
ON CD0(K)-SPACES

VLADIMIR G. TROITSKY

Abstract. We present an elementary proof of the (known) fact that a CD0(K)-
space is a Banach lattice and is lattice isometrically isomorphic to a particular C(K̃)
for some compact space K̃.

CD0(K)-spaces were introduced in [AW91, AW93b] and further investigated in

[AW93a, AE00, Erc04]. It is known [AW93b, AE00] that a CD0(K)-space is a Ba-

nach lattice and a unital AM-space. In [Erc04] it was shown that CD0(K) is lattice

isometrically isomorphic to C
(
K × {0, 1}) with K × {0, 1} equipped with a compact

Hausdorff topology. In this note we present elementary proofs of these facts.

Throughout these notes, K stands for a compact Hausdorff topological space without

isolated points. For x ∈ K, let Nx be a base of open neighborhoods of x in K. As

usually, for a real-valued function f on K and x0 ∈ K we write lim
x→x0

f(x) = r if for

every ε > 0 there exists V ∈ Nx such that
∣∣f(x) − r

∣∣ < ε for all x ∈ V \ {x0}. Note

that this notation is not vacuous for every x0 ∈ K because K has no isolated points.

We denote by C(K) the Banach lattice of all continuous functions on X, equipped

sup-norm and point-wise ordering. Denote by c0(K) the set of all real-valued functions

f on K such that the set
{|f | > ε

}
=

{
x ∈ K :

∣∣f(x)
∣∣ > ε

}
is finite for every ε > 0.

Clearly, c0(K) is a vector subspace of `∞(K), the space of all bounded functions on K

equipped with sup-norm.

Lemma 1. f ∈ c0(K) iff lim
x→x0

f(x) = 0 for every x0 ∈ K.

Proof. Suppose that f ∈ c0(K). Fix ε > 0. The set
{|f | > ε

}
is finite; since K is

Hausdorff there exists V ∈ Nx0 such that V doesn’t contain any points of this set with

the possible exception of x0 itself. Thus,
∣∣f(x)

∣∣ 6 ε for all x ∈ V \ {x0}. Therefore,

lim
x→x0

f(x) = 0.

Suppose now that lim
x→x0

f(x) = 0 for every x0 ∈ K and assume that the set
{|f | > ε

}

is infinite for some ε > 0. Since K is compact, this set must have an accumulation

point x0, which contradicts lim
x→x0

f(x) = 0. ¤
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Lemma 2. c0(K) is a closed subspace of `∞(K).

Proof. Suppose that a sequence of functions (fn) in c0(K) converges in sup-norm to

f ∈ `∞(K). Fix ε > 0, then ‖fn − f‖ < ε/2 for some n. It follows that
{|f | > ε

} ⊆{|fn| > ε
2

}
, hence is finite. ¤

It follows that c0(K) equipped with the sup-norm is a Banach space. Define the space

CD0(K) as follows: f ∈ CD0(K) if f = g + h for some g ∈ C(K) and h ∈ c0(K).

Equipped with the sup-norm, CD0(K) is a normed space, a subspace of `∞(K). We

also equip CD0(K) with the pointwise order. We will see that CD0(K) is a Banach

lattice, and, moreover, an AM-space.

Lemma 3. If f ∈ CD0(K), namely, f = g + h for some g ∈ C(K) and h ∈ c0(K),

then g(x0) = lim
x→x0

f(x) for all x0 ∈ K.

Proof. By Lemma 1, lim
x→x0

f(x) = lim
x→x0

g(x) + lim
x→x0

h(x) = g(x0) for every x0 ∈ K. ¤

It follows that every f in CD0(K) has a unique decomposition into a continuous

and a discrete part. Indeed, suppose that f = g + h = g′ + h′ where g, g′ ∈ C(K)

and h, h′ ∈ c0(K), then for every x0 ∈ K Lemma 3 implies g(x0) = lim
x→x0

f(x) = g′(x0).

Hence, g = g′ and, therefore, h = h′. In the rest of the paper, for f ∈ CD0(K) we will

write fc for the continuous component of f and fd for the discrete component. The

uniqueness of the decomposition also implies that (f+g)c = fc+gc and (f+g)d = fd+gd

for f, g ∈ CD0(K) because f + g = fc + fd + gc + gd = (fc + gc) + (fd + gd), and

fc + gc ∈ C(K) while fd + gd ∈ c0(K).

Proposition 4. If lim
x→x0

f(x) exists for every x0 ∈ K then f ∈ CD0(K). In this case

fc(x0) = lim
x→x0

f(x).

Proof. For every x0 ∈ K, put g(x0) = lim
x→x0

f(x), and let h = f−g. Then lim
x→x0

h(x) = 0

for every x0 ∈ K, so that h ∈ c0(K) by Lemma 1. It remains to show that g ∈ C(K).

