,z) = S(z,2) < S(2,0) for every x € [0, 1]. It follows that for every (z,y) €
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[0,1]* we have
1 1

(S *9)(x,y) < /23(2,1)261,2—1—/ S(z,0)%dz < 1.

1
0 3

Put E(z,y) = 1 for every (z,y) € [0,1]?. Then S * S < E. Also,
1
(S*E)(:n,y)zf o —t)dt=1(32" -3z +1)<
0

for all (z,y) € [0,1]. Hence, S* E < $E. Combining this with S% S < E, we get that
S < in,QE for all n > 2, where S™ is the n-th convolution power of S. In particular,
S™(xz,x) <1 for all x € [0,1] and all n.

On the other hand, suppose that g € C[0, 1] with inf g > 0. Let o = S(1, 0)% and
g = S5(0, 1)%. Then af = 5(1,0)8(0,1) = 2 > 1. It follows that either o > 1 or
g > 1.

Hence, G is indeed as we claimed above. Moreover, 0 < S” < Z,L%QE implies that

S™ — 0 in the uniform topology, hence G U {0} is a compact semigroup which still has
(or, rather, fails) the desired property.
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