Math 667, Topics in Differential Equations Winter 2005

Assignment 1, due Jan 31. 2005, 9 AM in class

Exercise 1: (Linearization of discrete dynamical systems)

(4)

(3)

(5)

We study the discrete dynamical system with differentiable function f(x):

$$x_{n+1} = f(x_n).$$

- 1. Assume that \bar{x} is a fixed point and consider small perturbations around \bar{x} and define $x_n := \bar{x} + y_n$ where y_n is small. Derive the linearization of the above equation for y_n .
- 2. Prove the linear stability theorem which says that If λ_j are the eigenvalues of $Df(\bar{x})$, and if $|\lambda_j| < 1$, then \bar{x} is asymptotically stable. (Hint: Use the 1-norm in \mathbb{R}^n and show that $||y_n||_1 < \nu^n ||y_0||_1$ for an appropriate constant $0 \le \nu < 1$.)

Exercise 2: (Spectral Theorem)

Proof Theorem 1 in (1.3), which reads (a) If μ is an eigenvalue of a real matrix A, then $\lambda = e^{\mu}$ is an eigenvalue of e^{A} . (b) $Re\mu < 0$ if and only if $|\lambda| < 1$.

Exercise 3: (Stability of periodic orbits) (2) Finish the proof of Theorem 1 in (1.6). Show that if the periodic orbit γ is asymptotically stable for the flow $\phi_t(x)$, then x_0 is asymptotically stable for the Poincare-map P.

Exercise 4: (Perko, p. 231, Problem Set 5, No. 1:) Show that the nonlinear system

> $\dot{x} = -y + xz^2$ $\dot{y} = x + yz^2$ $\dot{z} = -z(x^2 + y^2)$

has a periodic orbit $\gamma(t) = (\cos t, \sin t, 0)$. Find the linearization of this system about $\gamma(t)$, the fundamental matrix $\Phi(t)$ for this autonomous linear system which satisfies $\Phi(0) = I$, and the characteristic exponents and multipliers of $\gamma(t)$. What are the dimensions of the stable, unstable and center manifolds of $\gamma(t)$?

Exercise 5:

Use some computer software to solve the Lorenz-equations numerically:

$$\begin{aligned} \dot{x} &= 10(y-x) \\ \dot{y} &= \mu x - y - xz \\ \dot{z} &= xy - \frac{8}{3}z \end{aligned}$$

Here the Lorenz system is written in a form such that it depends only on one parameter μ (see Perko, p373 ff). Try different values of μ in the range of $0 < \mu < 30$ and investigate how the solutions look like. Generate the Lorenz Attractor which appears near $\mu = 28$.

We will arrange for a special meeting where everyone can present her or his solution.

(6)