Fix x0 ∈ K and ε > 0, there exists V ∈ Nx0 such that
∣∣f(x) − g(x0)

∣∣ < ε for all

x ∈ V \ {x0}. It follows that for every y ∈ V we have
∣∣g(y)− g(x0)

∣∣ =
∣∣lim
x→y

f(x)− g(x0)
∣∣ < ε.

¤

Combining Lemma 3 and Proposition 4 we get the following result.

Corollary 5. f ∈ CD0(K) if and only if lim
x→x0

f(x) exists for every x0 ∈ K.



ON CD0(K)-SPACES 3

Lemma 6. For every f ∈ CD0(K) we have ‖fc‖ 6 ‖f‖ 6 ‖fc‖+ ‖fd‖.

Proof. The first inequality follows from Proposition 4 while the second inequality is

just the triangle inequality. ¤

Corollary 7. CD0(K) is a Banach space.

Proof. Suppose that a sequence (fn) is Cauchy in CD0(K). It follows from Lemma 6

that the sequence of the continuous parts (fn)c is Cauchy, and, therefore, the sequence

of discrete parts (fn)d is Cauchy. Since C(K) and c0(K) are complete, (fn)c converges

to some g ∈ C(K) and (fn)d converges to some h ∈ c0(K). Hence (fn) converges to

g + h, which belongs to CD0(K). ¤

Next, we show that for this topology CD0(K) is order isometric to C
(
K×{0, 1}), if

the topology on K×{0, 1} is defined as follows. We put discrete topology on K×{1},
that is, we put N(x,1) = {(x, 1)} for each x ∈ K. Then all the points of K × {1} are

isolated points of K × {0, 1}. For a point (x, 0) in K × {0} we take the basic open

neighborhoods to be of the form Ṽ =
(
V × {0, 1}) \ {(x, 1)}, where V ∈ Nx. One can

easily verify that these sets indeed form a base of a Hausdorff topology. From now on

we consider K × {0, 1} equipped with this topology.

One can easily see that K × {0} is a closed subspace of K × {0, 1}, and the map

x 7→ (x, 0) is a homeomorphism between K and K × {0}. It the future we will often

identify K × {0} and K.

Lemma 8. K × {0, 1} is compact.

Proof. Consider an open cover of K × {0, 1}. By replacing each set in the cover by a

union of basic open neighborhoods of all the points in the set, we can assume that the

cover is formed by basic open neighborhoods. Hence, the cover is of the form
{{

(xα, 1)
}}

α∈Λ
∪ {

Ṽγ

}
γ∈Γ

,

where xα ∈ K and Vγ ∈ Nxγ for some xγ ∈ K. It is easy to see that {Vγ}γ∈Γ is an open

cover of K, so that there is a finite sub-cover V1, . . . , Vn. But then Ṽ1 ∪ · · · ∪ Ṽn only

misses finitely many points of K × {0, 1}, so that if we add the corresponding open

sets from the original cover then we obtain a finite cover of the entire K × {0, 1}. ¤

Theorem 9. CD0(K) is lattice isometrically isomorphic to C
(
K ×{0, 1}). In partic-

ular, CD0(K) is an AM-space.
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Proof. Define T : CD0(K) → C
(
K × {0, 1}) via (Tf)(x, r) = fc(x) + rfd(x). In other

words, Tf agrees with f on K × {1} and with fc on K × {0}. It follows immediately

that T is an isometry. It is obvious that Tf > 0 implies f > 0. On the other hand, if

f > 0 then fc > 0 by Proposition 4.

Observe that Tf is indeed a continuous function. Clearly, Tf is continuous on

K × {1}, as the later set consists of isolated points. Finally, it is left to show that

lim
(x,r)→(x0,0)

(Tf)(x, r) = (Tf)(x0, 0) for every x0 ∈ K. Observe that (x, r) → (x0, 0)

in K × {0, 1} implies that x → x0 in K, so that fc(x) → fc(x0) and fd(x) → 0 by

Lemma 1. It follows that (Tf)(x, r) = fc(x) + rfd(x) → fc(x0) = (Tf)(x0, 0).

Show that T is onto. Let F ∈ C
(
K×{0, 1}). For every x ∈ K define f(x) = F (x, 1).

Fix x0 ∈ K and ε > 0, there exists V ∈ Nx0 such that
∣∣F (x, r) − F (x0, 0)

∣∣ < ε for

all (x, r) ∈ Ṽ . In particular, for every x ∈ V \ {x0} we have
∣∣f(x) − F (x0, 0)

∣∣ =∣∣F (x, 1) − F (x0, 0)
∣∣ < ε, so that lim

x→x0

f(x) = F (x0, 0). It follows from Lemma 4 that

f ∈ CD0(K) and fc(x) = F (x, 0) for all x ∈ K, so that F = Tf . ¤
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